Skip to main content

Purification and Reconstitution of the S. cerevisiae TRAMP and Ski Complexes for Biochemical and Structural Studies

  • Protocol
  • First Online:
The Eukaryotic RNA Exosome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2062))

Abstract

The RNA exosome is a macromolecular machine that degrades a large variety of RNAs from their 3′-end. It comprises the major 3′-to-5′ exonuclease in the cell, completely degrades erroneous and overly abundant RNAs, and is also involved in the precise processing of RNAs. To degrade transcripts both specifically and efficiently the exosome functions together with compartment-specific cofactors. In the yeast S. cerevisiae, the exosome associates with the Ski complex in the cytoplasm and with Mtr4 alone or with Mtr4 as part of the TRAMP complex in the nucleus. Here we describe how to produce, purify, and assemble the Ski and TRAMP complexes from S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 01 December 2020

    A correction has been published.

References

  1. Zinder JC, Lima CD (2017) Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev 31:88–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chlebowski A, Lubas M, Jensen TH, Dziembowski A (2013) RNA decay machines: the exosome. Biochim Biophys Acta 1829:552–560

    Article  CAS  PubMed  Google Scholar 

  3. Makino DL, Schuch B, Stegmann E et al (2015) RNA degradation paths in a 12-subunit nuclear exosome complex. Nature 524:54–58

    Article  CAS  PubMed  Google Scholar 

  4. Kilchert C, Wittmann S, Vasiljeva L (2016) The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17:227–239

    Article  CAS  PubMed  Google Scholar 

  5. Johnson SJ, Jackson RN (2013) Ski2-like RNA helicase structures common themes and complex assemblies. RNA Biol 10:33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weir JR, Bonneau F, Hentschel J, Conti E (2010) Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc Natl Acad Sci U S A 107:12139–12144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jackson RN, Klauer AA, Hintze BJ et al (2010) The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing. EMBO J 29:2205–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Halbach F, Rode M, Conti E (2012) The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome. RNA 18:124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thoms M, Thomson E, Bassler J et al (2015) The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 162:1029–1038

    Article  CAS  PubMed  Google Scholar 

  10. Falk S, Tants J-N, Basquin J et al (2017) Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53. RNA 23:1780–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wyers F, Rougemaille M, Badis G et al (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(a) polymerase. Cell 121:725–737

    Article  CAS  PubMed  Google Scholar 

  12. Vaňáčová Š, Wolf J, Martin G et al (2005) A new yeast poly(a) polymerase complex involved in RNA quality control. PLoS Biol 3:e189

    Article  PubMed  Google Scholar 

  13. LaCava J, Houseley J, Saveanu C et al (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121:713–724

    Article  CAS  PubMed  Google Scholar 

  14. Hamill S, Wolin SL, Reinisch KM (2010) Structure and function of the polymerase core of TRAMP, a RNA surveillance complex. Proc Natl Acad Sci 107:15045–15050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fasken MB, Leung SW, Banerjee A et al (2011) Air1 zinc knuckles 4 and 5 and a conserved IWRXY motif are critical for the function and integrity of the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) RNA quality control complex. J Biol Chem 286:37429–37445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmidt K, Butler JS (2013) Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. WIREs RNA 4:217–231

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt K, Xu Z, Mathews DH, Butler JS (2012) Air proteins control differential TRAMP substrate specificity for nuclear RNA surveillance. RNA 18:1934–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holub P, Lalakova J, Cerna H et al (2012) Air2p is critical for the assembly and RNA-binding of the TRAMP complex and the KOW domain of Mtr4p is crucial for exosome activation. Nucleic Acids Res 40:5679–5693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Falk S, Weir JR, Hentschel J et al (2014) The molecular architecture of the TRAMP complex reveals the organization and interplay of its two catalytic activities. Mol Cell 55:856–867

    Article  CAS  PubMed  Google Scholar 

  20. Anderson JS, Parker RP (1998) The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3″ to 5″ exonucleases of the exosome complex. EMBO J 17:1497–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown JT, Bai X, Johnson AW (2000) The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6:449–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Synowsky SA, Heck AJR (2008) The yeast Ski complex is a hetero-tetramer. Protein Sci 17:119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Halbach F, Reichelt P, Rode M, Conti E (2013) The yeast Ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154:814–826

    Article  CAS  PubMed  Google Scholar 

  24. Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22:1583–1587

    Article  CAS  PubMed  Google Scholar 

  25. Bieniossek C, Imasaki T, Takagi Y, Berger I (2012) MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem Sci 37:49–57

    Article  CAS  PubMed  Google Scholar 

  26. Geneva Biotech (2018) Multibac™ User Manual 6.1. https://geneva-biotech.com/wp-content/uploads/2018/01/MultiBac%20Manual%20v6.1.pdf. Accessed 3 Aug 2018

  27. Schuch B, Feigenbutz M, Makino DL et al (2014) The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 33:2829–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schuller JM, Falk S, Fromm L et al (2018) Structure of the nuclear exosome captured on a maturing preribosome. Science 360:219–222

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt C, Kowalinski E, Shanmuganathan V et al (2016) The cryo-EM structure of a ribosome-Ski2-Ski3-Ski8 helicase complex. Science 354:1431–1433

    Article  CAS  PubMed  Google Scholar 

  30. Cheng Z, Liu Y, Wang C et al (2004) Crystal structure of Ski8p, a WD-repeat protein with dual roles in mRNA metabolism and meiotic recombination. Protein Sci 13:2673–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Madrona AY, Wilson DK (2004) The structure of Ski8p, a protein regulating mRNA degradation: implications for WD protein structure. Protein Sci 13:1557–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena Conti or Sebastian Falk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Keidel, A., Conti, E., Falk, S. (2020). Purification and Reconstitution of the S. cerevisiae TRAMP and Ski Complexes for Biochemical and Structural Studies. In: LaCava, J., Vaňáčová, Š. (eds) The Eukaryotic RNA Exosome. Methods in Molecular Biology, vol 2062. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9822-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9822-7_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9821-0

  • Online ISBN: 978-1-4939-9822-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics