Skip to main content

Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy

  • Protocol
  • First Online:
Atomic Force Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1886))

Abstract

Membrane proteins play an integral role in cellular communication. They are often organized within the crowded cell membrane into nanoscale domains (i.e., nanodomains), which facilitates their function in cell signaling processes. The visualization of membrane proteins and nanodomains within biological membranes under physiological conditions presents a challenge and is not possible using conventional microscopy methods. Atomic force microscopy (AFM) provides an opportunity to study the organization of membrane proteins within biological membranes with sub-nanometer resolution. An example of a membrane protein organized into nanodomains is rhodopsin. Rhodopsin is expressed in photoreceptor cells of the retina and upon photoactivation initiates a series of biochemical reactions called phototransduction, which represents the first steps of vision. AFM has provided an opportunity to directly visualize the packing of rhodopsin in native retinal membranes and the quantitative analysis of AFM images is beginning to reveal insights about the nanodomain organization of rhodopsin in the membrane. In this report, we outline procedures for imaging rhodopsin nanodomains by AFM and the quantitative analysis of those AFM images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fagerberg L, Jonasson K, von Heijne G et al (2010) Prediction of the human membrane proteome. Proteomics 10:1141–1149

    Article  CAS  Google Scholar 

  2. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  CAS  Google Scholar 

  3. Yildirim MA, Goh KI, Cusick ME et al (2007) Drug-target network. Nat Biotechnol 25:1119–1126

    Article  CAS  Google Scholar 

  4. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  Google Scholar 

  5. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  Google Scholar 

  6. Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  Google Scholar 

  7. Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283

    Article  CAS  Google Scholar 

  8. Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  CAS  Google Scholar 

  9. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    Article  CAS  Google Scholar 

  10. Muller DJ, Engel A (2007) Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc 2:2191–2197

    Article  CAS  Google Scholar 

  11. Whited AM, Park PS (2014) Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Biophys Acta 1838:56–68

    Article  CAS  Google Scholar 

  12. Park PS (2014) Constitutively active rhodopsin and retinal disease. Adv Pharmacol 70:1–36

    Article  CAS  Google Scholar 

  13. Daemen FJ (1973) Vertebrate rod outer segment membranes. Biochim Biophys Acta 300:255–288

    Article  CAS  Google Scholar 

  14. Rakshit T, Park PS (2015) Impact of reduced rhodopsin expression on the structure of rod outer segment disc membranes. Biochemistry 54:2885–2894

    Article  CAS  Google Scholar 

  15. Papermaster DS, Dreyer WJ (1974) Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438–2444

    Article  CAS  Google Scholar 

  16. Fotiadis D, Liang Y, Filipek S et al (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  CAS  Google Scholar 

  17. Whited AM, Park PS (2015) Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes. Biochim Biophys Acta 1848:26–34

    Article  CAS  Google Scholar 

  18. Rakshit T, Senapati S, Sinha S et al (2015) Rhodopsin forms nanodomains in rod outer segment disc membranes of the cold-blooded Xenopus laevis. PLoS One 10:e0141114

    Article  CAS  Google Scholar 

  19. Buzhynskyy N, Salesse C, Scheuring S (2011) Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes. J Mol Recognit 24:483–489

    Article  CAS  Google Scholar 

  20. Liang Y, Fotiadis D, Filipek S et al (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278:21655–21662

    Article  CAS  Google Scholar 

  21. Gunkel M, Schoneberg J, Alkhaldi W et al (2015) Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. Structure 23:628–638

    Article  CAS  Google Scholar 

  22. Baylor DA, Lamb TD, Yau KW (1979) Responses of retinal rods to single photons. J Physiol 288:613–634

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Cangiano L, Dell'Orco D (2013) Detecting single photons: a supramolecular matter? FEBS Lett 587:1–4

    Article  CAS  Google Scholar 

  24. Dell'Orco D (2013) A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors. FEBS Lett 587:2060–2066

    Article  CAS  Google Scholar 

  25. Mishra AK, Gragg M, Stoneman MR et al (2016) Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochem J 473:3819–3836

    Article  CAS  Google Scholar 

  26. Sapra KT (2013) Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers. Methods Mol Biol 974:73–110

    Article  CAS  Google Scholar 

  27. Sapra KT, Park PS, Filipek S et al (2006) Detecting molecular interactions that stabilize native bovine rhodopsin. J Mol Biol 358:255–269

    Article  CAS  Google Scholar 

  28. Fotiadis D, Liang Y, Filipek S et al (2004) The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett 564:281–288

    Article  CAS  Google Scholar 

  29. Park PS, Sapra KT, Jastrzebska B et al (2009) Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry 48:4294–4304

    Article  CAS  Google Scholar 

  30. Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by National Institutes of Health (R01EY021731) and Research to Prevent Blindness (Unrestricted Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S.-H. Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Senapati, S., Park, P.SH. (2019). Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics