Skip to main content

Enzyme Kinetics of PAPS-Sulfotransferase

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2342))

Abstract

The cytosolic sulfotransferase (SULT) enzymes are found in human liver, kidney, intestine, and other tissues. These enzymes catalyze the transfer of the –SO3 group from 3′-phospho-adenosyl-5′-phosphosulfate (PAPS) to a nucleophilic hydroxyl or amine group in a drug substrate. SULTs are stable as dimers, with a highly conserved dimerization domain near the C-terminus of the protein. Crystal structures have revealed flexible loop regions in the native proteins, one of which, located near the dimerization domain, is thought to form a gate that changes position once PAPS is bound to the PAPS-binding site and modulates substrate access and enzyme properties. There is also evidence that oxidation and reduction of certain cysteine residues reversibly regulate the binding of the substrate and PAPS or PAP to the enzyme thus modulating sulfonation. Because SULT enzymes have two substrates, the drug and PAPS, it is common to report apparent kinetic constants with either the drug or the PAPS varied while the other is kept at a constant concentration. The kinetics of product formation can follow classic Michaelis-Menten kinetics, typically over a narrow range of substrate concentrations. Over a wide range of substrate concentrations, it is common to observe partial or complete substrate inhibition with SULT enzymes. This chapter describes the function, tissue distribution, structural features, and properties of the human SULT enzymes and presents examples of enzyme kinetics with different substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Williams RT (1959) Detoxication mechanisms the metabolism and detoxication of drugs, toxic substances and other organic compounds. Chapman and Hall, Ltd., London

    Google Scholar 

  2. Coughtrie MWH (2016) Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem Biol Interact 259(Pt A):2–7. https://doi.org/10.1016/j.cbi.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  3. Gunal S, Hardman R, Kopriva S, Mueller JW (2019) Sulfation pathways from red to green. J Biol Chem 294(33):12293–12312. https://doi.org/10.1074/jbc.REV119.007422

    Article  PubMed  PubMed Central  Google Scholar 

  4. Blanchard RL, Freimuth RR, Buck J, Weinshilboum RM, Coughtrie MW (2004) A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenetics 14(3):199–211

    Article  CAS  PubMed  Google Scholar 

  5. Riches Z, Stanley EL, Bloomer JC, Coughtrie MW (2009) Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos 37(11):2255–2261. https://doi.org/10.1124/dmd.109.028399. dmd.109.028399 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fritz A, Busch D, Lapczuk J, Ostrowski M, Drozdzik M, Oswald S (2019) Expression of clinically relevant drug-metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: an intra-subject analysis. Basic Clin Pharmacol Toxicol 124(3):245–255. https://doi.org/10.1111/bcpt.13137

    Article  CAS  PubMed  Google Scholar 

  7. Miki Y, Nakata T, Suzuki T, Darnel AD, Moriya T, Kaneko C, Hidaka K, Shiotsu Y, Kusaka H, Sasano H (2002) Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues. J Clin Endocrinol Metab 87(12):5760–5768

    Article  CAS  PubMed  Google Scholar 

  8. Teubner W, Meinl W, Florian S, Kretzschmar M, Glatt H (2007) Identification and localization of soluble sulfotransferases in the human gastrointestinal tract. Biochem J 404(2):207–215. https://doi.org/10.1042/BJ20061431. BJ20061431 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Foster PA, Mueller JW (2018) Sulfation pathways: insights into steroid sulfation and desulfation pathways. J Mol Endocrinol 61(2):T271–T283. https://doi.org/10.1530/JME-18-0086

    Article  CAS  PubMed  Google Scholar 

  10. Piccinato CA, Neme RM, Torres N, Sanches LR, Derogis P, Brudniewski HF, Rosa ESJC, Ferriani RA (2016) Effects of steroid hormone on estrogen sulfotransferase and on steroid sulfatase expression in endometriosis tissue and stromal cells. J Steroid Biochem Mol Biol 158:117–126. https://doi.org/10.1016/j.jsbmb.2015.12.025

    Article  CAS  PubMed  Google Scholar 

  11. Runge-Morris M, Kocarek TA (2013) Expression of the sulfotransferase 1C family: implications for xenobiotic toxicity. Drug Metab Rev 45(4):450–459. https://doi.org/10.3109/03602532.2013.835634

    Article  CAS  PubMed  Google Scholar 

  12. Bendadani C, Meinl W, Monien B, Dobbernack G, Florian S, Engst W, Nolden T, Himmelbauer H, Glatt H (2014) Determination of sulfotransferase forms involved in the metabolic activation of the genotoxicant 1-hydroxymethylpyrene using bacterially expressed enzymes and genetically modified mouse models. Chem Res Toxicol 27(6):1060–1069. https://doi.org/10.1021/tx500129g

    Article  CAS  PubMed  Google Scholar 

  13. Martati E, Boersma MG, Spenkelink A, Khadka DB, van Bladeren PJ, Rietjens IM, Punt A (2012) Physiologically based biokinetic (PBBK) modeling of safrole bioactivation and detoxification in humans as compared with rats. Toxicol Sci 128(2):301–316. https://doi.org/10.1093/toxsci/kfs174

    Article  CAS  PubMed  Google Scholar 

  14. Negishi M, Pedersen LG, Petrotchenko E, Shevtsov S, Gorokhov A, Kakuta Y, Pedersen LC (2001) Structure and function of sulfotransferases. Arch Biochem Biophys 390(2):149–157. https://doi.org/10.1006/abbi.2001.2368. S0003-9861(01)92368-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN (2015) Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 30(1):3–20. https://doi.org/10.1016/j.dmpk.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  16. Gamage NU, Tsvetanov S, Duggleby RG, McManus ME, Martin JL (2005) The structure of human SULT1A1 crystallized with estradiol. An insight into active site plasticity and substrate inhibition with multi-ring substrates. J Biol Chem 280(50):41482–41486. https://doi.org/10.1074/jbc.M508289200. M508289200 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Venkatachalam KV, Akita H, Strott CA (1998) Molecular cloning, expression, and characterization of human bifunctional 3′-phosphoadenosine 5′-phosphosulfate synthase and its functional domains. J Biol Chem 273(30):19311–19320. https://doi.org/10.1074/jbc.273.30.19311

    Article  CAS  PubMed  Google Scholar 

  18. Fuda H, Shimizu C, Lee YC, Akita H, Strott CA (2002) Characterization and expression of human bifunctional 3′-phosphoadenosine 5′-phosphosulphate synthase isoforms. Biochem J 365(Pt 2):497–504. https://doi.org/10.1042/BJ20020044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cappiello M, Franchi M, Giuliani L, Pacifici GM (1989) Distribution of 2-naphthol sulphotransferase and its endogenous substrate adenosine 3′-phosphate 5′-phosphosulphate in human tissues. Eur J Clin Pharmacol 37(3):317–320. https://doi.org/10.1007/BF00679793

    Article  CAS  PubMed  Google Scholar 

  20. Cappiello M, Giuliani L, Pacifici GM (1991) Distribution of UDP-glucuronosyltransferase and its endogenous substrate uridine 5′-diphosphoglucuronic acid in human tissues. Eur J Clin Pharmacol 41(4):345–350. https://doi.org/10.1007/BF00314965

    Article  CAS  PubMed  Google Scholar 

  21. Leyh TS, Cook I, Wang T (2013) Structure, dynamics and selectivity in the sulfotransferase family. Drug Metab Rev 45(4):423–430. https://doi.org/10.3109/03602532.2013.835625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cook I, Wang T, Almo SC, Kim J, Falany CN, Leyh TS (2013) The gate that governs sulfotransferase selectivity. Biochemistry 52(2):415–424. https://doi.org/10.1021/bi301492j

    Article  CAS  PubMed  Google Scholar 

  23. Wang T, Cook I, Leyh TS (2014) 3′-Phosphoadenosine 5′-phosphosulfate allosterically regulates sulfotransferase turnover. Biochemistry 53(44):6893–6900. https://doi.org/10.1021/bi501120p

    Article  CAS  PubMed  Google Scholar 

  24. Cook I, Wang T, Falany CN, Leyh TS (2015) The allosteric binding sites of sulfotransferase 1A1. Drug Metab Dispos 43(3):418–423. https://doi.org/10.1124/dmd.114.061887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang T, Cook I, Leyh TS (2016) Design and interpretation of human sulfotransferase 1A1 assays. Drug Metab Dispos 44(4):481–484. https://doi.org/10.1124/dmd.115.068205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cook I, Wang T, Falany CN, Leyh TS (2012) A nucleotide-gated molecular pore selects sulfotransferase substrates. Biochemistry 51(28):5674–5683. https://doi.org/10.1021/bi300631g

    Article  CAS  PubMed  Google Scholar 

  27. Ambadapadi S, Wang PL, Palii SP, James MO (2015) Celecoxib influences steroid sulfonation catalyzed by human recombinant sulfotransferase 2A1. J Steroid Biochem Mol Biol 152:101–113. https://doi.org/10.1016/j.jsbmb.2015.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duffel MW, Marshal AD, McPhie P, Sharma V, Jakoby WB (2001) Enzymatic aspects of the phenol (aryl) sulfotransferases. Drug Metab Rev 33(3–4):369–395. https://doi.org/10.1081/DMR-120001394

    Article  CAS  PubMed  Google Scholar 

  29. Qin X, Teesch LM, Duffel MW (2013) Modification of the catalytic function of human hydroxysteroid sulfotransferase hSULT2A1 by formation of disulfide bonds. Drug Metab Dispos 41(5):1094–1103. https://doi.org/10.1124/dmd.112.050534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gamage NU, Duggleby RG, Barnett AC, Tresillian M, Latham CF, Liyou NE, McManus ME, Martin JL (2003) Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition. J Biol Chem 278(9):7655–7662. https://doi.org/10.1074/jbc.M207246200. M207246200 [pii]

    Article  CAS  PubMed  Google Scholar 

  31. Wang LQ, Lehmler HJ, Robertson LW, Falany CN, James MO (2005) In vitro inhibition of human hepatic and cDNA-expressed sulfotransferase activity with 3-hydroxybenzo[a]pyrene by polychlorobiphenylols. Environ Health Perspect 113(6):680–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Squirewell EJ, Qin X, Duffel MW (2014) Endoxifen and other metabolites of tamoxifen inhibit human hydroxysteroid sulfotransferase 2A1 (hSULT2A1). Drug Metab Dispos 42(11):1843–1850. https://doi.org/10.1124/dmd.114.059709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sundaram RS, Szumlanski C, Otterness D, van Loon JA, Weinshilboum RM (1989) Human intestinal phenol sulfotransferase: assay conditions, activity levels and partial purification of the thermolabile form. Drug Metab Dispos 17(3):255–264

    CAS  PubMed  Google Scholar 

  34. Tong Z, James MO (2000) Purification and characterization of hepatic and intestinal phenol sulfotransferase with high affinity for benzo[a]pyrene phenols from channel catfish, Ictalurus punctatus. Arch Biochem Biophys 376(2):409–419

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret O. James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

James, M.O. (2021). Enzyme Kinetics of PAPS-Sulfotransferase. In: Nagar, S., Argikar, U.A., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 2342. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1554-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1554-6_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1553-9

  • Online ISBN: 978-1-0716-1554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics