Skip to main content

High-Resolution Atomic Force Microscopy Imaging of Rhodopsin in Rod Outer Segment Disk Membranes

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1271))

Abstract

Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bippes CA, Müller DJ (2011) High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Rep Prog Phys 74:086601

    Article  Google Scholar 

  2. Stahlberg H, Fotiadis D, Scheuring S et al (2001) Two-dimensional crystals: a powerful approach to assess structure, function and dynamics of membrane proteins. FEBS Lett 504:166–172

    Article  CAS  PubMed  Google Scholar 

  3. Müller DJ, Büldt G, Engel A (1995) Force-induced conformational change of bacteriorhodopsin. J Mol Biol 249:239–243

    Article  PubMed  Google Scholar 

  4. Müller DJ, Engel A (1999) Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J Mol Biol 285:1347–1351

    Article  PubMed  Google Scholar 

  5. Müller DJ, Sass HJ, Müller SA et al (1999) Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J Mol Biol 285:1903–1909

    Article  PubMed  Google Scholar 

  6. Yu J, Bippes CA, Hand GM et al (2007) Aminosulfonate modulated pH-induced conformational changes in Connexin26 hemichannels. J Biol Chem 282:8895–8904

    Article  CAS  PubMed  Google Scholar 

  7. Mari SA, Köster S, Bippes CA et al (2010) pH-induced conformational change of the β-barrel-forming protein OmpG reconstituted into native E. coli lipids. J Mol Biol 396:610–616

    Article  CAS  PubMed  Google Scholar 

  8. Mari SA, Pessoa J, Altieri S et al (2011) Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc Natl Acad Sci USA 108:20802–20807

    Article  PubMed Central  PubMed  Google Scholar 

  9. Müller DJ, Engel A, Matthey U et al (2003) Observing membrane protein diffusion at subnanometer resolution. J Mol Biol 327:925–930

    Article  PubMed  Google Scholar 

  10. Yamashita H, Voïtchovsky K, Uchihashi T et al (2009) Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. J Struct Biol 167:153–158

    Article  CAS  PubMed  Google Scholar 

  11. Muller DJ, Engel A (2008) Strategies to prepare and characterize native membrane proteins and protein membranes by AFM. Curr Opin Colloid Interface Sci 13:338–350

    Article  CAS  Google Scholar 

  12. Seelert H, Poetsch A, Dencher NA et al (2000) Structural biology: proton-powered turbine of a plant motor. Nature 405:418–419

    Article  CAS  PubMed  Google Scholar 

  13. Stahlberg H, Müller DJ, Suda K et al (2001) Bacterial Na+-ATP synthase has an undecameric rotor. EMBO Rep 2:229–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Cisneros DA, Oesterhelt D, Müller DJ (2005) Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin. Structure 13:235–242

    Article  CAS  PubMed  Google Scholar 

  15. Meier T, Yu J, Raschle T et al (2005) Structural evidence for a constant c11 ring stoichiometry in the sodium F-ATP synthase. FEBS J 272:5474–5483

    Article  CAS  PubMed  Google Scholar 

  16. Pogoryelov D, Yu J, Meier T et al (2005) The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep 6:1040–1044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Pogoryelov D, Reichen C, Klyszejko AL et al (2007) The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15. J Bacteriol 189:5895–5902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Fritz M, Klyszejko AL, Morgner N et al (2008) An intermediate step in the evolution of ATPases—a hybrid F0–V0 rotor in a bacterial Na+F1F0 ATP synthase. FEBS J 275:1999–2007

    Article  CAS  PubMed  Google Scholar 

  19. Klyszejko AL, Shastri S, Mari SA et al (2008) Folding and assembly of proteorhodopsin. J Mol Biol 376:34–41

    Article  Google Scholar 

  20. Matthies D, Preiss L, Klyszejko AL et al (2009) The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. J Mol Biol 388:611–618

    Article  CAS  PubMed  Google Scholar 

  21. Preiss L, Klyszejko AL, Hicks DB et al (2013) The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. Proc Natl Acad Sci USA 110:7874–7879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Fotiadis D, Liang Y, Filipek S et al (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  CAS  PubMed  Google Scholar 

  23. Hoogenboom B, Suda K, Engel A et al (2007) The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J Mol Biol 370:246–255

    Article  CAS  PubMed  Google Scholar 

  24. Liang Y, Fotiadis D, Filipek S et al (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278:21655–21662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Saxton WO (1996) Semper: distortion compensation, selective averaging, 3-D reconstruction, and transfer function correction in a highly programmable system. J Struct Biol 116:230–236

    Article  CAS  PubMed  Google Scholar 

  26. Mueller DJ, Engel A (2007) Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc 2:2191–2197

    Article  CAS  Google Scholar 

  27. Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84:64–76

    Article  CAS  Google Scholar 

  28. Yasumura KY, Stowe TD, Chow EM et al (2000) Quality factors in micron- and submicron-thick cantilevers. J Microelectromech Syst 9:117–125

    Article  CAS  Google Scholar 

  29. Frederix PTLM, Bosshart PD, Engel A (2009) Atomic force microscopy of biological membranes. Biophys J 96:329–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hoogenboom BW, Frederix PLTM, Yang JL et al (2005) A Fabry-Perot interferometer for micrometer-sized cantilevers. Appl Phys Lett 86:074101

    Article  Google Scholar 

  31. Ando T, Kodera N, Takai E et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA 98:12468–12472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Fantner GE, Schitter G, Kindt JH et al (2006) Components for high speed atomic force microscopy. Ultramicroscopy 106:881–887

    Article  CAS  PubMed  Google Scholar 

  33. Picco ML, Bozec L, Ulcinas A et al (2007) Breaking the speed limit with atomic force microscopy. Nanotechnology 18:044030

    Article  Google Scholar 

  34. Yamamoto D, Uchihashi T, Kodera N et al (2010) Chapter twenty—High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. In: Walter NG (ed) Biomembranes Part A. Academic, New York, pp 541–564

    Google Scholar 

  35. Shibata M, Yamashita H, Uchihashi T et al (2010) High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat Nanotechnol 5:208–212

    Article  CAS  PubMed  Google Scholar 

  36. Uchihashi T, Ando T (2011) High-speed atomic force microscopy and biomolecular processes. Methods Mol Biol 736:285–300

    Article  CAS  PubMed  Google Scholar 

  37. Shibata M, Uchihashi T, Yamashita H et al (2011) Structural changes in bacteriorhodopsin in response to alternate illumination observed by high-speed atomic force microscopy. Angew Chem Int Ed 50:4410–4413

    Article  CAS  Google Scholar 

  38. Medalsy I, Hensen U, Muller DJ (2011) Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM. Angew Chem Int Ed 50:1–7

    Article  Google Scholar 

  39. Frederix PLTM, Bosshart PD, Akiyama T et al (2008) Conductive supports for combined AFM-SECM on biological membranes. Nanotechnology 19:384004

    Article  PubMed  Google Scholar 

  40. Müller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119:172–188

    Article  PubMed  Google Scholar 

  41. Müller DJ, Fotiadis D, Scheuring S et al (1999) Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscopy. Biophys J 76:1101–1111

    Article  PubMed Central  PubMed  Google Scholar 

  42. Saxton WO, Baumeister W (1982) The correlation averaging of a regularly arranged bacterial cell envelope protein. J Microsc 127:127–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the University of Bern, the Bern University Research Foundation, the Swiss National Science Foundation, and the National Centres of Competence in Research (NCCR) TransCure and Molecular Systems Engineering is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Fotiadis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bosshart, P.D., Engel, A., Fotiadis, D. (2015). High-Resolution Atomic Force Microscopy Imaging of Rhodopsin in Rod Outer Segment Disk Membranes. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics