Skip to main content

FISH-Based Assays for Detecting Genomic (Chromosomal) Mosaicism in Human Brain Cells

  • Protocol
  • First Online:
Genomic Mosaicism in Neurons and Other Cell Types

Part of the book series: Neuromethods ((NM,volume 131))

Abstract

Genomic or chromosomal mosaicism in human brain cells is considered a source for neuronal diversity and a mechanism for neuropsychiatric diseases. However, there is still a lack of consensus concerning the extent and effects of mosaic chromosome abnormalities (i.e., aneuploidy) in the normal and diseased human brain. To solve this problem, a need for detailed description of single-cell techniques for chromosomal analysis of human brain cells appears to exist. In this chapter, FISH-based techniques for detecting genomic (chromosomal) mosaicism in the human brain are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iourov IY, Vorsanova SG, Yurov YB (2006) Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol 249:143–191

    Article  CAS  PubMed  Google Scholar 

  2. Kingsbury MA, Yung YC, Peterson SE, Westra JW, Chun J (2006) Aneuploidy in the normal and diseased brain. Cell Mol Life Sci 63:2626–2641

    Article  CAS  PubMed  Google Scholar 

  3. Iourov IY, Vorsanova SG, Yurov YB (2012) Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics 13(6):477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bakker B, van den Bos H, Lansdorp PM, Foijer F (2015) How to count chromosomes in a cell: an overview of current and novel technologies. BioEssays 37(5):570–577

    Article  PubMed  Google Scholar 

  5. Harbom LJ, Chronister WD, McConnell MJ (2016) Single neuron transcriptome analysis can reveal more than cell type classification: does it matter if every neuron is unique? BioEssays 38(2):157–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iourov IY, Vorsanova SG, Yurov YB (2008) Recent patents on molecular cytogenetics. Recent Pat DNA Gene Seq 2(1):6–15

    Article  CAS  PubMed  Google Scholar 

  7. Vorsanova SG, Yurov YB, Iourov IY (2010) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yurov YB, Vorsanova SG, Iourov IY (eds) (2013) Human interphase chromosomes: biomedical aspects. Springer, New York

    Google Scholar 

  9. Riegel M (2014) Human molecular cytogenetics: from cells to nucleotides. Genet Mol Biol 37(1 Suppl):194–209

    Article  PubMed  Google Scholar 

  10. Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BS, Kingsbury MA, Cabral KM, McConnell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25(9):2176–2180

    Article  CAS  PubMed  Google Scholar 

  11. Kingsbury MA, Friedman B, McConnell MJ, Rehen SK, Yang AH, Kaushal D, Chun J (2005) Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Natl Acad Sci U S A 102(17):6143–6147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yurov YB, Iourov IY, Monakhov VV, Soloviev IV, Vostrikov VM, Vorsanova SG (2005) The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J Histochem Cytochem 53(3):385–390

    Article  CAS  PubMed  Google Scholar 

  13. Iourov IY, Liehr T, Vorsanova SG, Kolotii AD, Yurov YB (2006) Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB). Chromosom Res 14(3):223–229

    Article  CAS  Google Scholar 

  14. Westra JW, Peterson SE, Yung YC, Mutoh T, Barral S, Chun J (2008) Aneuploid mosaicism in the developing and adult cerebellar cortex. J Comp Neurol 507(6):1944–1951

    Article  PubMed  Google Scholar 

  15. Iourov IY, Vorsanova SG, Liehr T, Yurov YB (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34(2):212–220

    Article  CAS  PubMed  Google Scholar 

  16. Westra JW, Rivera RR, Bushman DM, Yung YC, Peterson SE, Barral S, Chun J (2010) Neuronal DNA content variation (DCV) with regional and individual differences in the human brain. J Comp Neurol 518(19):3981–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devalle S, Sartore RC, Paulsen BS, Borges HL, Martins RA, Rehen SK (2012) Implications of aneuploidy for stem cell biology and brain therapeutics. Front Cell Neurosci 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci U S A 98(23):13361–13366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI, Pellestor F, Beresheva AK, Demidova IA, Kravets VS, Monakhov VV, Soloviev IV (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One 2(6):e558

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yurov YB, Vorsanova SG, Iourov IY (2010) Ontogenetic variation of the human genome. Curr Genomics 11(6):420–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yurov YB, Vostrikov VM, Vorsanova SG, Monakhov VV, Iourov IY (2001) Multicolor fluorescent in situ hybridization on post-mortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain Dev 23(Suppl 1):S186–S190

    Article  PubMed  Google Scholar 

  22. Yurov YB, Iourov IY, Vorsanova SG, Demidova IA, Kravetz VS, Beresheva AK, Kolotii AD, Monakchov VV, Uranova NA, Vostrikov VM, Soloviev IV, Liehr T (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 98(1–3):139–147

    Article  PubMed  Google Scholar 

  23. Sakai M, Watanabe Y, Someya T, Araki K, Shibuya M, Niizato K, Oshima K, Kunii Y, Yabe H, Matsumoto J, Wada A, Hino M, Hashimoto T, Hishimoto A, Kitamura N, Iritani S, Shirakawa O, Maeda K, Miyashita A, Niwa S, Takahashi H, Kakita A, Kuwano R, Nawa H (2015) Assessment of copy number variations in the brain genome of schizophrenia patients. Mol Cytogenet 8:46

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T (2007) Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci 27(26):6859–6867

    Article  CAS  PubMed  Google Scholar 

  25. Iourov IY, Vorsanova SG, Yurov YB (2011) Genomic landscape of the Alzheimer’s disease brain: chromosome instability—aneuploidy, but not tetraploidy—mediates neurodegeneration. Neurodegener Dis 8(1–2):35–37

    PubMed  Google Scholar 

  26. Yurov YB, Vorsanova SG, Iourov IY (2011) The DNA replication stress hypothesis of Alzheimer’s disease. ScientificWorldJournal 11:2602–2612

    Article  PubMed  Google Scholar 

  27. Arendt T, Brückner MK, Lösche A (2015) Regional mosaic genomic heterogeneity in the elderly and in Alzheimer’s disease as a correlate of neuronal vulnerability. Acta Neuropathol 130(4):501–510

    Article  CAS  PubMed  Google Scholar 

  28. Yurov YB, Vorsanova SG, Liehr T, Kolotii AD, Iourov IY (2014) X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet 7:20

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hou Y, Song H, Croteau DL, Akbari M, Bohr VA (2017) Genome instability in Alzheimer disease. Mech Ageing Dev 161(Pt A):83–94. doi:10.1016/jmad2016.04.005

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Shepherd C, Halliday G (2015) Aneuploidy in Lewy body diseases. Neurobiol Aging 36(3):1253–1260

    Article  CAS  PubMed  Google Scholar 

  31. Allen DM, van Praag H, Ray J, Weaver Z, Winrow CJ, Carter TA, Braquet R, Harrington E, Ried T, Brown KD, Gage FH, Barlow C (2001) Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev 15(5):554–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McConnell MJ, Kaushal D, Yang AH, Kingsbury MA, Rehen SK, Treuner K, Helton R, Annas EG, Chun J, Barlow C (2004) Failed clearance of aneuploid embryonic neural progenitor cells leads to excess aneuploidy in the Atm-deficient but not the Trp53-deficient adult cerebral cortex. J Neurosci 24(37):8090–8096

    Article  CAS  PubMed  Google Scholar 

  33. Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Yurov YB (2009) Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 18(14):2656–2669

    Article  CAS  PubMed  Google Scholar 

  34. Vorsanova SG, Yurov IY, Demidova IA, Voinova-Ulas VY, Kravets VS, Solov’ev IV, Gorbachevskaya NL, Yurov YB (2007) Variability in the heterochromatin regions of the chromosomes and chromosomal anomalies in children with autism: identification of genetic markers of autistic spectrum disorders. Neurosci Behav Physiol 37(6):553–558

    Article  CAS  PubMed  Google Scholar 

  35. Yurov YB, Vorsanova SG, Iourov IY, Demidova IA, Beresheva AK, Kravetz VS, Monakhov VV, Kolotii AD, Voinova-Ulas VY, Gorbachevskaya NL (2007) Unexplained autism is frequently associated with low-level mosaic aneuploidy. J Med Genet 44(8):521–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iourov IY, Yurov YB, Vorsanova SG (2008) Mosaic X chromosome aneuploidy can help to explain the male-to-female ratio in autism. Med Hypotheses 70(2):456

    Article  PubMed  Google Scholar 

  37. Vorsanova SG, Voinova VY, Yurov IY, Kurinnaya OS, Demidova IA, Yurov YB (2010) Cytogenetic, molecular-cytogenetic, and clinical-genealogical studies of the mothers of children with autism: a search for familial genetic markers for autistic disorders. Neurosci Behav Physiol 40(7):745–756

    Article  CAS  PubMed  Google Scholar 

  38. Charney E (2012) Behavior genetics and postgenomics. Behav Brain Sci 35(5):331–358

    Article  PubMed  Google Scholar 

  39. Yurov YB, Vorsanova SG, Iourov IY (2009) GIN’n’CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Mol Cytogenet 2:23

    Article  PubMed  PubMed Central  Google Scholar 

  40. Faggioli F, Wang T, Vijg J, Montagna C (2012) Chromosome-specific accumulation of aneuploidy in the aging mouse brain. Hum Mol Genet 21(24):5246–5253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fischer HG, Morawski M, Brückner MK, Mittag A, Tarnok A, Arendt T (2012) Changes in neuronal DNA content variation in the human brain during aging. Aging Cell 11(4):628–633

    Article  CAS  PubMed  Google Scholar 

  42. Chow HM, Herrup K (2015) Genomic integrity and the ageing brain. Nat Rev Neurosci 16(11):672–684

    Article  CAS  PubMed  Google Scholar 

  43. Andriani GA, Vijg J, Montagna C (2017) Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev 161(Pt A):19–36. doi:10.1016/jmad2016.03.007

    Article  CAS  PubMed  Google Scholar 

  44. Abruzzo MA, Mayer M, Jacobs PA (1985) Aging and aneuploidy: evidence for the preferential involvement of the inactive X chromosome. Cytogenet Cell Genet 39(4):275–278

    Article  CAS  PubMed  Google Scholar 

  45. Russell LM, Strike P, Browne CE, Jacobs PA (2007) X chromosome loss and ageing. Cytogenet Genome Res 116(3):181–185

    Article  CAS  PubMed  Google Scholar 

  46. Iourov IY, Vorsanova SG, Yurov YB (2008) Chromosomal mosaicism goes global. Mol Cytogenet 1:26

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bushman DM, Chun J (2013) The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol 24(4):357–369

    Article  PubMed  PubMed Central  Google Scholar 

  48. Iourov IY, Vorsanova SG, Yurov YB (2013) Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet Genome Res 139(3):181–188

    Article  CAS  PubMed  Google Scholar 

  49. Insel TR (2014) Brain somatic mutations: the dark matter of psychiatric genetics? Mol Psychiatry 19(2):156–158

    Article  CAS  PubMed  Google Scholar 

  50. Fickelscher I, Starke H, Schulze E, Ernst G, Kosyakova N, Mkrtchyan H, MacDermont K, Sebire N, Liehr T (2007) A further case with a small supernumerary marker chromosome (sSMC) derived from chromosome 1—evidence for high variability in mosaicism in different tissues of sSMC carriers. Prenat Diagn 27(8):783–785

    Article  PubMed  Google Scholar 

  51. Iourov IY, Vorsanova SG, Yurov YB (2008) Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics 9(7):452–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iourov IY, Vorsanova SG, Yurov YB (2010) Somatic genome variations in health and disease. Curr Genomics 11(6):387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hultén MA, Jonasson J, Iwarsson E, Uppal P, Vorsanova SG, Yurov YB, Iourov IY (2013) Trisomy 21 mosaicism: we may all have a touch of down syndrome. Cytogenet Genome Res 139(3):189–192

    Article  PubMed  Google Scholar 

  54. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM, Gage FH (2013) Mosaic copy number variation in human neurons. Science 342(6158):632–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van den Bos H, Spierings DC, Taudt AS, Bakker B, Porubský D, Falconer E, Novoa C, Halsema N, Kazemier HG, Hoekstra-Wakker K, Guryev V, den Dunnen WF, Foijer F, Tatché MC, Boddeke HW, Lansdorp PM (2016) Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer’s disease neurons. Genome Biol 17:116

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yurov YB, Soloviev IV, Vorsanova SG, Marcais B, Roizes G, Lewis R (1996) High resolution multicolor fluorescence in situ hybridization using cyanine and fluorescein dyes: rapid chromosome identification by directly fluorescently labeled alphoid DNA probes. Hum Genet 97(3):390–398

    Article  CAS  PubMed  Google Scholar 

  58. Liehr T (ed) (2009/2016) Fluorescence in situ hybridization (FISH)—application guide, 1st & 2nd edn. Springer Protocols. Springer, Heidelberg

    Google Scholar 

  59. Iourov IY, Vorsanova SG, Yurov YB (2016) Detection of nuclear DNA by interphase fluorescence in situ hybridization. Encyclopedia Anal Chem: 1–12

    Google Scholar 

  60. Iourov IY, Vorsanova SG, Pellestor F, Yurov YB (2006) Brain tissue preparations for chromosomal PRINS labeling. Methods Mol Biol 334:123–132

    PubMed  Google Scholar 

  61. Liehr T, Heller A, Starke H, Rubtsov N, Trifonov V, Mrasek K, Weise A, Kuechler A, Claussen U (2002) Microdissection based high resolution multicolor banding for all 24 human chromosomes. Int J Mol Med 9(4):335–339

    CAS  PubMed  Google Scholar 

  62. Iourov IY, Liehr T, Vorsanova SG, Yurov YB (2007) Interphase chromosome-specific multicolor banding (ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity. Biomol Eng 24(4):415–417

    Article  CAS  PubMed  Google Scholar 

  63. Iourov IY, Soloviev IV, Vorsanova SG, Monakhov VV, Yurov YB (2005) An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. J Histochem Cytochem 53(3):401–408

    Article  CAS  PubMed  Google Scholar 

  64. Iourov IY (2017) Quantitative fluorescence in situ hybridization (QFISH). Methods Mol Biol 1541:143–149

    Article  PubMed  Google Scholar 

  65. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to image J: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang AH, Kaushal D, Rehen SK, Kriedt K, Kingsbury MA, McConnell MJ, Chun J (2003) Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J Neurosci 23(32):10454–10462

    CAS  PubMed  Google Scholar 

  67. Peterson SE, Yang AH, Bushman DM, Westra JW, Yung YC, Barral S, Mutoh T, Rehen SK, Chun J (2012) Aneuploid cells are differentially susceptible to caspase-mediated death during embryonic cerebral cortical development. J Neurosci 32(46):16213–16222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arendt T (2012) Cell cycle activation and aneuploid neurons in Alzheimer’s disease. Mol Neurobiol 46(1):125–135

    Article  CAS  PubMed  Google Scholar 

  69. Granic A, Potter H (2013) Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-pick C1, Alzheimer’s disease, and atherosclerosis. PLoS One 8(4):e60718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bajic V, Spremo-Potparevic B, Zivkovic L, Isenovic ER, Arendt T (2015) Cohesion and the aneuploid phenotype in Alzheimer’s disease: a tale of genome instability. Neurosci Biobehav Rev 55:365–374

    Article  CAS  PubMed  Google Scholar 

  71. Iourov IY, Vorsanova SG, Zelenova MA, Korostelev SA, Yurov YB (2015) Genomic copy number variation affecting genes involved in the cell cycle pathway: implications for somatic mosaicism. Int J Genomics 2015:757680

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY (2010) Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics 11(6):440–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martin CL, Warburton D (2015) Detection of chromosomal aberrations in clinical practice: from karyotype to genome sequence. Annu Rev Genomics Hum Genet 16:309–326

    Article  CAS  PubMed  Google Scholar 

  74. Yurov YB, Iourov IY, Vorsanova SG (2009) Neurodegeneration mediated by chromosome instability suggests changes in strategy for therapy development in ataxia-telangiectasia. Med Hypotheses 73(6):1075–1076

    Article  CAS  PubMed  Google Scholar 

  75. Arendt T, Brückner MK, Mosch B, Lösche A (2010) Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol 177(1):15–20

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Professor YB Yurov is supported by a grant from the Russian Science Foundation (project #14-35-00060) at Moscow State University of Psychology and Education. Professors SG Vorsanova and IY Iourov are supported by a grant from the Russian Science Foundation (project #14-15-00411) at Mental Health Research Center. The study of the Alzheimer disease brain is supported by the ERA.Net RUS Plus program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Y. Iourov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yurov, Y.B., Vorsanova, S.G., Soloviev, I.V., Ratnikov, A.M., Iourov, I.Y. (2017). FISH-Based Assays for Detecting Genomic (Chromosomal) Mosaicism in Human Brain Cells. In: Frade, J., Gage, F. (eds) Genomic Mosaicism in Neurons and Other Cell Types. Neuromethods, vol 131. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7280-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7280-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7279-1

  • Online ISBN: 978-1-4939-7280-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics