Skip to main content

Detection and Quantitative Analysis of Dynamic GPCRs Interactions Using Flow Cytometry-Based FRET

  • Protocol
  • First Online:
Receptor-Receptor Interactions in the Central Nervous System

Part of the book series: Neuromethods ((NM,volume 140))

Abstract

Heterodimerization of specific G protein-coupled receptor (GPCR) protomers is associated with increased receptor signaling diversity and exhibits unique biochemical, functional, and pharmacological properties. Evidence for the formation of heteroreceptor complexes has been demonstrated in vitro using cellular models and biochemical assays and ex vivo using brain slices and primary cell cultures. Since mechanisms that lead to brain pathologies such as depression, anxiety, addiction, and schizophrenia involve GPCR signaling, the distinct pharmacological profiles of GPCR assemblies may serve as new target for the development of novel therapeutic strategies with enhanced specificity. Therefore, development and standardization of novel methods for detection and analysis of dimer pairs both in recombinant systems and in native tissue is warranted. This chapter describes a step-by-step protocol for detecting and quantifying dynamic receptor–receptor interactions in living cells using flow cytometry-based fluorescence (Förster) resonance energy transfer (fcFRET). This method has significant potential to identify novel GPCR dimers within the central nervous system while simultaneously allowing analysis of the dynamic nature of these receptor interactions, which is poised to contribute significantly to the field of GPCR neuropsychopharmacology across brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sunahara RK, Insel PA (2016) The molecular pharmacology of G protein signaling then and now: a tribute to Alfred G. Gilman. Mol Pharmacol 89:585–592. https://doi.org/10.1124/mol.116.104216

    Article  PubMed  CAS  Google Scholar 

  2. Congreve M, Marshall F (2010) The impact of GPCR structures on pharmacology and structure-based drug design. Br J Pharmacol 159:986–996. https://doi.org/10.1111/j.1476-5381.2009.00476.x

    Article  PubMed  CAS  Google Scholar 

  3. Tesmer JJG (2016) Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes. Nat Rev Mol Cell Biol 17:439–450. https://doi.org/10.1038/nrm.2016.36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Venkatakrishnan A, Flock T, Prado DE, Oates ME, Gough J, Madan Babu M (2014) Structured and disordered facets of the GPCR fold. Curr Opin Struct Biol 27:129–137. https://doi.org/10.1016/j.sbi.2014.08.002

    Article  PubMed  CAS  Google Scholar 

  5. Ward RJ, Milligan G (2014) Structural and biophysical characterisation of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques. Biochim Biophys Acta Biomembr 1838:3–14. https://doi.org/10.1016/j.bbamem.2013.04.007

    Article  CAS  Google Scholar 

  6. Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25:186–192. https://doi.org/10.1016/j.tips.2004.02.012

    Article  PubMed  CAS  Google Scholar 

  7. Borroto-Escuela DO, Fuxe K (2017) Diversity and bias through dopamine D2R heteroreceptor complexes. Curr Opin Pharmacol 32:16–22. https://doi.org/10.1016/j.coph.2016.10.004

    Article  PubMed  CAS  Google Scholar 

  8. Parmentier M (2015) GPCRs: heterodimer-specific signaling. Nat Chem Biol 11:244–245. https://doi.org/10.1038/nchembio.1772

    Article  PubMed  CAS  Google Scholar 

  9. Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5:30–34. https://doi.org/10.1038/sj.embor.7400052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hébert TE, Bouvier M (1998) Structural and functional aspects of G protein-coupled receptor oligomerization. Biochem Cell Biol 76:1–11. https://doi.org/10.1139/o98-012

    Article  PubMed  Google Scholar 

  11. Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KDG, Pin J-P, Volkow ND, Waldhoer M, Woods AS, Franco R (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134. https://doi.org/10.1038/nchembio0309-131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Romero-Fernandez W, Borroto-Escuela DO, Agnati LF, Fuxe K (2013) Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Mol Psychiatry 18:849–850. https://doi.org/10.1038/mp.2012.103

    Article  PubMed  CAS  Google Scholar 

  13. Siddiquee K, Hampton J, McAnally D, May L, Smith L (2013) The apelin receptor inhibits the angiotensin II type 1 receptor via allosteric trans-inhibition. Br J Pharmacol 168:1104–1117. https://doi.org/10.1111/j.1476-5381.2012.02192.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Moreno Delgado D, Møller TC, Ster J, Giraldo J, Maurel D, Rovira X, Scholler P, Zwier JM, Perroy J, Durroux T, Trinquet E, Prezeau L, Rondard P, Pin J-P (2017) Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells. Elife 6:pii: e25233. https://doi.org/10.7554/eLife.25233

    Article  Google Scholar 

  15. Jordan BA (2001) Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci U S A 98:343–348. https://doi.org/10.1073/pnas.011384898

    Article  PubMed  CAS  Google Scholar 

  16. Schellekens H, van Oeffelen WEPA, Dinan TG, Cryan JF (2013) Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling. J Biol Chem 288:181–191. https://doi.org/10.1074/jbc.M112.382473

    Article  PubMed  CAS  Google Scholar 

  17. Bellot M, Galandrin S, Boularan C, Matthies HJ, Despas F, Denis C, Javitch J, Mazères S, Sanni SJ, Pons V, Seguelas M-H, Hansen JL, Pathak A, Galli A, Sénard J-M, Galés C (2015) Dual agonist occupancy of AT1-R-α2C-AR heterodimers results in atypical Gs-PKA signaling. Nat Chem Biol 11:271–279. https://doi.org/10.1038/nchembio.1766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Terrillon S, Durroux T, Mouillac B, Breit A, Ayoub MA, Taulan M, Jockers R, Barberis C, Bouvier M (2003) Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol Endocrinol 17:677–691. https://doi.org/10.1210/me.2002-0222

    Article  PubMed  CAS  Google Scholar 

  19. Rashid AJ, So CH, Kong MMC, Furtak T, El-Ghundi M, Cheng R, O’Dowd BF, George SR (2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A 104:654–659. https://doi.org/10.1073/pnas.0604049104

    Article  PubMed  CAS  Google Scholar 

  20. Kern A, Mavrikaki M, Ullrich C, Albarran-Zeckler R, Brantley AF, Smith RG (2015) Hippocampal dopamine/DRD1 signaling dependent on the ghrelin receptor. Cell 163:1176–1190. https://doi.org/10.1016/j.cell.2015.10.062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Marcellino D, Ciruela F, Agnati LF, Fuxe K (2010) Dopamine D2 and 5-hydroxytryptamine 5-HT2A receptors assemble into functionally interacting heteromers. Biochem Biophys Res Commun 401:605–610. https://doi.org/10.1016/j.bbrc.2010.09.110

    Article  PubMed  CAS  Google Scholar 

  22. Borroto-Escuela DO, Carlsson J, Ambrogini P, Narváez M, Wydra K, Tarakanov AO, Li X, Millón C, Ferraro L, Cuppini R, Tanganelli S, Liu F, Filip M, Diaz-Cabiale Z, Fuxe K (2017) Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease. Front Cell Neurosci 11:1–20. https://doi.org/10.3389/fncel.2017.00037

    Article  CAS  Google Scholar 

  23. Schellekens H, Dinan TG, Cryan JF (2013) Taking two to tango: a role for ghrelin receptor heterodimerization in stress and reward. Front Neurosci 7:148. https://doi.org/10.3389/fnins.2013.00148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, Ruta JD, Albizu L, Li Z, Umali A, Shim J, Fabiato A, MacKerell AD, Brezina V, Sealfon SC, Filizola M, González-Maeso J, Logothetis DE (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147:1011–1023. https://doi.org/10.1016/j.cell.2011.09.055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cabello N, Gandía J, Bertarelli DCG, Watanabe M, Lluís C, Franco R, Ferré S, Luján R, Ciruela F (2009) Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J Neurochem 109:1497–1507. https://doi.org/10.1111/j.1471-4159.2009.06078.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pintsuk J, Borroto-Escuela DO, Lai TKY, Liu F, Fuxe K (2016) Alterations in ventral and dorsal striatal allosteric A2AR-D2R receptor-receptor interactions after amphetamine challenge: Relevance for schizophrenia. Life Sci 167:92–97. https://doi.org/10.1016/j.lfs.2016.10.027

    Article  CAS  Google Scholar 

  27. de la Mora MP, Pérez-Carrera D, Crespo-Ramírez M, Tarakanov A, Fuxe K, Borroto-Escuela DO (2016) Signaling in dopamine D2 receptor-oxytocin receptor heterocomplexes and its relevance for the anxiolytic effects of dopamine and oxytocin interactions in the amygdala of the rat. Biochim Biophys Acta 1862:2075–2085. https://doi.org/10.1016/j.bbadis.2016.07.004

    Article  PubMed  CAS  Google Scholar 

  28. Millón C, Flores-Burgess A, Narváez M, Borroto-Escuela DO, Santín L, Gago B, Narváez JA, Fuxe K, Díaz-Cabiale Z (2016) Galanin (1–15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT: involvement of the raphe-hippocampal 5-HT neuron system. Brain Struct Funct 221:4491–4504. https://doi.org/10.1007/s00429-015-1180-y

    Article  PubMed  CAS  Google Scholar 

  29. Naumenko VS, Popova NK, Lacivita E, Leopoldo M, Ponimaskin EG (2014) Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci Ther 20:582–590. https://doi.org/10.1111/cns.12247

    Article  PubMed  CAS  Google Scholar 

  30. Guo H, An S, Ward RJ, Yang Y, Liu Y, Guo X-X, Hao Q, Xu T-R (2017) Methods used to study the oligomeric structure of G protein-coupled receptors. Biosci Rep 37:BSR20160547. https://doi.org/10.1042/BSR20160547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354. https://doi.org/10.1016/S0165-6147(02)02062-X

    Article  PubMed  CAS  Google Scholar 

  32. Busnelli M, Mauri M, Parenti M, Chini B (2013) Analysis of GPCR dimerization using acceptor photobleaching resonance energy transfer techniques, 1st ed. Methods Enzymol 521:311–327. https://doi.org/10.1016/B978-0-12-391862-8.00017-X

    Article  PubMed  CAS  Google Scholar 

  33. Forster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33:166–175. https://doi.org/10.1007/BF00585226

    Article  CAS  Google Scholar 

  34. Fernández-Dueñas V, Llorente J, Gandía J, Borroto-Escuela DO, Agnati LF, Tasca CI, Fuxe K, Ciruela F (2012) Fluorescence resonance energy transfer-based technologies in the study of protein–protein interactions at the cell surface. Methods 57:467–472. https://doi.org/10.1016/j.ymeth.2012.05.007

    Article  PubMed  CAS  Google Scholar 

  35. Ciruela F (2008) Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 19:338–343. https://doi.org/10.1016/j.copbio.2008.06.003

    Article  PubMed  CAS  Google Scholar 

  36. Piston DW, Kremers G-J (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32:407–414. https://doi.org/10.1016/j.tibs.2007.08.003

    Article  PubMed  CAS  Google Scholar 

  37. Masters BR (2014) Paths to Förster’s resonance energy transfer (FRET) theory. Eur Phys J H 39:87–139. https://doi.org/10.1140/epjh/e2013-40007-9

    Article  Google Scholar 

  38. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846. https://doi.org/10.1146/annurev.bi.47.070178.004131

    Article  PubMed  CAS  Google Scholar 

  39. Shrestha D, Jenei A, Nagy P, Vereb G, Szöllősi J (2015) Understanding FRET as a research tool for cellular studies. Int J Mol Sci 16:6718–6756. https://doi.org/10.3390/ijms16046718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chan F-M, Holmes K (2004) Flow cytometric analysis of fluorescence resonance energy transfer. Flow Cytom Protoc 263:281–292. https://doi.org/10.1385/1-59259-773-4:281

    Article  CAS  Google Scholar 

  41. Nagy P, Vereb G, Damjanovich S, Mátyus L, Szöllõsi J (2006) Measuring FRET in flow cytometry and microscopy. Curr Protoc Cytom Chapter 12:Unit12.8. doi: https://doi.org/10.1002/0471142956.cy1208s38

  42. Chan FK-M, Siegel RM, Zacharias D, Swofford R, Holmes KL, Tsien RY, Lenardo MJ (2001) Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein. Cytometry 44:361–368. https://doi.org/10.1002/1097-0320(20010801)44:4<361::AID-CYTO1128>3.0.CO;2-3

    Article  PubMed  CAS  Google Scholar 

  43. Schellekens H, De Francesco PN, Kandil D, Theeuwes WF, McCarthy T, Van Oeffelen WEPA, Perelló M, Giblin L, Dinan TG, Cryan JF (2015) Ghrelińs orexigenic effect is modulated via a serotonin 2C receptor interaction. ACS Chem Neurosci 6:1186–1197. https://doi.org/10.1021/cn500318q

    Article  PubMed  CAS  Google Scholar 

  44. Chan FK-M, Holmes KL (2004) Flow cytometric analysis of fluorescence resonance energy transfer: a tool for high-throughput screening of molecular interactions in living cells. In: Flow cytometry protocol. Humana, New Jersey, pp 281–292

    Chapter  Google Scholar 

  45. Bajar BT, Wang ES, Zhang S, Lin MZ, Chu J (2016) A guide to fluorescent protein FRET pairs. Sensors (Switzerland) 16:1–24. https://doi.org/10.3390/s16091488

    Article  CAS  Google Scholar 

  46. Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012. https://doi.org/10.1038/nmeth.2171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Borroto-Escuela DO, Hagman B, Woolfenden M, Pinton L, Jiménez-Beristain A, Oflijan J, Narvaez M, Di Palma M, Feltmann K, Sartini S, Ambrogini P, Ciruela F, Cuppini R, Fuxe K (2016) In Situ proximity ligation assay to study and understand the distribution and balance of GPCR homo- and heteroreceptor complexes in the brain. In: Luján R, Ciruela F (eds) Receptor and ion channel detection in the brain: methods and protocols. Springer, New York, pp 109–124

    Chapter  Google Scholar 

  48. Strack R (2015) Protein labeling in cells. Nat Methods 13:33–33. https://doi.org/10.1038/nmeth.3702

    Article  CAS  Google Scholar 

  49. Chruścicka B, Burnat G, Brański P, Chorobik P, Lenda T, Marciniak M, Pilc A (2015) Tetracycline-based system for controlled inducible expression of group III metabotropic glutamate receptors. J Biomol Screen 20:350–358. https://doi.org/10.1177/1087057114559183

    Article  PubMed  CAS  Google Scholar 

  50. Naldini L (1998) Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 9:457–463. https://doi.org/10.1016/S0958-1669(98)80029-3

    Article  PubMed  CAS  Google Scholar 

  51. Banning C, Votteler J, Hoffmann D, Koppensteiner H, Warmer M, Reimer R, Kirchhoff F, Schubert U, Hauber J, Schindler M (2010) A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS One 5:e9344. https://doi.org/10.1371/journal.pone.0009344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hagen N, Bayer K, Rösch K, Schindler M (2014) The intraviral protein interaction network of hepatitis C virus. Mol Cell Proteomics 13:1676–1689. https://doi.org/10.1074/mcp.M113.036301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Holmes BB, Furman JL, Mahan TE, Yamasaki TR, Mirbaha H, Eades WC, Belaygorod L, Cairns NJ, Holtzman DM, Diamond MI (2014) Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci U S A 111:E4376–E4385. https://doi.org/10.1073/pnas.1411649111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Abankwa D, Hanzal-Bayer M, Ariotti N, Plowman SJ, Gorfe AA, Parton RG, McCammon JA, Hancock JF (2008) A novel switch region regulates H-ras membrane orientation and signal output. EMBO J 27:727–735. https://doi.org/10.1038/emboj.2008.10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kara E, Marks JD, Fan Z, Klickstein JA, Roe AD, Krogh KA, Wegmann S, Maesako M, Luo CC, Mylvaganam R, Berezovska O, Hudry E, Hyman BT (2017) Isoform and cell type-specific structure of Apolipoprotein E lipoparticles as revealed by a novel Forster Resonance Energy Transfer assay. J Biol Chem 292:14720–14729. https://doi.org/10.1074/jbc.M117.784264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Suzuki M, Tanaka S, Ito Y, Inoue M, Sakai T, Nishigaki K (2012) Simple and tunable Förster resonance energy transfer-based bioprobes for high-throughput monitoring of caspase-3 activation in living cells by using flow cytometry. Biochim Biophys Acta Mol Cell Res 1823:215–226. https://doi.org/10.1016/j.bbamcr.2011.07.006

    Article  CAS  Google Scholar 

  57. Larbret F, Dubois N, Brau F, Guillemot E, Mahiddine K, Tartare-Deckert S, Verhasselt V, Deckert M (2013) Technical advance: actin CytoFRET, a novel FRET flow cytometry method for detection of actin dynamics in resting and activated T cell. J Leukoc Biol 94:531–539. https://doi.org/10.1189/jlb.0113022

    Article  PubMed  CAS  Google Scholar 

  58. Botzolakis EJ, Gurba KN, Lagrange AH, Feng HJ, Stanic AK, Hu N, Macdonald RL (2016) Comparison of γ-aminobutyric acid, type A (GABAA), receptor αβγ and αβδ expression using flow cytometry and electrophysiology: Evidence for alternative subunit stoichiometries and arrangements. J Biol Chem 291:20440–20461. https://doi.org/10.1074/jbc.M115.698860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hassinen A, Pujol FM, Kokkonen N, Pieters C, Kihlström M, Korhonen K, Kellokumpu S (2011) Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J Biol Chem 286:38329–38340. https://doi.org/10.1074/jbc.M111.277681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gaber R, Majerle A, Jerala R, Benčina M (2013) Noninvasive high-throughput single-cell analysis of HIV protease activity using ratiometric flow cytometry. Sensors (Basel) 13:16330–16346. https://doi.org/10.3390/s131216330

    Article  CAS  Google Scholar 

  61. Bunaciu RP, Jensen HA, MacDonald RJ, La Tocha DH, Varner JD, Yen A (2015) 6-Formylindolo(3,2-b)carbazole(FICZ) modulates the signalsome responsible for RA-induced differentiation of HL-60 myeloblastic leukemia cells. PLoS One 10:e0135668. https://doi.org/10.1371/journal.pone.0135668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Damjanovich L, Volkó J, Forgács A, Hohenberger W, Bene L (2012) Crohn’s disease alters MHC-rafts in CD4 + T-cells. Cytometry A 81(A):149–164. https://doi.org/10.1002/cyto.a.21173

    Article  PubMed  CAS  Google Scholar 

  63. Nagy P (2008) Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements. Biophys J 95:2086–2096. https://doi.org/10.1529/biophysj.108.133371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Marconi M, Ascione B, Ciarlo L, Vona R, Garofalo T, Sorice M, Gianni AM, Locatelli SL, Carlo-Stella C, Malorni W, Matarrese P (2013) Constitutive localization of DR4 in lipid rafts is mandatory for TRAIL-induced apoptosis in B-cell hematologic malignancies. Cell Death Dis 4:e863. https://doi.org/10.1038/cddis.2013.389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Brockhoff G, Heiss P, Schlegel J, Hofstaedter F, Knuechel R (2001) Epidermal growth factor receptor, c-erbB2 and c-erbB3 receptor interaction, and related cell cycle kinetics of SK-BR-3 and BT474 breast carcinoma cells. Cytometry 44:338–348. https://doi.org/10.1002/1097-0320(20010801)44:4<338::AID-CYTO1125>3.0.CO;2-V. [pii]

    Article  PubMed  CAS  Google Scholar 

  66. Darbandi-Tehrani K, Hermand P, Carvalho S, Dorgham K, Couvineau A, Lacapere J-J, Combadiere C, Deterre P (2010) Subtle conformational changes between CX3CR1 genetic variants as revealed by resonance energy transfer assays. FASEB J 24:4585–4598. https://doi.org/10.1096/fj.10-156612

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded in part by Science Foundation Ireland in the form of a Research Center grant (SFI/12/RC/2273) to APC Microbiome Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harriët Schellekens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chruścicka, B., Wallace Fitzsimons, S.E., Druelle, C.M., Dinan, T.G., Schellekens, H. (2018). Detection and Quantitative Analysis of Dynamic GPCRs Interactions Using Flow Cytometry-Based FRET. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics