Skip to main content

Cotranscriptional Assembly and Native Purification of Large RNA–RNA Complexes for Structural Analyses

  • Protocol
  • First Online:
RNA Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2568))

Abstract

Recent technological developments such as cryogenic electron microscopy (Cryo-EM) and X-ray free electron lasers (XFEL) have significantly expanded the available toolkit to visualize large, complex noncoding RNAs and their complexes. Consequently, the quality of the RNA sample, as measured by its chemical monodispersity and conformational homogeneity, has become the bottleneck that frequently precludes effective structural analyses. Here we describe a general RNA sample preparation protocol that combines cotranscriptional RNA folding and RNA–RNA complex assembly, followed by native purification of stoichiometric complexes. We illustrate and discuss the utility of this versatile method in overcoming RNA misfolding and enabling the structural and mechanistic elucidations of the T-box riboswitch–tRNA complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris KA, Breaker RR (2018) Large noncoding RNAs in bacteria. Microbiol Spectr 6:6.4.01.

    Google Scholar 

  2. Peselis A, Gao A, Serganov A (2015) Cooperativity, allostery and synergism in ligand binding to riboswitches. Biochimie 117:100–109

    Article  CAS  Google Scholar 

  3. Reiter NJ, Osterman A, Torres-Larios A et al (2010) Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468:784–789

    Article  CAS  Google Scholar 

  4. Suslov NB, Dasgupta S, Huang H et al (2015) Crystal structure of the Varkud satellite ribozyme. Nat Chem Biol 11:840–846

    Article  CAS  Google Scholar 

  5. Ferré-D’amaré AR, Scott WG (2010) Small self-cleaving ribozymes. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  6. Korostelev A, Trakhanov S, Laurberg M et al (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–1077

    Article  CAS  Google Scholar 

  7. Ramakrishnan V (2002) Ribosome structure and the mechanism of translation. Cell 108:557–572

    Article  CAS  Google Scholar 

  8. Bou-Nader C, Zhang J (2020) Structural insights into RNA dimerization: motifs, interfaces and functions. Molecules 25:2881

    Article  CAS  Google Scholar 

  9. Hood IV, Gordon JM, Bou-Nader C et al (2019) Crystal structure of an adenovirus virus-associated RNA. Nat Commun 10:2871

    Article  Google Scholar 

  10. Zhang J, Ferre-D’amare AR (2014) Dramatic improvement of crystals of large RNAs by cation replacement and dehydration. Structure 22:1363–1371

    Article  CAS  Google Scholar 

  11. Stagno JR, Liu Y, Bhandari YR et al (2017) Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 541:242–246

    Article  CAS  Google Scholar 

  12. Somarowthu S, Legiewicz M, Chillon I et al (2015) HOTAIR forms an intricate and modular secondary structure. Mol Cell 58:353–361

    Article  CAS  Google Scholar 

  13. Wickiser JK, Winkler WC, Breaker RR et al (2005) The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell 18:49–60

    Article  CAS  Google Scholar 

  14. Zhang J, Lau MW, Ferré-D’amaré AR (2010) Ribozymes and riboswitches: modulation of RNA function by small molecules. Biochemistry 49:9123–9131

    Article  CAS  Google Scholar 

  15. Zhang J, Landick R (2016) A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure. Trends Biochem Sci 41:293–310

    Article  CAS  Google Scholar 

  16. Wong TN, Sosnick TR, Pan T (2007) Folding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures. Proc Natl Acad Sci USA 104:17995–18000

    Article  CAS  Google Scholar 

  17. Zhang J (2020) Unboxing the T-box riboswitches-A glimpse into multivalent and multimodal RNA-RNA interactions. Wiley Interdiscip Rev RNA 11:e1600

    Article  CAS  Google Scholar 

  18. Li S, Su Z, Lehmann J et al (2019) Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions. Nat Struct Mol Biol 26:1094–1105

    Article  CAS  Google Scholar 

  19. Suddala KC, Zhang J (2019) High-affinity recognition of specific tRNAs by an mRNA anticodon-binding groove. Nat Struct Mol Biol 26:1114–1122

    Article  CAS  Google Scholar 

  20. Coleman TM, Wang G, Huang F (2004) Superior 5′ homogeneity of RNA from ATP-initiated transcription under the T7 phi 2.5 promoter. Nucleic Acids Res 32:e14

    Article  Google Scholar 

  21. Martin CT, Coleman JE (1989) T7 RNA polymerase does not interact with the 5′-phosphate of the initiating nucleotide. Biochemistry 28:2760–2762

    Article  CAS  Google Scholar 

  22. Vasilyev N, Serganov A (2016) Preparation of short 5′-triphosphorylated oligoribonucleotides for crystallographic and biochemical studies. Methods Mol Biol 1320:11–20

    Article  Google Scholar 

  23. Ferré-D’amaré AR, Doudna JA (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24:977–978

    Article  Google Scholar 

  24. Xiao H, Murakami H, Suga H et al (2008) Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme. Nature 454:358–361

    Article  CAS  Google Scholar 

  25. Kao C, Zheng M, Rudisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5:1268–1272

    Article  CAS  Google Scholar 

  26. Zhang J, Ferré-D’amaré AR (2014) Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout. Mol Cell 55:148–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank G. Piszczek and D. Wu for support with biophysical analyses, and A. R. Ferré-D’Amaré, K. Suddala, and C. Bou-Nader for discussions. This work was supported by the Intramural Research Program of the NIH, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (ZIADK075136 to J.Z.), and an NIH Deputy Director for Intramural Research (DDIR) Challenge Award to J.Z. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sapkota, K.P., Li, S., Zhang, J. (2023). Cotranscriptional Assembly and Native Purification of Large RNA–RNA Complexes for Structural Analyses. In: Ding, J., Stagno, J.R., Wang, YX. (eds) RNA Structure and Dynamics. Methods in Molecular Biology, vol 2568. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2687-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2687-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2686-3

  • Online ISBN: 978-1-0716-2687-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics