Skip to main content

Time-Resolved Fluorescence Resonance Energy Transfer Using Fluorescent Ligands to Study Native G Protein-Coupled Receptor Heteromerization in Brain

  • Protocol
  • First Online:
Receptor and Ion Channel Detection in the Brain

Part of the book series: Neuromethods ((NM,volume 169))

Abstract

G protein-coupled receptors (GPCRs) are the largest family of cellular surface receptors and play a key role controlling a diverse array of developmental and physiological processes. Therefore, GPCRs constitute the targets of many modern therapeutics. Interestingly, GPCRs can interact (i.e., oligomerize) with other cell surface receptors and ion channels, thus leading to a fine-tuning modulation of physiological functions. In line with this, GPCR oligomerization has gained interest during the last years, since drugs targeting these molecular entities could open new GPCR-based pharmacotherapeutic avenues. Accordingly, different techniques assessing the occurrence of GPCR oligomerization in native tissue have emerged (i.e., immunoelectron microscopy, proximity ligation assay, etc.). From them, one of the most reliable approaches consists of using GPCR-fluorescent ligands engaging into a heteromerization-dependent time-resolved fluorescence resonance energy transfer (TR-FRET) process. Here, we review this methodology to reveal receptor-receptor interactions in brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376

    Article  CAS  Google Scholar 

  2. Lohse MJ, Hein P, Hoffmann C et al (2008) Kinetics of G-protein-coupled receptor signals in intact cells. Br J Pharmacol 153(Suppl):S125–S132. https://doi.org/10.1038/sj.bjp.0707656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agnati LF, Fuxe K, Zini I et al (1980) Aspects on receptor regulation and isoreceptor identification. Med Biol 58:182–187

    CAS  PubMed  Google Scholar 

  4. Fuxe K, Agnati LF, Benfenati F et al (1983) Evidence for the existence of receptor--receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neur Transm Suppl 18:165–179

    CAS  Google Scholar 

  5. Schulte G, Levy FO (2007) Novel aspects of G-protein-coupled receptor signalling—different ways to achieve specificity. Acta Physiol 190:33–38. https://doi.org/10.1111/j.1365-201X.2007.01696.x

    Article  CAS  Google Scholar 

  6. Ciruela F, Vallano A, Arnau JM et al (2010) G protein-coupled receptor oligomerization for what? J Recept Signal Transduct Res 30:322–330. https://doi.org/10.3109/10799893.2010.508166

    Article  CAS  PubMed  Google Scholar 

  7. Miller J, Stagljar I (2004) Using the yeast two-hybrid system to identify interacting proteins. Methods Mol Biol 261:247–262. https://doi.org/10.1385/1-59259-762-9:247

    Article  CAS  PubMed  Google Scholar 

  8. Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3:981–983. https://doi.org/10.1038/nmeth972

    Article  CAS  PubMed  Google Scholar 

  9. Trifilieff P, Rives M-L, Urizar E et al (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques 51:111–118. https://doi.org/10.2144/000113719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Albizu L, Cottet M, Kralikova M et al (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594. https://doi.org/10.1038/nchembio.396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kern A, Albarran-Zeckler R, Walsh HE, Smith RG (2012) Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 73:317–332. https://doi.org/10.1016/j.neuron.2011.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mathis G (1995) Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem 41:1391–1397

    Article  CAS  Google Scholar 

  13. Bazin H, Trinquet E, Mathis G (2002) Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. J Biotechnol 82:233–250

    CAS  PubMed  Google Scholar 

  14. Terrillon S, Durroux T, Mouillac B et al (2003) Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol Endocrinol 17:677–691. https://doi.org/10.1210/me.2002-0222

    Article  CAS  PubMed  Google Scholar 

  15. Fernández-Dueñas V, Taura JJ, Cottet M et al (2015) Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats. Dis Model Mech 8:57–63. https://doi.org/10.1242/dmm.018143

    Article  CAS  PubMed  Google Scholar 

  16. Clark JD, Gebhart GF, Gonder JC et al (1997) Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación-FEDER-UE (SAF2017-87349-R MICIU/AEI/FEDER/UE) and Generalitat de Catalunya (2017SGR1604).We thank Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Catalunya for IDIBELL institutional support. We thank Esther Castaño and Benjamín Torrejón from the CCiT-Bellvitge Campus of the University of Barcelona. Also, this work was supported by research grants from the centre National de la Rcherche Scientifique, Institut National de la Santé et de la Recherche Médicale and by the Plateforme de Pharmacologie-Criblage of Montpellier and the Region Languedoc-Roussillon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Fernández-Dueñas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernández-Dueñas, V., Durroux, T., Ciruela, F. (2021). Time-Resolved Fluorescence Resonance Energy Transfer Using Fluorescent Ligands to Study Native G Protein-Coupled Receptor Heteromerization in Brain. In: Lujan, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1522-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1522-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1521-8

  • Online ISBN: 978-1-0716-1522-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics