Skip to main content

Glycine Betaine as a Major Osmolyte under Abiotic Stress in Halophytes

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Halophytes

Abstract

Among different organic solutes, glycine betaine (GB) is an important compatible solute under stress condition. It performs different functions, and under stressed environment, its role becomes pivotal as an osmo−/stress-protectant. Choline and glycine are precursor molecules in GB biosynthetic pathway. Choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) function as biosynthetic enzymes. Under stress conditions, the role of increased GB contents has been advocated in stress tolerance through their involvement in different stress-responsive pathways. In an extreme halophyte Salicornia species, GB contents and BADH mRNA transcript increased under salinity stress. The role of exogenously supplied GB has also been shown in salt tolerance in plants. This offered opportunity for genetic engineering with genes involved in GB biosynthesis for the development of stress tolerance, and considerable work has been carried out in tobacco and Arabidopsis. GB protects photosynthetic apparatus, and increased photosynthesis makes survival easy under stressed environment. The present chapter will focus on GB and its role and implication in the development of climate-resilient crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas, W., Ashraf, M., & Akram, N. A. (2010). Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycine betaine and sugar beet extracts. Scientia Horticulturae, 125(3), 188–195.

    Article  CAS  Google Scholar 

  • Ali, Q., & Ashraf, M. (2011). Exogenously applied glycine betaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environmental and Experimental Botany, 71(2), 249–259.

    Article  CAS  Google Scholar 

  • Annunziata, M. G., Ciarmiello, L. F., Woodrow, P., Dell’Aversana, E., & Carillo, P. (2019). Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Frontiers in Plant Science, 10(230), 1–13.

    CAS  Google Scholar 

  • Ashraf, M. F. M. R., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.

    Article  CAS  Google Scholar 

  • Ashraf, M., Nawaz, K., & Raza, S. (2008). Growth enhancement in two potential cereal crops, maize and wheat, by exogenous application of glycine betaine. In C. Abdelly, M. Öztürk, M. Ashraf, & C. Grignon (Eds.), Biosaline agriculture and high salinity tolerance (pp. 21–35). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Carol Smith United Nations University. (2014). https://ourworld.unu.edu/en/one-fifth-of-global-farm-soil-degraded-by-salt.

  • Chen, T. H., & Murata, N. (2011). Glycine betaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant, Cell & Environment, 34(1), 1–20.

    Article  CAS  Google Scholar 

  • Chen, W. P., Li, P. H., & Chen, T. H. H. (2000). Glycine betaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant, Cell & Environment, 23(6), 609–618.

    Article  CAS  Google Scholar 

  • Demiral, T., & Türkan, I. (2006). Exogenous glycine betaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 56(1), 72–79.

    Article  CAS  Google Scholar 

  • Di, H., Tian, Y., Zu, H., Meng, X., Zeng, X., & Wang, Z. (2015). Enhanced salinity tolerance in transgenic maize plants expressing a BADH gene from Atriplex micrantha. Euphytica, 206(3), 775–783.

    Article  CAS  Google Scholar 

  • Fan, W., Zhang, M., Zhang, H., & Zhang, P. (2012). Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One, 7(5), e37344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhangi-Abriz, S., & Ghassemi-Golezani, K. (2018). How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicology and Environmental Safety, 147, 1010–1016.

    Article  CAS  PubMed  Google Scholar 

  • Giri, J. (2011). Glycine betaine and abiotic stress tolerance in plants. Plant Signaling & Behavior, 6(11), 1746–1751.

    Article  CAS  Google Scholar 

  • Hanson, A. D., Rathinasabapathi, B., Chamberlin, B., & Gage, D. A. (1991). Comparative physiological evidence that β-alanine betaine and choline-O-sulfate act as compatible osmolytes in halophytic Limonium species. Plant Physiology, 97(3), 1199–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino, T., Waditee, R., Araki, E., Ishikawa, H., Aoki, K., Tanaka, Y., & Takabe, T. (2002). Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. Journal of Biological Chemistry, 277(44), 41352–41360.

    Article  CAS  Google Scholar 

  • Hossain, M. A., & Fujita, M. (2010). Evidence for a role of exogenous glycine betaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiology and Molecular Biology of Plants, 16(1), 19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal, N., Ashraf, M. Y., & Ashraf, M. (2005). Influence of water stress and exogenous glycine betaine on sunflower achene weight and oil percentage. International Journal of Environmental Science & Technology, 2(2), 155–160.

    Article  CAS  Google Scholar 

  • Jagendorf, A. T., & Takabe, T. (2001). Inducers of glycine betaine synthesis in barley. Plant Physiology, 127(4), 1827–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathuria, H., Giri, J., Nataraja, K. N., Murata, N., Udayakumar, M., & Tyagi, A. K. (2009). Glycine betaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnology Journal, 7(6), 512–526.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67–74.

    Google Scholar 

  • Kishitani, S., Watanabe, K., Yasuda, S., Arakawa, K., & Takabe, T. (1994). Accumulation of glycine betaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants. Plant, Cell & Environment, 17(1), 89–95.

    Article  CAS  Google Scholar 

  • Kumar, V., Shriram, V., Hoque, T. S., Hasan, M. M., Burritt, D. J., & Hossain, M. A. (2017). Glycine betaine-mediated abiotic oxidative-stress tolerance in plants: Physiological and biochemical mechanisms. In Stress signaling in plants: Genomics and proteomics perspective (Vol. 2, pp. 111–133). Cham: Springer.

    Chapter  Google Scholar 

  • Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Allakhverdiev, S. I., Hurry, V., & Hüner, N. P. (2015). Stress-related hormones and glycine betaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynthesis Research, 126(2–3), 221–235.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q. L., Gao, X. R., Yu, X. H., Wang, X. Z., & An, L. J. (2003). Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnology Letters, 25(17), 1431–1436.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Zhang, T., Wang, M., Liu, Y., Brestic, M., Chen, T. H., & Yang, X. (2019). Genetic engineering of the biosynthesis of glycine betaine modulates phosphate homeostasis by regulating phosphate acquisition in tomato. Frontiers in Plant Science, 9, 1995.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahouachi, J., Argamasilla, R., & Gómez-Cadenas, A. (2012). Influence of exogenous glycine betaine and abscisic acid on papaya in responses to water-deficit stress. Journal of Plant Growth Regulation, 31(1), 1–10.

    Article  CAS  Google Scholar 

  • Malekzadeh, P. (2015). Influence of exogenous application of glycine betaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Physiology and Molecular Biology of Plants, 21(2), 225–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masood, A., Per, T. S., Asgher, M., Fatma, M., Khan, M. I. R., Rasheed, F., … & Khan, N. A. (2016). Glycine betaine: Role in shifting plants toward adaptation under extreme environments. In: Iqbal, N, Nazar, R. A. & Khan, N. (Eds.), Osmolytes and plants acclimation to changing environment: Emerging omics technologies. Springer, New Delhi.

    Google Scholar 

  • Matoh, T., Watanabe, J., & Takahashi, E. (1987). Sodium, potassium, chloride, and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelinii leaves. Plant Physiology, 84(1), 173–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra, P. P., & Kishore, N. (2012). Glycine betaine: A widely reported osmolyte induces differential and selective conformational stability and enhances aggregation in some proteins in the presence of surfactants. Biopolymers, 97(12), 933–949.

    Article  CAS  PubMed  Google Scholar 

  • Moghaieb, R. E., Saneoka, H., & Fujita, K. (2004). Effect of salinity on osmotic adjustment, glycine betaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Science, 166(5), 1345–1349.

    Article  CAS  Google Scholar 

  • Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N., & Tyagi, A. (2002). Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theoretical and Applied Genetics, 106(1), 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Nahar, K., Hasanuzzaman, M., & Fujita, M. (2016). Roles of osmolytes in plant adaptation to drought and salinity. In N. Iqbal, R. A. Nazar, & N. Khan (Eds.), Osmolytes and plants acclimation to changing environment: Emerging omics technologies. New Delhi: Springer.

    Google Scholar 

  • Park, E. J., Jeknic, Z., & Chen, T. H. (2006). Exogenous application of glycine betaine increases chilling tolerance in tomato plants. Plant and Cell Physiology, 47(6), 706–714.

    Article  CAS  PubMed  Google Scholar 

  • Quan, R., Shang, M., Zhang, H., Zhao, Y., & Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal, 2(6), 477–486.

    Article  CAS  PubMed  Google Scholar 

  • Rajashekar, C. B., Zhou, H., Marcum, K. B., & Prakash, O. (1999). Glycine betaine accumulation and induction of cold tolerance in strawberry (Fragaria X ananassa Duch.) plants. Plant Science, 148(2), 175–183.

    Article  CAS  Google Scholar 

  • Rezaei, M. A., Kaviani, B., & Jahanshahi, H. (2012). Application of exogenous glycine betaine on some growth traits of soybean (Glycine max L.) cv. DPX in drought stress conditions. Scientific Research and Essays, 7, 432–436.

    CAS  Google Scholar 

  • Sakamoto, A., & Murata, N. (2000). Genetic engineering of glycine betaine synthesis in plants: Current status and implications for enhancement of stress tolerance. Journal of Experimental Botany, 51(342), 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Sarwar, M. K. S., Ullah, I., Ashraf, M. Y., & Zafar, Y. (2006). Glycine betaine accumulation and its relation to yield and yield components in cotton genotypes grown under water deficit condition. Pakistan Journal of Botany, 38(5), 1449–1456.

    Google Scholar 

  • Serraj, R., & Sinclair, T. R. (2002). Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant, Cell & Environment, 25(2), 333–341.

    Article  Google Scholar 

  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, J., Hirji, R., Zhang, L., He, C., Selvaraj, G., & Wu, R. (2006). Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. Journal of Experimental Botany, 57(5), 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  • Tisarum, R., Theerawitaya, C., Samphumphung, T., Takabe, T., & Cha-um, S. (2019). Exogenous foliar application of glycine betaine to alleviate water deficit tolerance in two Indica rice genotypes under greenhouse conditions. Agronomy, 9(3), 138.

    Article  CAS  Google Scholar 

  • UN DESA (United Nations Department of Economics and Social Affairs). (2015). http://www.un.org/en/development/desa/news/population/2015-report.html.

  • Waditee, R., Bhuiyan, M. N. H., Rai, V., Aoki, K., Tanaka, Y., Hibino, T., … & Takabe, T. (2005). Genes for direct methylation of glycine provide high levels of glycine betaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proceedings of the National Academy of Sciences, 102(5), 1318–1323.

    Google Scholar 

  • Wahid, A., & Shabbir, A. (2005). Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycine betaine. Plant Growth Regulation, 46(2), 133–141.

    Article  CAS  Google Scholar 

  • Wang, J. Y., Tong, S. M., & Li, Q. L. (2013). Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance. Biochemical and Biophysical Research Communications, 432(2), 262–267.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F. W., Wang, M. L., Guo, C., Wang, N., Li, X. W., Chen, H., … & Li, H. Y. (2016). Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata. Genetics and Molecular Research, 15(2), gmr. 15027848.

    Google Scholar 

  • Wu, W., Su, Q., Xia, X. Y., Wang, Y., Luan, Y. S., & An, L. J. (2008). The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. Euphytica, 159(1–2), 17–25.

    Article  CAS  Google Scholar 

  • Xing, W., & Rajashekar, C. B. (2001). Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environmental and Experimental Botany, 46(1), 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Z., Sun, M., Jiang, X., Sun, H., Dang, X., Cong, H., & Qiao, F. (2018). Glycine betaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Frontiers in Plant Science, 9, 1469.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, X., & Lu, C. (2005). Photosynthesis is improved by exogenous glycine betaine in salt-stressed maize plants. Physiologia Plantarum, 124(3), 343–352.

    Article  CAS  Google Scholar 

  • Yang, X., Liang, Z., & Lu, C. (2005). Genetic engineering of the biosynthesis of glycine betaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiology, 138(4), 2299–2309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, C., Zhou, Y., Fan, J., Fu, Y., Shen, L., Yao, Y., … & Guo, J. (2015). SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis. Plant Physiology and Biochemistry, 96, 377–387.

    Google Scholar 

  • Zhang, Y., Yin, H., Li, D., Zhu, W., & Li, Q. (2008). Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Reports, 27(3), 585.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Dong, H., Li, W., Sun, Y., Chen, S., & Kong, X. (2009). Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Molecular Breeding, 23(2), 289–298.

    Article  CAS  Google Scholar 

  • Zhang, T., Liang, J., Wang, M., Li, D., Liu, Y., Chen, T. H., & Yang, X. (2019). Genetic engineering of the biosynthesis of glycine betaine enhances the fruit development and size of tomato. Plant Science, 280, 355–366.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CSIR-CSMCRI PRIS-31/2020.

Authors thankfully acknowledge the CSIR, Govt. of India, for the different projects and the establishment of research facilities. Authors acknowledge the financial support of GSBTM (80G2DT/GAP 2080), Govt. of Gujarat, for the castor tissue culture. SAS is thankful to UGC, Govt. of India, for the support in the form of UGC-JRF/SRF. AK is thankful to DBT for JRF and SRF. SAS and AK are thankful to the Academy of the Council of Scientific and Industrial Research (AcSIR), Ghaziabad, for the registration in Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangal S. Rathore .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Siddiqui, S.A., Kumari, A., Rathore, M.S. (2021). Glycine Betaine as a Major Osmolyte under Abiotic Stress in Halophytes. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_118-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_118-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Glycine Betaine as a Major Osmolyte under Abiotic Stress in Halophytes
    Published:
    10 November 2020

    DOI: https://doi.org/10.1007/978-3-030-17854-3_118-2

  2. Original

    Theme 3
    Published:
    30 September 2020

    DOI: https://doi.org/10.1007/978-3-030-17854-3_118-1