Skip to main content

In Vivo Transplantation and Tooth Repair

  • Protocol
  • First Online:
Odontogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 887))

  • 4510 Accesses

Abstract

Cell scaffold-based tooth engineering research was started by 2000 at Forsyth Institute corroborated with Dr. Vacanti’s team at Massachusetts General Hospital. The first work was published in 2002 in Journal of Dental Research, in which we particularly focused on cells from postnatal tooth because of its clinical application. However, making a functional tooth from postnatal cells is still ways away. Alternatively, we formulated a partial replacement of the tooth by engineering the root of the tooth. Here, we describe a new technique in which the root of the third molar is used to replace missing teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gronthos, S., M. Mankani, J. Brahim, P.G. Robey, and S. Shi. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 97:13625–30.

    Article  PubMed  CAS  Google Scholar 

  2. Honda, M.J., H. Fong, S. Iwatsuki, Y. Sumita, and M. Sarikaya. (2008). Tooth-forming potential in embryonic and postnatal tooth bud cells. Med Mol Morphol. 41:183–92.

    Article  PubMed  Google Scholar 

  3. Ikeda, E., R. Morita, K. Nakao, K. Ishida, T. Nakamura, T. Takano-Yamamoto, M. Ogawa, M. Mizuno, S. Kasugai, and T. Tsuji. (2009). Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 106:13475–80.

    Article  PubMed  CAS  Google Scholar 

  4. Iwatsuki, S., M.J. Honda, H. Harada, and M. Ueda. (2006). Cell proliferation in teeth reconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold. Eur J Oral Sci. 114:310–7.

    Article  PubMed  CAS  Google Scholar 

  5. Nakao, K., R. Morita, Y. Saji, K. Ishida, Y. Tomita, M. Ogawa, M. Saitoh, Y. Tomooka, and T. Tsuji. (2007). The development of a bioengineered organ germ method. Nat Methods. 4:227–30.

    Article  PubMed  CAS  Google Scholar 

  6. Honda, M.J., Y. Sumita, H. Kagami, and M. Ueda. (2005). Histological and immunohistochemical studies of tissue engineered odontogenesis. Arch Histol Cytol. 68:89–101.

    Article  PubMed  Google Scholar 

  7. Sumita, Y., M.J. Honda, T. Ohara, S. Tsuchiya, H. Sagara, H. Kagami, and M. Ueda. (2006). Performance of collagen sponge as a 3-D ­scaffold for tooth-tissue engineering. Biomaterials. 27:3238–48.

    Article  PubMed  CAS  Google Scholar 

  8. Young, C.S., S. Terada, J.P. Vacanti, M. Honda, J.D. Bartlett, and P.C. Yelick. (2002). Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 81:695–700.

    Article  PubMed  CAS  Google Scholar 

  9. Honda, M.J., Y. Shinohara, Y. Sumita, A. Tonomura, H. Kagami, and M. Ueda. (2006b). Shear stress facilitates tissue-engineered odontogenesis. Bone. 39:125–33.

    Article  PubMed  CAS  Google Scholar 

  10. Honda, M.J., M. Imaizumi, H. Suzuki, S. Ohshima, S. Tsuchiya, and K. Satomura. (2011). Stem cells isolated from human dental follicles have osteogenic potential. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 111:700–8.

    Article  PubMed  Google Scholar 

  11. Honda, M.J., T. Shimodaira, T. Ogaeri, Y. Shinohara, K. Hata, and M. Ueda. (2006a). A novel culture system for porcine odontogenic epithelial cells using a feeder layer. Arch Oral Biol. 51:282–90.

    Article  PubMed  CAS  Google Scholar 

  12. Honda, M.J., Y. Shinmura, and Y. Shinohara. (2009). Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells. Cells Tissues Organs. 189:261–7.

    Article  PubMed  CAS  Google Scholar 

  13. Honda, M.J., Y. Shinohara, K.I. Hata, and M. Ueda. (2007). Subcultured odontogenic epithelial cells in combination with dental mesenchymal cells produce enamel-dentin-like complex structures. Cell Transplant. 16:833–47.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Japanese Ministry of Education, Culture, Sports, Science and Technology [Kakenhi KibanB (20659305) to MH], and Dental Research Center, Nihon University School of Dentistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki J. Honda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tsuchiya, S., Honda, M.J. (2012). In Vivo Transplantation and Tooth Repair. In: Kioussi, C. (eds) Odontogenesis. Methods in Molecular Biology, vol 887. Humana Press. https://doi.org/10.1007/978-1-61779-860-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-860-3_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-859-7

  • Online ISBN: 978-1-61779-860-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics