Skip to main content

Functional Interrogation of Ca2+ Signals in Human Cancer Cells In Vitro and Ex Vivo by Fluorescent Microscopy and Molecular Tools

  • Protocol
  • First Online:
Microfluidic Systems for Cancer Diagnosis

Abstract

Genetically encoded calcium indicators (GECIs) and high-resolution confocal microscopy enable dynamic visualization of calcium signals in cells and tissues. Two-dimensional and 3D biocompatible materials mimic the mechanical microenvironments of tumor and healthy tissues in a programmable manner. Cancer xenograft models and ex vivo functional imaging of tumor slices reveal physiologically relevant functions of calcium dynamics in tumors at different progression stages. Integration of these powerful techniques allows us to quantify, diagnose, model, and understand cancer pathobiology. Here, we describe detailed materials and methods used to establish this integrated interrogation platform, from generating transduced cancer cell lines that stably express CaViar (GCaMP5G + QuasAr2) to in vitro and ex vivo calcium imaging of the cells in 2D/3D hydrogels and tumor tissues. These tools open the possibility for detailed explorations of mechano-electro-chemical network dynamics in living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liang C, Huang M, Li T et al (2022) Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. Soft Matter 18:1112–1148. https://doi.org/10.1039/d1sm01618k

    Article  CAS  PubMed  Google Scholar 

  2. Liang C, Zhang Q, Chen X et al (2022) Human cancer cells generate spontaneous calcium transients and intercellular waves that modulate tumor growth. Biomaterials 290:121823. https://doi.org/10.1016/j.biomaterials.2022.121823

  3. Monteith GR, Prevarskaya N, Roberts-Thomson SJ (2017) The calcium-cancer signalling nexus. Nat Rev Cancer 17:367–380. https://doi.org/10.1038/nrc.2017.18

    Article  CAS  PubMed  Google Scholar 

  4. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058. https://doi.org/10.1016/j.cell.2007.11.028

    Article  CAS  PubMed  Google Scholar 

  5. Cui C, Merritt R, Fu L, Pan Z (2017) Targeting calcium signaling in cancer therapy. Acta Pharm Sin B 7:3–17. https://doi.org/10.1016/j.apsb.2016.11.001

    Article  PubMed  Google Scholar 

  6. Parkash J, Asotra K (2010) Calcium wave signaling in cancer cells. Life Sci 87:587–595. https://doi.org/10.1016/j.lfs.2010.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530. https://doi.org/10.1038/nrc2171

    Article  CAS  PubMed  Google Scholar 

  8. Emiliani V, Cohen A, Deisseroth K, Häusser M (2015) All-optical interrogation of neural circuits. J Neurosci 35:13917–13926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhong C, Schleifenbaum J (2019) Genetically encoded calcium indicators: a new tool in renal hypertension research. Front Med 6:128. https://doi.org/10.3389/fmed.2019.00128

    Article  Google Scholar 

  10. Werley C, Boccardo S, Rigamonti A et al (2020) Multiplexed optical sensors in Arrayed Islands of cells for multimodal recordings of cellular physiology. Nat Commun 11:1–17

    Article  Google Scholar 

  11. Yang B, Chen X, Wang Y et al (2019) Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution. Nat Methods 16:501–504. https://doi.org/10.1038/s41592-019-0401-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farhi S, Parot V, Grama A et al (2019) Wide-area all-optical neurophysiology in acute brain slices. J Neurosci 39:4889–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanaka M, Dykes SS, Siemann DW (2021) Inhibition of the Axl pathway impairs breast and prostate cancer metastasis to the bones and bone remodeling. Clin Exp Metastasis 38:321–335. https://doi.org/10.1007/s10585-021-10093-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li L, Sheng P, Li T et al (2021) Widespread microRNA degradation elements in target mRNAs can assist the encoded proteins. Genes Dev 35. https://doi.org/10.1101/gad.348874.121

  15. Werley C, Brookings T, Upadhyay H et al (2018) All-optical electrophysiology for disease modeling and pharmacological characterization of neurons. Curr Protoc Pharmacol 78:1–32. https://doi.org/10.1002/cpph.25

    Article  CAS  Google Scholar 

  16. Bruni GN, Weekley RA, Dodd BJT, Kralj JM (2017) Voltage-gated calcium flux mediates Escherichia coli mechanosensation. Proc Natl Acad Sci U S A 114. https://doi.org/10.1073/pnas.1703084114

  17. Luo Q, Huang M, Liang C et al (2021) All-optical Mechanobiology interrogation of yes-associated protein in human cancer and normal cells using a multi-functional system. J Vis Exp 1–26. https://doi.org/10.3791/62934

  18. Luo Q, Zhang J, Huang M, Lin G, Tanaka M, Lepler S, et al. (2022) Automatic Multi-functional Integration Program (AMFIP) towards all-optical mechano-electrophysiology interrogation. PLoS ONE 17(7): e0266098. https://doi.org/10.1371/journal.pone.0266098

  19. Huang M, Wang H, Delgado AA et al (2022) Combining 3D magnetic force actuator and multi-functional fluorescence imaging to study nucleus mechanobiology. J Vis Exp (185). https://doi.org/10.3791/64098-v

  20. Tang X, Kuhlenschmidt TB, Li Q et al (2014) A mechanically-induced colon cancer cell population shows increased metastatic potential. Mol Cancer 13:1–15. https://doi.org/10.1186/1476-4598-13-131

    Article  CAS  Google Scholar 

  21. Tang X, Kuhlenschmidt T, Zhou J et al (2010) Mechanical force affects expression of an in vitro metastasis-like phenotype in HCT-8 cells. Biophys J 99:2460–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang X, Wen Q, Kuhlenschmidt T et al (2012) Attenuation of cell mechanosensitivity in colon cancer cells during in vitro metastasis. PLoS One 7:e50443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang X, Bajaj P, Bashir R, Saif T (2011) How far cardiac cells can see each other mechanically. Soft Matter 7:6151–6158

    Article  CAS  Google Scholar 

  24. Tang X, Tofangchi A, Anand S, Saif T (2014) A novel cell traction force microscopy to study multi-cellular system. PLoS Comput Biol 10:e1003631

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang X, Ali Y, Saif T (2012) A novel technique for micro-patterning proteins and cells on polyacrylamide gels. Soft Matter 8:7197–7206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee J, Abdeen A, Tang X et al (2015) Geometric guidance of integrin mediated traction stress during stem cell differentiation. Biomaterials 69:174–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Temples MN, Adjei IM, Nimocks PM et al (2020) Engineered three-dimensional tumor models to study natural killer cell suppression. ACS Biomater Sci Eng 6. https://doi.org/10.1021/acsbiomaterials.0c00259

  28. Phelps EA, Enemchukwu NO, Fiore VF et al (2012) Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater 24. https://doi.org/10.1002/adma.201103574

  29. Brown S, Kumar S, Sharma B (2019) Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater 93:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project is funded by UF Gatorade Award Start-up Package (X. T.), UFHCC Cancer Pilot Award (X. T. and D. S.), UF Opportunity Seed Fund (X. T., H. K., R. C., and C. M.), NIH R35 GM 128753 (M. X.), and National Natural Science Foundation of China #81974093 (B. Z.). We genuinely appreciate the invaluable discussions with and technical support from Dr. Jonathan Licht (UFHCC), Dr. John Wingard (UFHCC), Dr. Rolf Renne (UFHCC), Dr. Thomas George (UFHCC), Dr. Adam Cohen (Harvard University), Dr. Tian He (Harvard University), Dr. Hongkang Zhang (Q-State), Dr. Christopher Werley (Vertex Pharmaceuticals), Dr. Mark Sheplak (MAE & ECE), Dr. Warren Dixon (MAE), Dr. Hugh Fan (MAE), Dr. Scott Banks (MAE), Dr. Ting Dong (MAE), Dr. Yong Huang (MAE), Dr. David Hahn (University of Arizona), Dr. Mike Stapleton (ECE), Dr. Walter Lee Murfee (BME), Dr. Habibeh Khoshbouei (Neuroscience), Dr. Min Lin (Neuroscience), Dr. Todd Golde (Neuroscience), Dr. Daniel Ryu (Neuroscience), Dr. Robert Caudle (Oral and Maxillofacial Surgery), Dr. John Neubert (Orthodontics), Dr. Justin Hilliard (Neurosurgery), Dr. Lance McMahon (Texas Tech University), Dr. Chritopher McCurdy (Pharmacology), Dr. Yenisel Cruz-Almeida (Pain Research and Intervention), Dr. Roger Fillingim (Pain Research and Intervention), Dr. Lizi Wu (Molecular Genetics and Microbiology), Dr. Yuqing Li (Neuroscience), Dr. Alice Harmon (Biology), Dr. Christopher Batich (MSE), Dr. Richard Dickson (ChE), Dr. Claudio Grosman (University of Illinois-UC), Dr. Ji-Hyun Lee (UFHCC), and Dr. Jeffrey Thinschmidt (Pharmacodynamics). We are sincerely grateful for the generous supports from all members of Tang’s, Zeng’s, Siemann’s, Sharma’s, Xie’s, Wu’s, and Phelps’ laboratories and all staff members of the MAE, BME, ECE, CHE, MSE, and UFHCC at UF..

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zeng or Xin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liang, C. et al. (2023). Functional Interrogation of Ca2+ Signals in Human Cancer Cells In Vitro and Ex Vivo by Fluorescent Microscopy and Molecular Tools. In: Garcia-Cordero, J.L., Revzin, A. (eds) Microfluidic Systems for Cancer Diagnosis . Methods in Molecular Biology, vol 2679. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3271-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3271-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3270-3

  • Online ISBN: 978-1-0716-3271-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics