Skip to main content

Assessing DNA Methylation in Cancer Stem Cells

  • Protocol
  • First Online:
Cancer Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1692))

Abstract

Many cancer-associated epigenetic signatures are also commonly observed in stem cells, just as epigenetic stem cell patterns are in cancer cells. DNA methylation is recognized as a hallmark of cancer development and progression. Herein, we describe two approaches to analyze DNA methylation, which can be applied to study or discover DNA methylation aberrations throughout the genome, as well as a more targeted investigation of regions of interest in cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spivakov M, Fisher AG (2007) Epigenetic signatures of stem-cell identity. Nat Rev Genet 8(4):263–271

    Article  CAS  PubMed  Google Scholar 

  2. Li M, Liu GH, Izpisua Belmonte JC (2012) Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol 13(8):524–535

    Article  CAS  PubMed  Google Scholar 

  3. Tung PY, Knoepfler PS (2015) Epigenetic mechanisms of tumorigenicity manifesting in stem cells. Oncogene 34(18):2288–2296

    Article  CAS  PubMed  Google Scholar 

  4. Fisher CL, Fisher AG (2011) Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev 21(2):140–146

    Article  CAS  PubMed  Google Scholar 

  5. Lund RJ, Narva E, Lahesmaa R (2012) Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 13(10):732–744

    Article  CAS  PubMed  Google Scholar 

  6. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  CAS  PubMed  Google Scholar 

  7. Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61(8):3225–3229

    CAS  PubMed  Google Scholar 

  8. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu Rev Genet 38:413–443

    Article  CAS  PubMed  Google Scholar 

  9. Widschwendter M et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39(2):157–158

    Article  CAS  PubMed  Google Scholar 

  10. Teschendorff AE et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20(4):440–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang RY, Gehrke CW, Ehrlich M (1980) Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res 8(20):4777–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bibikova M et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98(4):288–295

    Article  CAS  PubMed  Google Scholar 

  14. Bock C et al (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28(10):1106–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28(8):E32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harris RA et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28(10):1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duhaime-Ross A (2014) Revved-up epigenetic sequencing may foster new diagnostics. Nat Med 20(1):2

    Article  CAS  PubMed  Google Scholar 

  18. Li Q et al (2015) Post-conversion targeted capture of modified cytosines in mammalian and plant genomes. Nucleic Acids Res 43(12):e81

    Article  PubMed  PubMed Central  Google Scholar 

  19. Perry AS et al (2007) In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer. Br J Cancer 96(10):1587–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 1303.3997(v1[q-bio.GN])

    Google Scholar 

  23. Andrews, S. FastQC A quality control tool for high throughput sequence data Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  24. Bushnell, B. BBMap. 2015.; Available from: http://sourceforge.net/projects/bbmap/

  25. Pedersen BS, Eyring K, De S, Yang IV, Schwartz DA (2014) Fast and accurate alignment of long bisulfite-seq reads. arXiv. 1401.1129v2([q-bio.GN])

    Google Scholar 

  26. Liu Y et al (2012) Bis-SNP: combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biol 13(7):R61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akalin A et al (2012) MethylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13(10):R87

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB, Nelson WG (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64(6):1975–1986

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoinette S. Perry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Das, S., Moran, B., Perry, A.S. (2018). Assessing DNA Methylation in Cancer Stem Cells. In: Papaccio, G., Desiderio, V. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 1692. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7401-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7401-6_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7400-9

  • Online ISBN: 978-1-4939-7401-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics