Skip to main content

Micronucleus FISH

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Abstract

Micronuclei (MN) originate from chromosomal fragments or whole chromosomes that fail to be incorporated into daughter nuclei. MN frequency has been extensively used as a biomarker to measure rates of chromosomal damage. By MN test combined with fluorescence in situ hybridization (FISH), the chromosomal contents of the MN can be characterized. The application of FISH probes allows to distinguish MN originating either from chromosome loss or breakage and to determine the involvement of specific chromosomes and chromosome fragments in MN formation. Understanding the MN origin and content using FISH is essential for the proper use of this cytogenetic endpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolognesi C, Fenech M (2013) Micronucleus assay in human cells: lymphocytes and buccal cells. Methods Mol Biol 1044:191–207

    Article  PubMed  Google Scholar 

  2. Kirsch-Volders M, Plas G, Elhajouji A et al (2011) The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol 85:873–899

    Article  CAS  PubMed  Google Scholar 

  3. Sabharwal R, Verma P, Syed MA et al (2015) Emergence of micronuclei as a genomic biomarker. Indian J Med Paediatr Oncol 36:212–218

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boller K, Schmid W (1970) Chemical mutagenesis in mammals: the Chinese hamster bone marrow as an in vivo test system. Hematological findings after treatment with trenimon. Humangenetik 11:35–54

    CAS  PubMed  Google Scholar 

  5. Heddle JA (1973) A rapid in vivo test for chromosomal damage. Mutat Res 18:187–190

    Article  CAS  PubMed  Google Scholar 

  6. Countryman PI, Heddle JA (1976) The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat Res 41:321–332

    Article  CAS  PubMed  Google Scholar 

  7. Fenech J, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36

    Article  CAS  PubMed  Google Scholar 

  8. Norppa H, Falck GC (2003) What do human micronuclei contain? Mutagenesis 18:221–233

    Article  CAS  PubMed  Google Scholar 

  9. Hovhannisyan GG (2010) Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology. Mol Cytogenet 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  10. Becker P, Scherthan H, Zankl H (1990) Use of a centromere-specific DNA probe (p82H) in nonisotopic in situ hybridization for classification of micronuclei. Genes Chromosomes Cancer 2:59–62

    Article  CAS  PubMed  Google Scholar 

  11. Attia SM (2009) Use of centromeric and telomeric DNA probes in situ hybridization for differentiation of micronuclei induced by lomefloxacin. Environ Mol Mutagen 50:394–403

    Article  CAS  PubMed  Google Scholar 

  12. Hovhannisyan G, Aroutiounian R, Liehr T (2012) Chromosomal composition of micronuclei in human leukocytes exposed to mitomycin C. J Histochem Cytochem 60:316–322

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Leach NT, Jackson-Cook C (2001) The application of spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) technology to determine the chromosomal content(s) of micronuclei. Mutat Res 495:11–19

    Article  CAS  PubMed  Google Scholar 

  14. Balajee AS, Bertucci A, Taveras M et al (2014) Multicolour FISH analysis of ionising radiation induced micronucleus formation in human lymphocytes. Mutagenesis 29:447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Hovhannisyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Hovhannisyan, G., Harutyunyan, T., Liehr, T. (2017). Micronucleus FISH. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52959-1_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52957-7

  • Online ISBN: 978-3-662-52959-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics