1 Introduction

One of the most interesting topics in medical science, especially practical dentistry, is the segmentation problem from a dental X-Ray image. This kind of segmentation was used to assist the discovery of odontological diseases such as dental caries, diseases of pulp and periapical tissues, gingivitis and periodontal diseases, dentofacial anomalies, and dental age prediction. It was also applied to tooth archeology and automated dental identification systems [31] for examining surgery corpses from complicated criminal cases. Because of the special structure and composition, tooth cannot be easily destroyed even in severe conditions such as bombing, blasts, water falling, etc. Thus, it brings valuable information to those analyses, and is of great interests to researchers and practicians of how such the information can be discovered from an image without much experience of experts [27]. This demand relates to the so-called accuracy of dental segmentation, which requires various machine learning methods to be applied in order to gain the best performance [813, 15]. Figure 1 shows the result of dental segmentation where the blue cluster in the segmented image may correspond to a dental disease that needs special treatments from clinicians. The more accurate the segmentation the more efficiently patients could receive medical treatment.

Fig. 1
figure 1

a A dental image; b The segmented image

There are many different techniques used in dental X-ray image segmentation, which can be divided into some strategies [5, 20, 30]: i) applying image processing techniques such as thresholding methods, the boundary-based and the region-based methods; ii) applying clustering methods such as Fuzzy C-Means (FCM). The first strategy either transforms a dental image to the binary representation through a threshold or uses a pre-defined complex curve to approximate regions. A typical algorithm belonging to this strategy is Otsu [26]. However, a drawback of this group is how to define the threshold and the curve, which are quite important to determine main part pixels especially in noise images [38]. On the other hand, the second strategy utilizes clustering, e.g. Fuzzy C-Means (FCM) [3] to specify clusters without prior information of the threshold and the curve. But again, it meets challenges in choosing parameters and detecting common boundaries among clusters [4, 21, 22, 33]. This raises the motivation of improving these methods, especially the clustering approach, in order to achieve better performance of segmentation.

An observation in [2, 39] revealed that if additional information is attached to clustering process then the clustering quality is enhanced. This is called the semi-supervised fuzzy clustering where additional information represented in one of the three types: must-link and cannot link constraints, class labels, and pre-defined membership matrix is used to orient the clustering. For example, if we know that a region represented by several pixels definitely corresponds to gingivitis then those pixels are marked by the class label. Other pixels in the dental image are classified with the support of known pixels; thus making the segmentation more accurate. In fuzzy clustering, the pre-defined membership matrix is often opted to be the additional information. For this kind of information, the most efficient semi-supervised fuzzy clustering algorithm is Semi-supervised Entropy regularized Fuzzy Clustering algorithm (eSFCM) [40], which integrates prior membership matrix \(\overline {u_{kj}} \) into objective function of the semi-supervised clustering algorithm.

Our idea in this research is to design a new semi-supervised fuzzy clustering model for the dental X-ray image segmentation problem. This model takes into account the prior membership matrix of eSFCM and provides a new part regarding dental structures in the objective function. The new objective function consists of three parts: the standard part of FCM, the spatial information part, and the additional information represented by the prior membership matrix. It, equipped with constraints, forms a multi-objective optimization problem. In order to solve the problem, we will utilized the ideas of Interactive Fuzzy Satisficing method [19, 23, 32] which is considered a useful tool to solve linear and nonlinear multi-objective problems in mixed fuzzy-stochastic environment wherein various kinds of uncertainties related to fuzziness and/or randomness are presented [6]. The outputs of this process are cluster centers and a membership matrix. A novel semi-supervised fuzzy clustering algorithm, which is in essence an iterative method to optimize the cluster centers and the membership matrix, is presented and evaluated on the real dental X-ray image set with respect to the clustering quality. The new clustering algorithm can be regarded as a new and efficient tool for dental X-Ray image segmentation.

From this perspective, our contributions in this paper are summarized as follows.

  1. a)

    Modeling dental structures or features of a dental X-Ray image into a spatial objective function;

  2. b)

    Design a new semi-supervised fuzzy clustering model including the objective function and constraints for the dental X-ray image segmentation;

  3. c)

    Solve the model by Interactive Fuzzy Satisficing method to get the cluster centers and the membership matrix;

  4. d)

    Theoretically examine the convergence rate, bounds of parameters, and the comparison with solutions of other relevant methods;

  5. e)

    Propose a new semi-supervised fuzzy clustering algorithm that segments a dental X-Ray image by the formulae of cluster centers and membership matrix above;

  6. f)

    Evaluate and compare the new algorithm with the relevant ones in terms of clustering quality on a real dataset including 56 dental X-ray images in the period 2014–2015 of Hanoi Medial University, Vietnam. Suggest the most appropriate values of parameters for the new algorithm.

The rests of this paper are organized as follow: Section 2 gives the background knowledge regarding literature review and the Interactive Fuzzy Satisficing method. Section 3 presents the main contributions of the paper. Section 4 shows the validation of the new algorithm by experimental simulation. Finally, Section 5 gives conclusions and highlight further works.

2 Preliminary

In this section, we firstly present details of two typical relevant methods namely Otsu and Fuzzy C-Means (FCM) as well as the most efficient semi-supervised fuzzy clustering algorithm – eSFCM in Section 2.1. A summary of the Interactive Fuzzy Satisficing method is given in Section 2.2.

2.1 Literature review

In the previous section, we have mentioned two approaches for the dental X-Ray image segmentation. Regarding the first one, the most typical method namely Otsu [26] recursively divides an image into two separate regions according to a threshold value. Descriptions of Otsu are shown in Table 1. Similarly, Table 2 shows the descriptions of FCM [3] which in essence is an iterative algorithm to calculate cluster centers and a membership matrix until stopping conditions are met.

Table 1 The Otsu method
Table 2 Fuzzy C-Means (FCM)

However, those algorithms have drawbacks regarding the selection of the threshold value, choosing parameters and detecting common boundaries among clusters [12, 13, 1517, 20, 22, 24, 25, 29, 3436, 38, 41, 42]. Thus, semi-supervised fuzzy clustering especially the eSFCM algorithm [40] can be regarded as an alternative method to handle these limitations. Table 3 shows the steps of this algorithm. However, this algorithm does not contain any information about spatial structures of an X-ray image and thus must be improved if applying to the dental X-Ray image segmentation problem.

Table 3 Semi-supervised entropy regularized fuzzy clustering algorithm

2.2 The interactive fuzzy satisficing method

The Interactive Fuzzy Satisficing method was applied to many programming problems such as: linear programming [19], stochastic linear programming [28] and mixed fuzzy-stochastic programming [19]. In those problems, multi-objective objective functions are considered. The basic idea of Interactive Fuzzy Satisficing method is: Firstly, separate each part of the multi-objective function and solve these isolated prolems via a suitable method. After that, based on the solutions of the subproblems, build fuzzy satisficing functions for each subproblem. Lastly, fomulate these isolated functions into a combination fuzzy satisficing function and solve the original problem by using an iterative scheme. In the case of linear programming problems, consider a multi-objective function formed as follows.

$$ \min \sum\limits_{i=1}^{p} {z_{i} (x)}, $$
(1)

With xR n satisfying

$$ Ax\le b,A\in R^{m\times n},b\in R^{m}. $$
(2)

To understand the interactive fuzzy satisficing schema, we have some definitions.

Definition 1 ([19]: (Fuzzy satisficing function))

In a feasible region X, for each objective function z i , i = 1,...p, the fuzzy satisficing function is defined as:

$$ \mu_{i} (z_{i} )=\frac{z_{i} -\underline{z}_{i}} {\bar{{z}}_{i} -\underline{z}_{i}} ,i=1,...,p, $$
(3)

Where \(\underline {z}_{i} ,\bar {{z}}_{i} ,i=1,...p\) are maximum and minimum values of z i in X.

Definition 2 ([19]: (Pareto optimal solution))

In a feasible region X, a point x* ∈X is said to be a M-Pareto optimal solution if and only if there does not exist another solution x ∈X such that μ i (x) ≤ μ i (x∗) for all i = 1,..., p and μ j (x)≠μ j (x∗) for at least one \(j\in \left \{ {1,...,p} \right \}\).

The interactive fuzzy satisficing method consists of two parts: initialization and iteration as below:

  • Initialization

    • Solve subproblems below:

      $$ \min z_{i} (x),i=1,...,p, $$
      (4)

      satisfying constraints in (2). Suppose that we get optimal solutions x 1,..., x p corresponding.

    • Compute values of objective functions z i , i = 1,...p at p solutions and create a pay-off table. After that, determine lower and upper bounds of z i . Denote that:

      $$\begin{array}{@{}rcl@{}} \bar{{z}}_{i} &=&\max \left\{ {z_{i} \left({x^{j}} \right),j=1,...,p} \right\};\underline{z}_{i} \\ &=&\min \left\{ {z_{i} \left({x^{j}} \right),j=1,...,p} \right\},i=1,...,p. \end{array} $$
      (5)
    • Define fuzzy satisficing functions for each objective z i , i = 1,...p by fomula:

      $$ \mu_{i} (z_{i} )=\frac{z_{i} -\underline{z}_{i}} {\bar{{z}}_{i} -\underline{z}_{i}} ,i=1,...,p. $$
      (6)
    • Set \(S_{p} =\left \{ {x^{1},...,x^{p}} \right \}\), \(r=1,a_{i}^{\left (r \right )} =\underline {z}_{i} \).

  • Iteration:

    • Step 1:

      • Build a combination fuzzy satisficing function:

        $$ u=b_{1} \mu_{1} (z_{1} )+b_{2} \mu_{2} (z_{2} )+...+b_{p} \mu_{p} (z_{p} ). $$
        (7)

        Randomly selected b 1,..., b p satisfying:

        $$ b_{1} +b_{2} +b_{3} =1, 0\le b_{1} ,b_{2} ,b_{3} \le 1. $$
        (8)
      • Solve the problem (7)–(8) with m constraints in (2) and p constraints in (9), we get optimal solutions x (r).

        $$ z_{i} (x)\ge \underline{z}_{i} ,i=1,...,p. $$
        (9)
    • Step 2 :

      • If \(\mu _{\min } =\min \left \{ {\mu _{i} (z_{i} ),i=1,...,p} \right \}>\theta \), with θ as a threshold then x (r) is not acceptable. Otherwise, if x (r)S p then put x (r)on S p .

      • In the case of needing to expand S p then set r = r + 1 and check these conditions:

        If r > L 1 or after L 2 consecutive iterations that S p is not expanded (L 1, L 2 has optional values) then set \(a_{i}^{\left (r \right )} =\underline {z}_{i} ,i=1, 2, 3\) and get a randomly index h in {1, 2,..., p} to put \(a_{h}^{\left (r \right )} \in \left [ {\underline {z}_{h} ,\bar {{z}}_{h}} \right )\). Then return to Step 1.

      • In the case of not needing to expand S p then go to Step 3.

    • Step 3: End of process.

3 The proposed method

In this section, we present the main contributions of this paper including: i) Modeling dental structures of a dental X-Ray image into a spatial objective function; ii) Designing a new semi-supervised fuzzy clustering model for the dental X-ray image segmentation; iii) Proposing a semi-supervised fuzzy clustering algorithm based on the interactive fuzzy satisficing method; iv) Examining the convergence rate, bounds of parameters, and the comparison with solutions of other relevant methods; v) Elaborating advantages of the new method. Those parts are presented in sub-sections accordingly.

3.1 Modeling dental structures

Dental images are valuable for the analysis of broken lines and tumors. There are four main regions in a panoramic image such as teeth and alveolar blood area, upper jaw, lower jaw and Temporomandibular Joint syndrome (TMJ) that should be detected for further diagnoses. In what follows, we present 4 existing image features and equivalent extraction functions that are applied to dental X-Ray images. Lastly, the formulation of a spatial objective function for these features is given.

3.1.1 Entropy, edge-value and intensity feature

  1. a)

    Entropy: is used to measure the randomness level of achieved information within a certain extent and can be calculated by the formula below [14].

    $$ r\left({x,y} \right)=-\sum\limits_{i=1}^{L} {p\left({z_{i}} \right)\log_{2} p\left({z_{i}} \right)} , $$
    (10)

    In which we have a random variable z, probability of i th pixel p(z i ), for all i = 1,2, ..., L and the number of pixels L).

    $$ R\left({x,y} \right)=\frac{r\left({x,y} \right)}{\max \left\{ {r\left({x,y} \right)} \right\}}. $$
    (11)
  2. b)

    Edge-value and intensity: these features measure the numbers of changes of pixel values in a region [14].

    $$\begin{array}{@{}rcl@{}} e\left({x,y} \right)&=&\sum\limits_{p=-\left\lfloor {w/2} \right\rfloor}^{\left\lfloor {w/2} \right\rfloor} {\sum\limits_{q=-\left\lfloor {w/2} \right\rfloor}^{\left\lfloor {w/2} \right\rfloor} {b\left({x,y} \right)}} , \end{array} $$
    (12)
    $$\begin{array}{@{}rcl@{}} b\left({x,y} \right)&=&\left\{ {\begin{array}{ll} 1, & \quad \nabla f\left({x,y} \right)\ge T_{1} \\ 0, & \quad \nabla f\left({x,y} \right)<T_{1} \end{array}} \right., \end{array} $$
    (13)
    $$\begin{array}{@{}rcl@{}} \nabla f\left({x,y} \right)&=&\sqrt {\left({\frac{\partial g\left({x,y} \right)}{\partial x}} \right)^{2}+\left({\frac{\partial g\left({x,y} \right)}{\partial y}} \right)^{2}} , \end{array} $$
    (14)

    Where \(\nabla f\left ({x,y} \right )\) is the length of gradient vector \(f\left ({x,y} \right )\), \(b\left ({x,y} \right )\) is a binary image and \(e\left ({x,y} \right )\) is intensity of the X-ray image respectively. T 1 is a threshold. These features are normalized as:

    $$\begin{array}{@{}rcl@{}} E\left({x,y} \right)&=&\frac{e\left({x,y} \right)}{\max \left\{ {e\left({x,y} \right)} \right\}}, \end{array} $$
    (15)
    $$\begin{array}{@{}rcl@{}} G\left({x,y} \right)&=&\frac{g\left({x,y} \right)}{\max \left\{ {g\left({x,y} \right)} \right\}}. \end{array} $$
    (16)

3.1.2 Local binary patterns - LBP

This feature is invariant to any light intensity transformation and ensures the order of pixel density in a given area. LBP [1] is determined under following steps:

  1. 1.

    Select a 3 × 3 window template from a given central pixel.

  2. 2.

    Compare its value with those of pixels in the window. If greater then mark as 1; otherwise mark as 0.

  3. 3.

    Put all binary values from the top-left pixel to the end pixel by clock-wise direction into a 8-bit string. Convert it to decimal system.

    $$ LBP\left({x_{c} ,y_{c}} \right)=\sum\limits_{n=0}^{7} {s\left({g_{n} -g_{c}} \right)2^{n}} , $$
    (17)
    $$ s(x)=\left\{ {\begin{array}{ll} 1 & \quad{x\ge 0} \\ 0 & \quad{\textit{otherwise}} \\ \end{array}} \right.. $$
    (18)

    Where g c is value of the central pixel (x c , y c ) and g n is value of n th pixel in the window.

3.1.3 Red-green-blue - RGB

This characterize for the color of an X-ray image according to Red-Green-Blue values. For a 24 bit image, the RGB feature [43] is computed as follows (N is the number of pixels).

$$ h_{R,G,B} \left[ {r,g,b} \right]=N\ast \Pr ob\left\{ {R=r,G=g,B=b} \right\}, $$
(19)

There is another way to calculate the RGB feature that is isolating three matrices h R [], h G [] and h B [] with values being specified from the equivalent color band in the image.

3.1.4 Gradient feature

This feature is used to differentiate various teeth’s parts such as enamel, cementum, gum, root canal, etc [7]. The following steps calculate the Gradient value: Firstly, apply Gaussian filter to the X-ray image to reduce the background noises. Secondly, Difference of Gaussian (DoG) filter is applied to calculate gradient of the image according to x and y axes. Each pixel is characterized by a gradient vector. Lastly, get the normalization form of the gradient vector and receive a 2D vector for each pixel as follows.

$$ \theta \left(z \right)=\left[ {\sin \alpha ,\cos \alpha} \right], $$
(20)

where α is direction of the gradient vector. For instance, length and direction of a pixel are calculated as follows.

$$\begin{array}{@{}rcl@{}} m\left({x,y} \right)&=&\sqrt {\left({L\left({x+1,y} \right)-L\left({x-1,y} \right)} \right)^{2}+\left({L\left({x,y+1} \right)-L\left({x,y-1} \right)} \right)^{2}} \end{array} $$
(21)
$$\begin{array}{@{}rcl@{}} \theta \left({x,y} \right)&=&\tan^{-1}\left({{\left({L\left({x+1,y+1} \right)-L\left({x-1,y-1} \right)} \right)} \mathord{\left/ {\vphantom {{\left({L\left({x+1,y+1} \right)-L\left({x-1,y-1} \right)} \right)} {\left({L\left({x+1,y} \right)-L\left({x-1,y} \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left({L\left({x+1,y} \right)-L\left({x-1,y} \right)} \right)}} \right) \end{array} $$
(22)
$$\begin{array}{@{}rcl@{}} L\left({x,y,k\sigma} \right)&=&G\left({x,y,k\sigma} \right)\ast I\left({x,y} \right) \end{array} $$
(23)
$$\begin{array}{@{}rcl@{}} G\left({x,y,k\sigma} \right)&=&\frac{1}{\sqrt {2\pi \sigma^{2}}} e^{-\left({x^{2}+y^{2}} \right)/\left({2\sigma^{2}} \right)} \end{array} $$
(24)

Where I(x,y) is a pixel vector, G(x,y,k) is a Gaussian function of the pixel vector, * is the convolution operation between x and y, θ 1 is a threshold.

3.1.5 Formulation of dental structure

The spatial objective function is formulated as in equations below.

$$ J_{2} =J_{2a} +J_{2b} . $$
(25)

Where

$$\begin{array}{@{}rcl@{}} J_{2a} =\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {u_{jk}^{m} R_{jk}^{2}} } , \end{array} $$
(26)
$$\begin{array}{@{}rcl@{}} J_{2b} =\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {u_{jk}^{m} \left({\frac{1}{l}\sum\limits_{i=1}^{l} {w_{ik}} } \right)}} . \end{array} $$
(27)

The aim of J 2a is to minimize the fuzzy distances of pixels in a cluster so that those pixels will have high similarity. Fuzzy distance R i k is defined as,

$$ R_{ik} =\left\| {x_{k} -v_{i}} \right\|^{2}\left({1-\tilde{{\alpha} }e^{-SI_{ik}} } \right), $$
(28)

Where \(\tilde {{\alpha } }\in [0,1]\) is the controlling parameter. When \(\tilde {{\alpha } }=0\), the function (28) returns to the traditional Euclidean distance. x k is k th pixel, and v i is i th cluster center. The spatial information function SI i k is shown in (29).

$$ SI_{ki} =\frac{\sum\limits_{j=1}^{N1} { d_{jk}^{-1}}u_{ji} } {\sum\limits_{j=1}^{N1} {d_{jk}^{-1}} } , $$
(29)

Where u j i is the membership degree of data point X i to cluster j th. The distance d j k is the square Euclidean function between (x k , y k ) and (x j , y j ). The meaning of this function is to specify spatial information relationship of k th pixel to i th cluster since this value will be high if its color is similar to those of neighborhood and vice versa. The inverse function \(d_{jk}^{-1} \) is used to measure the similarity between two data points.

The aim of J 2b is to minimize the features stated in Sections 3.1.1– 3.1.4 for better separation of spatial clusters. l is the number of features and belongs to [1, 4]. In the case that we use all features, l = 4. w i is the normalized value of features,

$$ w_{i} =\frac{pw_{i}} {\max \left\{ {pw_{i}} \right\}}, $$
(30)

Where p w i (i = 1,..,4) is the value of dental features stated in Sections 3.1.1 – 3.1.4.

It is obvious that the new spatial objective function in (25) combines the dental features and neighborhood information of a pixel.

3.2 A new semi-supervised fuzzy clustering model

In this section, we present a new semi-supervised fuzzy clustering model for dental X-Ray image segmentation problem. The model is given in equations below.

$$\begin{array}{@{}rcl@{}} J&=&\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {u_{jk}^{m}} \left\| {X_{k} -V_{j}} \right\|^{2}}+\\ &&+\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {u_{jk}^{m} R_{jk}^{2}} }+\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {u_{jk}^{m} \left({\frac{1}{l}\sum\limits_{i=1}^{l} {w_{ik}} } \right)+}}\\ &&+\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {\left| {u_{jk} -\overline u_{jk}} \right|^{m}} \left\| {X_{k} -V_{j}} \right\|^{2}} \rightarrow min \end{array} $$
(31)

With the constraint:

$$\begin{array}{@{}rcl@{}} &&\sum \limits_{j=1}^{C} {u_{jk}} =1; \forall k=\overline {1,N} \quad with \quad\quad u_{jk} \in \left[ {0,1} \right];\\&&{\kern12pt} \forall k=\overline {1,N},\forall j=\overline {1,C} \end{array} $$
(32)

It is obvious that in (31), the first part is the objective function of FCM [3]. It contains standard information of object function in fuzzy clustering.

$$ J_{1} =\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {u_{jk}^{2}} \left\| {X_{k} -V_{j}} \right\|^{2}} . $$
(33)

The second and third parts are contained in the spatial objective function in (25). The last part relates to the semi-supervised fuzzy clustering model wherein additional information represented in prior membership matrix \(\overline u_{jk} \) is taken into the objective function.

$$ J_{3} =\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {\left| {u_{jk} -\overline u_{jk}} \right|^{m}} \left\| {X_{k} -V_{j}} \right\|^{2}} . $$
(34)

According to [40], \(\overline u_{jk} \) satisfies the following constraint:

$$\begin{array}{@{}rcl@{}} \sum\limits_{j=1}^{C} {\bar{{u}}_{jk}} \le 1; \forall k=\overline {1,N} \quad with\quad \overline{u}_{jk} \in \left[ {0,1} \right]; \quad {}\\\forall k=\overline {1,N}, \forall j=\overline {1,C}. \end{array} $$
(35)

In the paper [40], the authors did not show any method to determine this kind of additional information. Thus, in order for better implementation, we propose a method to specify the prior membership matrix for dental X-Ray image segmentation as follows.

$$ \overline u_{jk} =\left\{ {\begin{array}{l} \alpha u_{1} ,\quad\text{when}\quad {u_{1} \geq u_{2}}\\ \alpha u_{2} ,\quad \text{when} \quad{u_{1} <u_{2}} \end{array}} \right., $$
(36)

Where \(\alpha \in \left [ {0,1} \right ]\) is the expert’s knowledge with α = 0 implying that the additional value \(\overline u_{kj} \) is not necessary for the entire clustering process. u 1 is the final membership matrix taken from FCM on the same image. u 2 is calculated as follows.

$$ u_{2} =\frac{\sum\limits_{i=1}^{l} {w_{i}} } {\max \left\{ {\sum\limits_{i=1}^{l} {w_{i}} } \right\}}. $$
(37)

w i is the normalized value of features given in (30).

It is clear that the problem in (31)–(32) is a multi-objective optimization problem. Therefore, it is better if we apply the Interactive Fuzzy Satisficing method for this problem.

3.3 The SSFC-FS algorithm

In this section, we propose a novel clustering algorithm namely Semi-Supervised Fuzzy Clustering algorithm with Spatial Constraints using Fuzzy Satisficing (SSFC-FS) to find optimal solutions including cluster centers and the membership matrix for the problem stated in (31)–(32). The new algorithm which is based on the Interactive Fuzzy Satisficing method is presented as follows.

Analysis the problem

In the previous section, we have defined the multi-objective function below.

$$ J=J_{1} +J_{2} +J_{3} \to \min . $$
(38)

Three single objectives are:

$$\begin{array}{@{}rcl@{}} J_{1} &=&\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {u_{jk}^{m}} \left\| {X_{k} -V_{j}} \right\|^{2}} , \end{array} $$
(39)
$$\begin{array}{@{}rcl@{}} J_{2} &=&\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {u_{jk}^{m} R_{jk}^{2}} } +\sum\limits_{k=1}^{N} {\sum\limits_{i=1}^{C} {u_{jk}^{m} \left({\frac{1}{l}\sum\limits_{i=1}^{l} {w_{ik}} } \right)}}\\ &=&\sum\limits_{k=1}^{N} {\sum\limits_{i=1}^{C} {\left({R_{jk}^{2} +\frac{1}{l}\sum\limits_{i=1}^{l} {w_{ki}} } \right)u_{jk}^{m}} } , \end{array} $$
(40)
$$\begin{array}{@{}rcl@{}} J_{3} &=&\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {\left| {u_{jk} -\overline {u}_{jk}} \right|^{m}} \left\| {X_{k} -V_{j}} \right\|^{2}} . \end{array} $$
(41)

Applying the Weierstrass theorem for this problem, the existence of optimal solutions is described as in Lemma 1.

Lemma 1

The multi-objective optimization problem in (39)–(41) with the constraint in (32) has objective functions being continuous on a compact and not empty domain. Thus this problem has global optimal solutions that are continuous and bounded.

Based on Lemma 1 and the Interactive Fuzzy Satisficing method, we build a schema to find out the optimal solution of this problem as follow.

Finding optimal solutions:

Initialization:

Solve the following subproblems by Lagrange method:

- Problem 1::

Min{ J 1(u)}, uR C×Nsatisfies (32)}. From this problem, we get the formulas of cluster centers and membership degree:

$$\begin{array}{@{}rcl@{}} V_{j} &=&\frac{\sum\limits_{k=1}^{N} {u_{jk}^{m} X_{k}} } {\sum\limits_{k=1}^{N} {u_{jk}^{m}} } , \end{array} $$
(42)
$$\begin{array}{@{}rcl@{}} u_{jk}^{1} &=&\left({\frac{-\lambda_{k}} {m\ast d_{jk}} } \right)^{\frac{1}{m-1}},\\ \lambda_{k}&=&\frac{1}{\left({\sum\limits_{j=1}^{C} {\left({\frac{1}{m\ast d_{jk}} } \right)^{\frac{1}{m-1}}}} \right)^{m-1}}, \end{array} $$
(43)

Where \(d_{kj} =\left \| {X_{k} -V_{j}} \right \|^{2}\), k = 1,…, N; j = 1,…, C. Rewrite objective function J 1 as:

$$ J_{1} =\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {u_{jk}^{m}} d_{jk}}. $$
(44)
- Problem 2::

Min {J 2 (u)}, uR C×Nsatisfies (32)}. Let \(\alpha _{jk} =R_{jk}^{2} +\frac {1}{l}\sum \limits _{i=1}^{l} {w_{ki}} \), k = 1,…, N; j = 1,…, C, we have:

$$ J_{2} =\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {u_{jk}^{m}} \alpha_{jk}}. $$
(45)

The optimal solutions are shown as follows.

$$ u_{jk}^{2} =\left({\frac{-\beta_{k}} {m\ast \alpha_{jk}} } \right)^{\frac{1}{m-1}}, \quad\beta_{k} =\frac{1}{\left({\sum\limits_{j=1}^{C} {\left({\frac{1}{m\ast \alpha_{jk}} } \right)^{\frac{1}{m-1}}}} \right)^{m-1}}. $$
(46)
- Problem 3::

Min {J 3 (u)}, uR C×Nsatisfies (32)}.It is easy to find out cluster centers.

$$ V_{j} =\frac{\sum\limits_{k=1}^{N} {\left| {u_{jk} -\bar{{u}}_{jk}} \right|^{m}X_{k}}} {\sum\limits_{k=1}^{N} {\left| {u_{jk} -\bar{{u}}_{jk}} \right|^{m}}} . $$
(47)

Objective function J 3 can be rewritten as,

$$ J_{3} =\sum\limits_{k=1}^{N} {\sum\limits_{j=1}^{C} {\left| {u_{jk} -\overline u_{jk}} \right|^{m}} d_{jk}}. $$
(48)

The optimal solution of this problem is \(u_{jk}^{3} \) which is computed by:

$$ u_{jk}^{3} \,=\,\left({\frac{-\gamma_{k}} {m\ast d_{jk}} } \right)^{\frac{1}{m-1}}+\bar{{u}}_{jk} ,\,\,\, \gamma_{k} \,=\,\left({\frac{1-\bar{{u}}_{jk}} {\sum\limits_{j=1}^{C} {\frac{1}{\left({m\ast d_{jk}} \right)^{\frac{1}{m-1}}}}} } \right)^{m-1}\!. $$
(49)

From obtained optimal solutions of isolated problems, values of objective functions at these solutions are given in pay-off table (Table 4).

Table 4 Pay-off table of interative fuzzy satisficing

Denote that:

$$\begin{array}{@{}rcl@{}} \underline{z}_{1} \!&=&\!\min \left\{ {z_{t1} ,t\,=\,1,2,3} \right\},\,\, \overline z_{1} \,=\,\max \left\{ {z_{t1} ,t\,=\,1,2,3} \right\}, \end{array} $$
(50)
$$\begin{array}{@{}rcl@{}} \underline{z}_{2} \!&=&\!\min \left\{ {z_{t2} ,t\,=\,1,2,3} \right\},\,\, \overline z_{2} \,=\,\max \left\{ {z_{t2} ,t\,=\,1,2,3} \right\}, \end{array} $$
(51)
$$\begin{array}{@{}rcl@{}} \underline{z}_{3} \!&=&\!\min \left\{ {z_{t3} ,t\,=\,1,2,3} \right\},\,\, \overline z_{3} \,=\,\max \left\{ {z_{t3} ,t\,=\,1,2,3} \right\}, \end{array} $$
(52)
$$\begin{array}{@{}rcl@{}} S_{p} &\,=\,&\left\{ {u^{1},u^{2},u^{3}} \right\}, r \,=\,1, a_{i}^{\left(r \right)} =\underline{z}_{i} \end{array} $$
(53)

Iterative steps:

Step 1::

Fuzzy satisficing functions for each of subproblems are defined by,

$$ \mu_{1} (J_{1} )=\frac{J_{1} -\underline{z}_{1}} {\overline z_{1} -\underline{z}_{1}} ; \mu_{2} (J_{2} )=\frac{J_{2} -\underline{z}_{2}} {\overline z_{2} -\underline{z}_{2}} ; \mu_{3} (J_{3} )=\frac{J_{3} -\underline{z}_{3}} {\overline z_{3} -\underline{z}_{3}} . $$
(54)

Based on these functions, we have the combination satisficing function:

$$ Y=b_{1} \mu_{1} (J_{1} )+b_{2} \mu_{2} (J_{2} )+b_{3} \mu_{3} (J_{3} )\to \min , $$
(55)

Where,

$$ b_{1} +b_{2} +b_{3} =1 \text{ and } 0\le b_{1} ,b_{2} ,b_{3} \le 1. $$
(56)

Then we solve the optimal problem with the objective function as in (55) and the constraints including original constraints (32) and additional constraints below.

$$ J_{i} (x)\ge a_{i}^{(r)} ,i=1, 2, 3.. $$
(57)

The objective function of this problem can be clearly written as,

$$\begin{array}{@{}rcl@{}} Y&=&\frac{b_{1}} {\overline z_{1} -\underline{z}_{1}} J_{1} +\frac{b_{2}} {\overline z_{2} -\underline{z}_{2}} J_{2} +\frac{b_{3}} {\overline z_{3} -\underline{z}_{3}} J_{3}\\ &&-\left({\frac{b_{1} \underline{z}_{1}} {\overline z_{1} -\underline{z}_{1}} +\frac{b_{2} \underline{z}_{2}} {\overline z_{2} -\underline{z}_{2}} +\frac{b_{3} \underline{z}_{3}} {\overline z_{3} -\underline{z}_{3}} } \right). \end{array} $$
(58)

Taking the derivative of (58), we obtain

$$\begin{array}{@{}rcl@{}} \frac{\partial Y}{\partial u_{jk}} &=&\frac{b_{1}} {\overline z_{1} -\underline{z}_{1}} \frac{\partial J_{1}} {\partial u_{jk}} +\frac{b_{2}} {\overline z_{2} -\underline{z}_{2}} \frac{\partial J_{2}} {\partial u_{jk}} +\frac{b_{3}} {\overline z_{3} -\underline{z}_{3}} \frac{\partial J_{3}} {\partial u_{jk}}\\ &&+\eta_{k} ,j=\overline {1,C} ,k=\overline {1,N} . \end{array} $$
(59)

For each of sets (b 1, b 2, b 3) satisfying (56), we have an optimal solution \(u^{\left (r \right )}=\left ({u_{jk}^{(r)}} \right )_{C\times N} \)of this problem.

Step 2::
  • If \(\mu _{\min } =\min \left \{ {\mu _{i} (J_{i} ),i=1,...,3} \right \}>\theta \), with θ is an optional threshold then u (r) is not acceptable. Otherwise, if u (r)S p then u (r)is put on S p .

  • In the case of needing to expand S p , set r = r + 1 and check the conditions:

    If r >L 1 or after L 2 consecutive iterations that S p is not expanded (L 1, L 2 has optional values) then set \(a_{i}^{\left (r \right )} =\underline {z}_{i} ,i=1, 2, 3\) and get a random index h in {1, 2, 3} to put \(a_{h}^{\left (r \right )} \in \left [ {\underline {z}_{h} ,\bar {{z}}_{h}} \right )\). Then return to step 1.

  • In the case of not needing to expand S p then go to step 3.

Step 3::
  • Rejecting dominant solutions from S p .

  • End of process.

Lemma 2

With the given parameter set \(\left ({b_{1} ,b_{2} ,b_{3}} \right )\) , the solution u (r) to minimize objective function Y in ( 58 ) are:

$$\begin{array}{@{}rcl@{}} \frac{\partial Y}{\partial u_{jk}} &=&\frac{b_{1}} {\overline z_{1} -\underline{z}_{1}} \frac{\partial J_{1}} {\partial u_{jk}} +\frac{b_{2}} {\overline z_{2} -\underline{z}_{2}} \frac{\partial J_{2}} {\partial u_{jk}} +\frac{b_{3}} {\overline z_{3} -\underline{z}_{3}} \frac{\partial J_{3}} {\partial u_{jk}}\\ &&+\eta_{k} =0,j=\overline {1,C} ,k=\overline {1,N}, \end{array} $$
(60)
$$\begin{array}{@{}rcl@{}} \Leftrightarrow u_{jk}^{(r)} &=&\frac{\frac{b_{3}^{\left(r \right)}} {\bar{{z}}_{3} -\underline{z}_{3}} \times d_{jk} \times \bar{{u}}_{jk} -\frac{\eta_{k}^{\left(r \right)}} {2}}{\left({\frac{b_{1}^{\left(r \right)}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}^{\left(r \right)}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left(r \right)}} {\bar{{z}}_{2} -\underline{z}_{2}} \times \alpha_{jk}} ,\\ j&=&\overline {1,C} ,k=\overline {1,N}\\ \eta_{k}^{\left(r \right)} &=&2\times \frac{\sum\limits_{j=1}^{C} {\frac{\frac{b_{3}^{\left(r \right)}} {\bar{{z}}_{3} -\underline{z}_{3}} \times d_{jk} \times \bar{{u}}_{jk}} {\left({\frac{b_{1}^{\left(r \right)}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}^{\left(r \right)}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left(r \right)}} {\bar{{z}}_{2} -\underline{z}_{2}} \times \alpha_{jk}} } -1}{\sum\limits_{j=1}^{C} {\frac{1}{\left({\frac{b_{1}^{\left(r \right)}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}^{\left(r \right)}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left(r \right)}} {\bar{{z}}_{2} -\underline{z}_{2}} \times \alpha_{jk}} }} ,\\ k&=&\overline {1,N},\\ \end{array} $$
(61)
$$ V_{j}^{(r)} \,=\,\frac{\sum\limits_{k=1}^{N} {\!\left({\frac{b_{1}^{\left(r \right)}} {\bar{{z}}_{1} -\underline{z}_{1}} \!\times\! \left({u_{jk}^{(r)}} \right)^{2}\!+\frac{b_{3}^{\left(r \right)}} {\bar{{z}}_{3} -\underline{z}_{3}} \left({u_{jk}^{(r)} \,-\,\overline u_{jk}} \right)^{2}} \right)\!X_{k}} } {\sum\limits_{k=1}^{N} {\left({\frac{b_{1}^{\left(r \right)}} {\bar{{z}}_{1} -\underline{z}_{1}} \!\times\! \left({u_{jk}^{(r)}} \right)^{2}\!+\frac{b_{3}^{\left(r \right)}} {\bar{{z}}_{3} -\underline{z}_{3}} \left({u_{jk}^{(r)} \,-\,\overline u_{jk}} \right)^{2}} \right)}}. $$
(62)

3.4 Theoretical analyses of the SSFC-FS algorithm

In Section 3.3, we used the Interactive Fuzzy Satisficing method to get the optimal solutions u (r). This section provides the theoretical analyses of the solutions including the convergence rate, bounds of parameters, and the comparison with solutions of other relevant methods.

Firstly, from the formula of cluster centers \(V_{j}^{\left (r \right )} \) in (62), it is obvious that the following properties and propositions hold.

Property 1

When b 2 = 1, b 1 = b 3 = 0, the cluster centers are not defined.

Property 2

Solution u (r) is continuous and bounded by \(\left ({b_{1} ,b_{2} ,b_{3}} \right )\).

Proposition 1

For all values of \(\left ({b_{1} ,b_{2} ,b_{3}} \right )\) , from formulas of u (r) in ( 61 ) we have:

$$\begin{array}{@{}rcl@{}} &&\frac{b_{3}^{\left(r \right)}} {\bar{{z}}_{3} -\underline{z}_{3}} \times d_{jk} \times \bar{{u}}_{jk} -\left[ \left({\frac{b_{1}^{\left(r \right)}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}^{\left(r \right)}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk}\right.\\ &&\quad\left.+\frac{b_{2}^{\left(r \right)}} {\bar{{z}}_{2} -\underline{z}_{2}} \times \alpha_{jk} \right]\le \frac{\eta_{k}^{\left(r \right)}} {2}\le \frac{b_{3}^{\left(r \right)}} {\bar{{z}}_{3} -\underline{z}_{3}} \times d_{jk} \times \bar{{u}}_{jk} ,\\ &&j=\overline {1,C} ,k=\overline {1,N}. \end{array} $$
(63)

Proof

This characteristic can easily be achieved based on constraints of u j k :

$$0\le u_{jk} \le 1,j=\overline {1,C} ,k=\overline {1,N} $$

Secondly, we compare the solutions with those achieved by local Lagrange method. Consider the optimization problem in (31)–(32), one can regard the function as a single objective and uses the Lagrange method to get the optimal solutions. To differentiate with our approach in this paper, we name this method the local Lagrange. It is easy to derive the following proposition. □

Proposition 2

The optimal solutions of the problem ( 31 )–( 32 ) are,

$$\begin{array}{@{}rcl@{}} V_{j} &=&\frac{\sum\limits_{k=1}^{N} {\left({u_{jk}^{m} +\left| {u_{jk} -\overline u_{jk}} \right|} \right)x_{k}} } {\sum\limits_{k=1}^{N} {\left({u_{jk}^{m} +\left| {u_{jk} -\overline u_{jk}} \right|} \right)}} , \end{array} $$
(64)
$$\begin{array}{@{}rcl@{}} u_{jk} &=&\frac{-\lambda_{k} +2\overline u_{jk} \left\| {X_{k} -V_{j}} \right\|^{2}}{2\ast \left({2\left\| {X_{k} -V_{j}} \right\|^{2}+R_{jk}^{2} +\frac{1}{l}\sum\limits_{i=1}^{l} {w_{ik}} } \right)}, \end{array} $$
(65)
$$\begin{array}{@{}rcl@{}} \lambda_{K} ={\left({\sum\limits_{j=1}^{C} {\frac{\overline u_{jk} \left\| {X_{k} -V_{j}} \right\|^{2}}{\left({2\left\| {X_{k} -V_{j}} \right\|^{2}+R_{jk}^{2} +\frac{1}{l}\sum\limits_{i=1}^{l} {w_{ik}} } \right)}} -1} \right)} \mathord{\left/ {\vphantom {{\left({\sum\limits_{j=1}^{C} {\frac{\overline u_{kj} \left\| {X_{k} -V_{j}} \right\|^{2}}{\left({2\left\| {X_{k} -V_{j}} \right\|^{2}+R_{jk}^{2} +\frac{1}{l}\sum\limits_{i=1}^{l} {w_{ik}} } \right)}} -1} \right)} {\left({\sum\limits_{j=1}^{C} {\frac{1}{2\left({2\left\| {X_{k} -V_{j}} \right\|^{2}+R_{jk}^{2} +\frac{1}{l}\sum\limits_{i=1}^{l} {w_{ik}} } \right)}}} \right)}}} \right. \kern-\nulldelimiterspace}\\ {\left({\sum\limits_{j=1}^{C} {\frac{1}{2\left({2\left\| {X_{k} -V_{j}} \right\|^{2}+R_{jk}^{2} +\frac{1}{l}\sum\limits_{i=1}^{l} {w_{ik}} } \right)}}} \right)}. \end{array} $$
(66)

Now, we measure the quanlities of optimal solutions using the local Lagrange and Interactive Fuzzy Satisficing methods in terms of clustering quality represented by the IFV criterion. The maximal value of IFV indicates the better quality.

$$\begin{array}{@{}rcl@{}} IFV&\,=\,&\frac{1}{C}\sum\limits_{j=1}^{C} \!\left\{ {\frac{1}{N}\sum\limits_{k=1}^{N} {u_{jk}^{2}\!\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} u_{jk}} } \right]^{2}}} \!\right\}\\ &&\times \frac{SD_{\max}}{\overline{\sigma_{D}}}, \end{array} $$
(67)
$$\begin{array}{@{}rcl@{}} SD_{\max} &\,=\,&\underset{k\ne j}{\max}\left\| {V_{k} -V_{j}} \right\|^{2}, \end{array} $$
(68)
$$\begin{array}{@{}rcl@{}} \overline {\sigma_{D}} &\,=\,&\frac{1}{C}\sum\limits_{j=1}^{C} {\left({\frac{1}{N}\sum\limits_{k=1}^{N} {d_{jk}} } \right)} \end{array} $$
(69)

Let IFV (LA) be the value of IFV index at the optimal solutions obtained by using Lagrange method and IFV (FS) stands for this value at the one by using fuzzy satisfacing method. It follows that,

$$\begin{array}{@{}rcl@{}} \text{IFV}^{\left({\text{LA}} \right)}&=&\frac{1}{C}\sum\limits_{j=1}^{C} \left\{ \frac{1}{N}\sum\limits_{k=1}^{N} \left({\frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}}} \right)^{2}\right.\\ &&\left.\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}} }} \right]^{2}\right\}\\ &&\times \frac{SD_{\max} } {\overline {\sigma_{D}}}, \end{array} $$
(70)
$$\begin{array}{@{}rcl@{}} \text{IFV}^{\left({\text{FS}} \right)}&=&\frac{1}{C}\sum\limits_{j=1}^{C} \left\{\frac{1}{N}\sum\limits_{k=1}^{N} \left({\frac{w_{3} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({w_{1} +w_{3}} \right)d_{jk} +w_{2} \alpha_{jk}}} \right)^{2}\right.\\ &&\left.\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{w_{3} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({w_{1} +w_{3}} \right)d_{jk} +w_{2} \alpha_{jk}}}}\right]^{2}\right\}\\ &&\times \frac{SD_{\max} } {\overline {\sigma_{D}}}.\\ \end{array} $$
(71)

To evaluate the difference of IFV values in these methods, we need an assumption presented in Lemma 3 below.

Lemma 3

In the local Lagrange method, the parameter λ k is computed by formula ( 66 ). Thus, in order to compare the local Lagrange with Interactive Fuzzy Satisficing, we can choose parameters \(\left ({b_{1} ,b_{2} ,b_{3}} \right )\) in which the below condition is satisfied ( \(j=\overline {1,C} ,k=\overline {1,N} )\) :

$$\begin{array}{@{}rcl@{}} &&\left(\!{\frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}} }\!\right)\!\times\! \left({\log_{2} C\,-\,\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}} }}\!\right) \\ &&\hspace*{15pt}\le \left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)\\ &&\hspace*{2pt}\times\! \left(\!{\log_{2} C\,-\,\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} }} \right)\!, \end{array} $$
(72)
$$\begin{array}{@{}rcl@{}} &&\alpha_{jk} =R_{jk}^{2} +\frac{1}{l}\sum\limits_{i=1}^{l} {w_{ik}} . \end{array} $$
(73)

Theorem 1

Given the set of parameters \(\left ({b_{1} ,b_{2} ,b_{3}} \right )\) satisfied the condition as in Lemma 3, we have:

$$\begin{array}{@{}rcl@{}} \text{IFV}^{\left({\text{LA}} \right)}\text{ - IFV}^{\left({\text{FS}} \right)}\text{ } &=&\frac{1}{C}\times \frac{1}{N}\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \sum\limits_{j=1}^{C} {\sum\limits_{k=1}^{N} {\left\{ {\left({\frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}} } \right)^{2}\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}} }} \right]^{2}} \right.}}\\ &&-\left. {\left({\frac{w_{3} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({w_{1} +w_{3}} \right)d_{jk} +w_{2} \alpha_{jk}} } \right)^{2}\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{w_{3} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({w_{1} +w_{3}} \right)d_{jk} +w_{2} \alpha_{jk}} }} \right]^{2}} \right\} \le 0 \end{array} $$
(74)

Proof

$$\begin{array}{@{}rcl@{}} \text{IFV}^{\left({\text{LA}} \right)} - \text{IFV}^{\left({\text{FS}} \right)}\text{ }&=&\frac{1}{C}\times \frac{1}{N}\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \sum\limits_{j=1}^{C} {\sum\limits_{k=1}^{N} {\left\{ {\left({\frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}} } \right)^{2}\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k} }{2}}{2d_{jk} +\alpha_{jk}}} } \right]^{2}} \right.}}\\ &&-\left. {\left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)}} \right]^{2}} \right\}\\ &=&\frac{1}{C}\times \frac{1}{N}\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \sum\limits_{j=1}^{C} {\sum\limits_{k=1}^{N} {\left\{ {\left({\frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}} \left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}} }} \right]} \right)^{2}} \right.}}\\ &&-\left. {\left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} \left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} }} \right]} \right)^{2}} \right\} \end{array} $$

Thus, \(IFV^{\left ({LA} \right )}-IFV^{\left ({FS} \right )}=\frac {1}{C}\times \frac {1}{N}\times \frac {SD_{\max } } {\overline {\sigma _{D}} } \sum \limits _{j=1}^{C} {\sum \limits _{k=1}^{N} {\left ({A_{jk} +B_{jk}} \right )\left ({A_{jk} -B_{jk}} \right )}} \). Where,

$$\begin{array}{@{}rcl@{}} \text{A }_{\text{jk}} =\left({\frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}} } \right)\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{d_{jk} \bar{{u}}_{jk} -\frac{\lambda_{k}} {2}}{2d_{jk} +\alpha_{jk}} }} \right] \end{array} $$
$$\begin{array}{@{}rcl@{}} &&B_{jk} =\left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)\\ &&\left[ { \log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} }} \right] \\ \end{array} $$

It is clear that,

$$\begin{array}{l} A_{jk} +B_{jk} \ge 0,\text{for all values of}\left({b_{1} ,b_{2} ,b_{3}} \right) \\ A_{jk} -B_{jk} <0,\text{for all values of} \left({b_{1} ,b_{2} ,b_{3}} \right) \text{in Lemma 3}\\ \Leftrightarrow \left({A_{jk} +B_{jk}} \right)\left({A_{jk} -B_{jk}} \right)\le 0 \\ \end{array} $$

Then

$$\text{IFV}^{\left({\text{LA}} \right)}\text{ - IFV}^{\left({\text{FS}} \right)}\text{ }\le \text{0} $$

Property 3

The optimal solutions obtained by using Interactive Fuzzy Satisficing are better than those using local Lagrange.

From Theorem 1, we have

$$\text{IFV}^{\left({\text{LA}} \right)}\text{ - IFV}^{\left({\text{FS}} \right)}\text{ }\le \text{0} \Leftrightarrow \text{IFV}^{\left({\text{LA}} \right)}\text{ } \le \text{ IFV}^{\left({\text{FS}} \right)}. $$

It means that the optimal solutions obtained by Interactive Fuzzy Satisficing are better than by local Lagrange.Thirdly, we would like to investigate the range of IFV values of the solutions at an iteration step u (r) obtained by Interactive Fuzzy Satisficing method. This question is handled by the following theorem.

Theorem 2

The lower bound of IFV index on optimal solution u=u (r) obtained by Interactive Fuzzy Satisficing is evaluated by:

$$ \text{IFV}^{\left({\text{FS}} \right)\text{ } }\ge \frac{1}{C^{2}}\times \frac{SD_{\max}} {\overline {\sigma_{D}} } \times \left[ {\log_{2} C} \right]^{2}. $$
(75)

Proof

We have

$$\begin{array}{ll} \text{IFV}^{\left({\text{FS}} \right)\text{ } }&=\frac{1}{C}\sum\limits_{j=1}^{C} {\left\{ {\frac{1}{N}\sum\limits_{k=1}^{N} {\left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}} } \right.} \\ {\begin{array}{*{20}c} \hfill & \hfill & \hfill \\ \end{array}} {\begin{array}{*{20}c} \hfill & \hfill \\ \end{array}} &\quad\times \left. {\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{\frac{b_{3} }{\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} }} \right]^{2}} \right\}\\ &\quad\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \\ {\begin{array}{*{20}c} \hfill & \hfill & \hfill \\ \end{array}} &=\frac{1}{C}\times \frac{SD_{\max} } {\overline {\sigma_{D}}} \sum\limits_{j=1}^{C} {\left\{ {\frac{1}{N}\sum\limits_{k=1}^{N} {\left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}} } \right.} \\ {\begin{array}{*{20}c} \hfill & \hfill & \hfill \\ \end{array}} {\begin{array}{*{20}c} \hfill & \hfill \\ \end{array}} &\quad\times \left. {\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{\frac{b_{3} }{\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} }} \right]^{2}} \right\} \\ \end{array} $$

where

$$\begin{array}{@{}rcl@{}} u_{jk}^{(r)} &=&\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk}-\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}}\le 1,j=\overline {1,C} ,k\\ &=&\overline {1,N} \Rightarrow \log_{2} \frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} <0\\ &&\Rightarrow \log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} }\\ &&\quad\ge \log_{2} C \end{array} $$

It follows that

$$\begin{array}{@{}rcl@{}} \text{IFV}^{\left({\text{FS}} \right)\text{ } }&\ge& \frac{1}{C}\times \frac{SD_{\max} } {\overline {\sigma_{D} }} \times \frac{1}{N}\times \left[ {\log_{2} C} \right]^{2}\\ &&\times \sum\limits_{j=1}^{C} {\left\{ {\sum\limits_{k=1}^{N} {\left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}}} \right\}}\\ &\ge& \frac{1}{C\times N}\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \times \left[ {\log_{2} C} \right]^{2}\\ &&\times \sum\limits_{k=1}^{N} \sum\limits_{j=1}^{C} {\left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}} \end{array} $$

Apply Cauchy–Schwarz inequality, we obtain

$$\begin{array}{@{}rcl@{}} C&\times& \sum\limits_{j=1}^{C} {\left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}}=\sum\limits_{j=1}^{C} {\left(1 \right)^{2}} \\ &\times& \sum\limits_{j=1}^{C} {\left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}} \ge 1 \\ &&\Rightarrow \sum\limits_{j=1}^{C} {\left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}} \ge \frac{1}{C} \end{array} $$

From that, we get:

$$\begin{array}{@{}rcl@{}} \text{IFV}^{\left({\text{FS}} \right)\text{ } }&\ge& \frac{1}{C}\times \frac{SD_{\max} } {\overline {\sigma_{D} }} \times \frac{1}{N}\times \left[ {\log_{2} C} \right]^{2}\times \sum\limits_{k=1}^{N} {\left({\frac{1}{C}} \right)} \\&\ge& \frac{1}{C^{2}}\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \times \left[ {\log_{2} C} \right]^{2} \end{array} $$

In Theorem 2, we consider the lower bound of IFV index, the upper bound of this index will be evaluated in Theorem 3 below. For this purpose, limitation L is defined.

$$ L=\lim\limits_{u_{jk} \to 0} \left\{ {\sum\limits_{k=1}^{N} {\log_{2} \frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} }} \right\}. $$
(76)

Lemma 4

For every set of \(\left ({b_{1} ,b_{2} ,b_{3}} \right )\) , we always have:

$$\begin{array}{@{}rcl@{}} &&\sum\limits_{k=1}^{N} {\log_{2} \frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}}\ge}\\ &&\lim\limits_{u_{jk} \to 0} \left\{ {\sum\limits_{k=1}^{N} {\log_{2} \frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} }} \right\}\ge L\\ \end{array} $$
(77)

It is easy to get this from property of logarithm.

Theorem 3

The upper bound of IFV index of the optimal solution obtained by the Interactive Fuzzy Satisficing is evaluated by:

$$ \text{IFV}^{\left({\text{FS}} \right)\text{ } }\ge \frac{1}{C}\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \times \left({\log_{2} C-\frac{L}{N}} \right)^{2}. $$
(78)

Proof

Again, from formula of IFV, we have:

$$\begin{array}{@{}rcl@{}} \text{IFV}^{\left({\text{FS}} \right)\text{ } }&=&\frac{1}{C}\times \frac{SD_{\max} } {\overline {\sigma_{D}} }\times \frac{1}{N}\\&\times& \sum\limits_{j=1}^{C} {\left\{ {\sum\limits_{k=1}^{N} {\left({\frac{\frac{b_{3} }{\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}} } \right.} \\ &\times& \left. {\left[ {\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} \frac{\frac{b_{3} }{\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} }} \right]^{2}} \right\} \end{array} $$

Using the inequality in Lemma 3, this is equivalent to:

$$\begin{array}{@{}rcl@{}} \text{IFV}^{\left({\text{FS}} \right)\text{ } }&\ge& \frac{1}{C}\times \frac{SD_{\max} } {\overline {\sigma_{D}}} \times \frac{1}{N}\\&&\times \sum\limits_{j=1}^{C} \sum\limits_{k=1}^{N} \left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}\\&&\times\left[ {\log_{2} C-\frac{L}{N}} \right]^{2} \\ &\ge& \frac{1}{C}\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \times \frac{1}{N}\\&&\times \sum\limits_{k=1}^{N} \sum\limits_{j=1}^{C} \left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)^{2}\\&&\times \frac{1}{C}\sum\limits_{j=1}^{C} {\left[ {\log_{2} C-\frac{L}{N}} \right]^{2}}\\ &\ge& \frac{1}{C}\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \times \frac{1}{N}\\&&\times \sum\limits_{k=1}^{N} {\frac{1}{C}} \left\{\sum\limits_{j=1}^{C} \left({\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} } \right)\right.\\&&\left.\times \left[ {\log_{2} C-\frac{L}{N}} \right] \right\}^{2} \end{array} $$

It follows that,

$$\begin{array}{@{}rcl@{}} IFV^{\left({FS} \right)}&\ge& \frac{1}{C}\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \times \frac{1}{N}\times \sum\limits_{k=1}^{N} {\frac{1}{C}\times} \left[ {\log_{2} C-\frac{L}{N}} \right]^{2}\\&=&\frac{1}{C^{2}}\times \frac{SD_{\max} } {\overline {\sigma_{D}} } \end{array} $$

Consequence 1

From the Cauchy–Schwarz inequality, used in above transformation, the equality happens when:

$$\frac{\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} }{\log_{2} C-\frac{L}{N}}= constant $$

With the constraint (32), it can be deduced as follow.

$$\begin{array}{@{}rcl@{}} \frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} =\frac{1}{\log_{2} C-\frac{L}{N}}& \end{array} $$
(79)

The result in Consequence 1 has revealed some typically cases:

- Suppose that b 2 is a constant that differs from 1, we can represent b 1 and b 3 by this expression:

$$ b_{1} \,=\,1-b_{2} -b_{3} ,0\le b_{1} ,b_{2} ,b_{3} \le 1,b_{2} \ne 1, b_{2}\,=\, constant. $$
(80)

In this case, according to (79), we can express parameter b 3 by b 2 as below:

$$\begin{array}{@{}rcl@{}} &&\frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{b_{1}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} =\frac{1}{\log_{2} C-\frac{L}{N}} \\\\ &&\Leftrightarrow \frac{\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}}{\left({\frac{1-b_{2} -b_{3}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}} =\frac{1}{\log_{2} C-\frac{L}{N}} \\\\ &&\Leftrightarrow \left({\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} d_{jk} \bar{{u}}_{jk} -\frac{\eta_{k}} {2}} \right)\left({\log_{2} C-\frac{L}{N}} \right)\\\\ &&\quad=\left({\frac{1-b_{2}} {\bar{{z}}_{1} -\underline{z}_{1}} -\frac{b_{3}} {\bar{{z}}_{1} -\underline{z}_{1}} +\frac{b_{3}} {\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{z}}_{2} -\underline{z}_{2}} \alpha_{jk}\\\\ &&\Leftrightarrow \left({\log_{2} C-\frac{L}{N}} \right)\frac{d_{jk} \bar{{u}}_{jk}} {\bar{{z}}_{3} -\underline{z}_{3}} b_{3} -\frac{\eta_{k}} {2}\left({\log_{2} C-\frac{L}{N}} \right)\\\\ &&\quad=\left({\frac{1}{\bar{{z}}_{1} -\underline{z}_{1}} +\frac{1}{\bar{{z}}_{3} -\underline{z}_{3}} } \right)d_{jk} b_{3}\\\\ &&\qquad+\frac{\alpha_{jk}} {\bar{{z}}_{2} -\underline{z}_{2}} b_{2} +\frac{1-b_{2}} {\bar{{z}}_{1} -\underline{z}_{1}} d_{jk} \\\\ &&\Leftrightarrow \left[ \left({\log_{2} C-\frac{L}{N}} \right)\frac{\bar{{u}}_{jk}} {\bar{{z}}_{3} -\underline{z}_{3}}\right.\\\\ &&\quad\left.-\left({\frac{1}{\bar{{z}}_{1} -\underline{z}_{1}} +\frac{1}{\bar{{z}}_{3} -\underline{z}_{3}} } \right) \right]d_{jk} b_{3} \\&&\qquad+\left({\frac{d_{jk}} {\bar{{z}}_{1} -\underline{z}_{1}} -\frac{\alpha_{jk}} {\bar{{z}}_{2} -\underline{z}_{2}} } \right)b_{2} -\frac{\eta_{k}} {2}\left({\log_{2} C-\frac{L}{N}} \right)\\\\ &&\qquad-\frac{d_{jk}} {\bar{{z}}_{1} -\underline{z}_{1}} =0 \end{array} $$
$$ \Leftrightarrow H_{jk} b_{3} +G_{jk} b_{2} -\frac{\eta_{k}} {2}P-\frac{d_{jk}} {\bar{{z}}_{1} -\underline{z}_{1}} =0, $$
(81)

Where

$$\begin{array}{@{}rcl@{}} H_{jk} &=&\left[ \left({\log_{2} C-\frac{L}{N}} \right)\frac{\bar{{u}}_{jk}} {\bar{{z}}_{3} -\underline{z}_{3}}\right.\\\\ &&\left.-\left({\frac{1}{\bar{{z}}_{1} -\underline{z}_{1}} +\frac{1}{\bar{{z}}_{3} -\underline{z}_{3}} } \right) \right]d_{jk} ,\\ G_{jk} &=&\left({\frac{d_{jk}} {\bar{{z}}_{1} -\underline{z}_{1}} -\frac{\alpha_{jk}} {\bar{{z}}_{2} -\underline{z}_{2}} } \right),P=\left({\log_{2} C-\frac{L}{N}} \right) \end{array} $$

In which:

$$\begin{array}{@{}rcl@{}} \frac{\eta_{k}} {2}&=&\frac{\sum\limits_{j=1}^{C} {\frac{\frac{b_{3}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} d_{jk} \bar{{u}}_{jk}} {\left({\frac{b_{1}} {\bar{{\mathrm{\mathrm{z}}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \alpha_{jk}} } -1}{\sum\limits_{j=1}^{C} {\frac{1}{\left({\frac{b_{1}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \alpha_{jk}} }} \\\\&=&\frac{\sum\limits_{j=1}^{C} {\frac{\frac{b_{3}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} d_{jk} \bar{{u}}_{jk}} {\left({\frac{1-b_{2} -b_{3}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \alpha_{jk}} } -1}{\sum\limits_{j=1}^{C} {\frac{1}{\left({\frac{1-b_{2} -b_{3}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \alpha_{jk}}}}\\\\ &=&\frac{\sum\limits_{j=1}^{C} {\frac{\frac{d_{jk} \bar{{u}}_{jk} }{\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} b_{3}} {\left({\frac{1}{\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} -\frac{1}{\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} } \right)d_{jk} b_{3} +\left({\frac{d_{jk}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} -\frac{\alpha_{jk}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} } \right)b_{2} -\frac{d_{jk}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} }} -1}{\sum\limits_{j=1}^{C} {\frac{1}{\left({\frac{1}{\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} -\frac{1}{\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} } \right)d_{jk} b_{3} +\left({\frac{d_{jk}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} -\frac{\alpha_{jk}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} } \right)b_{2} -\frac{d_{jk}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} }}} \end{array} $$
$$\begin{array}{@{}rcl@{}} \Leftrightarrow \frac{\eta_{k}} {2}=\frac{\sum\limits_{j=1}^{C} {\frac{A_{jk} b_{3}} {B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } -1}{\sum\limits_{j=1}^{C} {\frac{1}{B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} }} , \end{array} $$
(82)

Where

$$\begin{array}{@{}rcl@{}} A_{jk} &=&\frac{d_{jk} \bar{{u}}_{jk}} {\bar{{z}}_{3} -\underline{z}_{3}} , {B_{jk} =\left({\frac{1}{\bar{{z}}_{3} -\underline{z}_{3}} -\frac{1}{\bar{{z}}_{1} -\underline{z}_{1}} } \right)d_{jk}},\\ F_{jk} &=&-\frac{d_{jk}} {\bar{{z}}_{1} -\underline{z}_{1}} \end{array} $$
(83)

Replacing \(\frac {\eta _{k}} {2}\) in (81) by formula (82) and denotations in (83), we have:

$$\begin{array}{@{}rcl@{}} H_{jk} b_{3} \!&+&\!G_{jk} b_{2} \,-\,\frac{\sum\limits_{j=1}^{C} {\frac{A_{jk} b_{3}} {B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } -1}{\sum\limits_{j=1}^{C} {\frac{1}{B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} }} P\,-\,\frac{d_{jk}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} \,=\,0 \\ &&\qquad\Leftrightarrow \sum\limits_{j=1}^{C} {\frac{1}{B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } H_{jk} b_{3}\\ &+&\sum\limits_{j=1}^{C} {\frac{1}{B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } G_{jk} b_{2} \\ &-&\left({\sum\limits_{j=1}^{C} {\frac{A_{jk} b_{3}} {B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } -1} \right)P\\\\ &-&\sum\limits_{j=1}^{C} {\frac{1}{B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } \frac{d_{jk}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} =0 \\\\ &&\qquad\Leftrightarrow \left[ \sum\limits_{j=1}^{C} {\frac{H_{jk}} {B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}}}\right.\\\\ &&\left.-P\sum\limits_{j=1}^{C} {\frac{A_{jk}} {B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } \right]b_{3} \\\\ &+&\sum\limits_{j=1}^{C} {\frac{G_{jk}} {B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } b_{2} -P\\\\ &-&\sum\limits_{j=1}^{C} {\frac{1}{B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } F_{jk} =0 \\\\ &&\Leftrightarrow \!\sum\limits_{j=1}^{C} \!{\frac{\left({H_{jk} -PA_{jk}} \right)b_{3} +G_{jk} b_{2} -F_{jk}} {B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } \,-\,P\,=\,0 \end{array} $$
$$\begin{array}{@{}rcl@{}} &&\!\!\!\!\!\Leftrightarrow \sum\limits_{j=1}^{C} {\frac{M_{jk} b_{3} +G_{jk} b_{2} -F_{jk}} {B_{jk} b_{3} +G_{jk} b_{2} +F_{jk}} } -P=0,\\ &&{\kern11.5pt}{M_{jk}} = H_{jk} -PA_{jk} , \end{array} $$
(84)
$$\begin{array}{@{}rcl@{}} {\kern15pt}b_{3} =\frac{\left({G_{jk} -PG_{jk}} \right)b_{2} +F_{jk} -F_{jk} P}{PG_{jk} b_{2} -M_{jk} +F_{jk} P} \end{array} $$

Together with assumptions in (83), we get the value of b 3 belonging to [0,0.2]. Again with the changing role of b 2, b 3 as constants, we also get values of b 1 belonging to [0.1, 0.4] and b 2 belonging to [0.3, 0.7]. These remarks help us choosing appropriate values for the parameters of the algorithm.

Fourthly, we would like to investigate the difference between two consecutive iterations of the algorithm using Interactive Fuzzy Satisficing, let us denote:

$$\begin{array}{@{}rcl@{}} \varepsilon_{1} &=&\left| {b_{3}^{\left(r \right)} b_{1}^{\left({r+1} \right)} -b_{1}^{\left(r \right)} b_{3}^{\left({r+1} \right)}} \right|, \varepsilon_{2}\\\ &=&\left| {b_{3}^{\left(r \right)} b_{2}^{\left({r+1} \right)} -b_{2}^{\left(r \right)} b_{3}^{\left({r+1} \right)}} \right|, \varepsilon_{3} \\&=&\frac{8}{\left| {\eta_{k}^{\left(r \right)} \eta_{k}^{\left({r+1} \right)}} \right|} \end{array} $$
(85)

The following theorem helps us answer this question.

Theorem 4

When the parameters of r th iteration \(\left ({b_{1}^{\left (r \right )} ,b_{2}^{\left (r \right )} ,b_{3}^{\left (r \right )}} \right )\) and (r+1) th iteration \(\left ({b_{1}^{\left ({r+1} \right )} ,b_{2}^{\left ({r+1} \right )} ,b_{3}^{\left ({r+1} \right )}} \right )\) are determined as in Lemma 4, the difference between solutions of two consecutive iterations can be evaluated by

$$\begin{array}{@{}rcl@{}} &&\left| {u_{jk}^{\left({r+1} \right)} -u_{jk}^{\left(r \right)}} \right|\le \left[ \frac{\left({d_{jk}} \right)^{2}\bar{{u}}_{jk} \varepsilon_{1}} {\left({\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} \right)\left({\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \right)^{2}}\right.\\&&+\left.\frac{d_{jk} \bar{{u}}_{jk} \alpha_{jk} \varepsilon_{2}} {\left({\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \right)\left({\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \right)} \right]\times \varepsilon_{3} . \end{array} $$
(86)

Proof

Based on the (61), we have

$$\begin{array}{@{}rcl@{}} \left| {u_{jk}^{\left({r+1} \right)} -u_{jk}^{\left(r \right)}} \right|&\models&\left| \frac{\frac{b_{3}^{\left({r+1}\right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \times d_{jk} \times \bar{{u}}_{jk} -\frac{\eta_{k}^{\left({r+1}\right)}} {2}}{\left({\frac{b_{1}^{\left({r+1} \right)}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}^{\left({r+1} \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left({r+1} \right)}} {\bar{{\mathrm{z}}}_{2}-\underline{\mathrm{z}}_{2}} \times \alpha_{jk}}\right. \\\\&&-\left.\frac{\frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}}\times d_{jk} \times \bar{{u}}_{jk} -\frac{\eta_{k}^{\left(r \right)}} {2}}{\left({\frac{b_{1}^{\left(r \right)}}{\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk}+\frac{b_{2}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \times \alpha_{jk}} \right|\\\\ &=&\left| {\frac{A\times D-E\times B}{B\times D}} \right|\\&=&\frac{\left| {A\times D-E\times B} \right|}{\left| {B\times D} \right|} \end{array} $$

where

$$\begin{array}{@{}rcl@{}} &&\left| {A\times D-E\times B} \right|=\left| {\left[ {\frac{b_{3}^{\left({r+1} \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \times d_{jk} \times \bar{{u}}_{jk} -\frac{\eta_{k}^{\left({r+1} \right)}} {2}} \right]\times \left[ {\left({\frac{b_{1}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \times \alpha_{jk}} \right]} \right.\\ &&\qquad\qquad\qquad\qquad\qquad-\left. {\left[ {\frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \times d_{jk} \times \bar{{u}}_{jk} -\frac{\eta_{k}^{\left(r \right)}} {2}} \right]\times \left[ {\left({\frac{b_{1}^{\left({r+1} \right)}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}^{\left({r+1} \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left({r+1} \right)}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \times \alpha_{jk}} \right]} \right| \\ &&\quad\quad\quad\quad\quad\quad\quad\quad=\left| {\frac{\left({d_{jk}} \right)^{2}\times \bar{{u}}_{jk}} {\left({\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} \right)\left({\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \right)^{2}}\left[ {b_{3}^{\left({r+1} \right)} b_{1}^{\left(r \right)} -b_{1}^{\left({r+1} \right)} b_{3}^{\left(r \right)}} \right]+\frac{d_{jk} \times \bar{{u}}_{jk} \times \alpha_{jk}} {\left({\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \right)\left({\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \right)}\left[ {b_{2}^{\left({r+1} \right)} b_{3}^{\left(r \right)} -b_{3}^{\left({r+1} \right)} b_{2}^{\left(r \right)}} \right]} \right. \\ &&\quad\quad\quad+\left. {\frac{d_{jk}} {\left({\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} \right)\left({\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \right)}\left[ {\left({b_{1}^{\left({r+1} \right)} +b_{3}^{\left({r+1} \right)}} \right)\frac{\eta_{k}^{\left(r \right)}} {2}-\left({b_{1}^{\left(r \right)} +b_{3}^{\left(r \right)}} \right)\frac{\eta_{k}^{\left({r+1} \right)}} {2}} \right]+\frac{\alpha_{jk}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \left[ {b_{2}^{\left({r+1} \right)} \frac{\eta_{k}^{\left(r \right)}} {2}-b_{2}^{\left(r \right)} \frac{\eta_{k}^{\left({r+1} \right)}} {2}} \right]} \right| \end{array} $$

Apply the inequality in Proposition 1:

$$\frac{\eta_{k}^{\left(r \right)}} {2}\le \frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \times d_{jk} \times \bar{{u}}_{jk} ,j=\overline {1,C} ,k=\overline {1,N} , $$

and denotations in (85), we have:

$$\begin{array}{@{}rcl@{}} &&\left| {A\times D-E\times B} \right|\le 2\times \left[ {\frac{\left({d_{jk}} \right)^{2}\bar{{u}}_{jk} \varepsilon_{1}} {\left({\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} \right)\left({\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \right)^{2}}+\frac{d_{jk} \bar{{u}}_{jk} \alpha_{jk} \varepsilon_{2}} {\left({\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \right)\left({\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \right)}} \right] \end{array} $$
(87)
$$\begin{array}{@{}rcl@{}} &&\left| {B\times D} \right|=\left| {\left[ {\left({\frac{b_{1}^{\left({r+1} \right)}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}^{\left({r+1} \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left({r+1} \right)}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \times \alpha_{jk}} \right]\times \left[ {\left({\frac{b_{1}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \times \alpha_{jk}} \right]} \right| \end{array} $$
(88)

Again, apply the inequality in Proposition 1:

$$\begin{array}{@{}rcl@{}} &&\frac{\eta_{k}^{\left(r \right)}} {2}\ge \frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \times d_{jk} \times \bar{{u}}_{jk} -\left[ {\left({\frac{b_{1}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \times \alpha_{jk}} \right],j=\overline {1,C} ,k=\overline {1,N} \\ &&\qquad\quad\Leftrightarrow \left({\frac{b_{1}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \times \alpha_{jk} \ge \frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} \times d_{jk} \times \bar{{u}}_{jk} -\frac{\eta_{k}^{\left(r \right)}} {2}\ge \\ &&\qquad\quad\Leftrightarrow \left({\left({\frac{b_{1}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{1} -\underline{\mathrm{z}}_{1}} +\frac{b_{3}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{3} -\underline{\mathrm{z}}_{3}} } \right)d_{jk} +\frac{b_{2}^{\left(r \right)}} {\bar{{\mathrm{z}}}_{2} -\underline{\mathrm{z}}_{2}} \times \alpha_{jk}} \right)\ge -\frac{\eta_{k}^{\left(r \right)}} {2} \\ \end{array} $$

Use denotation ε 3 in (85), we get:

$$\begin{array}{@{}rcl@{}}\left| {B\times D} \right|\ge \left| {\frac{\eta_{k}^{\left(r \right)}} {2}\times \frac{\eta_{k}^{\left({r+1} \right)}} {2}} \right|=\frac{\left| {\eta_{k}^{\left({r+1} \right)} \eta_{k}^{\left(r \right)}} \right|}{4}=\frac{2}{\varepsilon_{2}} . \end{array} $$
(89)

Combine (87) and (89), we obtain the result in (86). □

Consequence 2

The termination of the method using Interactive Fuzzy Satisficing is:

$$ \left| {u_{jk}^{\left({r+1} \right)} -u_{jk}^{\left(r \right)}} \right|<\varepsilon . $$
(90)

In this situation, the relation between the number of iterations and the stopping condition is presented by following formula:

$$ P\left\{ {\left| {u_{jk}^{\left({r+1} \right)} -u_{jk}^{\left(r \right)}} \right|<\varepsilon} \right\}\ge 1-\left({1-\varepsilon} \right)^{r}. $$
(91)

3.5 Theoretical analyses of the new method

From the above presentation, we reach the advantages and differences of the new algorithm in comparison with the relevant methods.

  1. a)

    This research presents the first attempt to model the dental X-Ray image segmentation in the form of semi-supervised fuzzy clustering. By the introduction of a new spatial objective function in (25) of Section 3.1.5 that combines the dental features and neighborhood information of a pixel, results of the semi-supervised fuzzy clustering model including cluster centers and the membership matrix are oriented by dental structures of a dental X-ray image. This brings much meaning to practical dentistry for getting segmented images that are close to accurate results.

  2. b)

    Additional information, represented in a prior membership matrix in (36) of Section 3.2, that combines expert’s knowledge, spatial information of a dental X-Ray image, and the optimal results of FCM is proposed. Comparing with the semi-supervised fuzzy clustering – eSFCM in [40], the new algorithm provides deterministic ways to specify the additional information as well as integrate the spatial objective function into the model. The new components are significant to the dental X-Ray image segmentation, and promise to enhance the accuracy of results.

  3. c)

    This research firstly considers the solutions of the optimization problem under the Interactive Fuzzy Satisficing view. Unlike traditional methods using local Lagrange, the proposed algorithm differentiates isolated problems and solves them in a same context. The efficiency of the new method has been theoretically validated on Section 3.4 where the clustering quality of the algorithm using Interactive Fuzzy Satisficing is better than that using local Lagrange (See Theorem 1 and Property 3). Thus, this proves reasons of developing the algorithm based on Interactive Fuzzy Satisficing but not by other approaches.

  4. d)

    The new algorithm has been equipped with theoretical analyses. Many theorems and propositions have been presented, but some main paints can be demonstrated as below. These remarks help us better understanding of the new algorithm and are significant to implementation.

    • The clustering quality of the new method SSFC-FS is better than the algorithm using local Lagrange denoted as SSFC-SC as proven in Theorem 1 and Property 3.

    • The upper and lower bounds of IFV index of the optimal solution at an iteration step obtained by the Interactive Fuzzy Satisficing are shown in (75), (78) of Theorem 2 & 3. This shows us the interval that the quality value of the new algorithm can fall into.

    • Consequence 1 suggests appropriate values for the parameters of the algorithm, namely b 3 belonging to [0,0.2], b 1 belonging to [0.1, 0.4] and b 2 belonging to [0.3, 0.7].

    • The difference between two consecutive iterations of the SSFC-FS algorithm is expressed in (86) of Theorem 4. This helps us control the variation of results between iterations, which is a basis to predict the termination point.

    • A generalized termination of the SSFC-FS method is given in (91) of Consequence 2, which is likely to avoid redundant iterations and reduce the processing time of the algorithm.

4 Experimental Evaluation

The proposed algorithm called SSFC–FS has been implemented in addition to the relevant methods - FCM [3], Otsu [26], SSCMOO [2] and FMMBIS [5] as well as a semi-supervised fuzzy clustering - eSFCM [40] and a variant of the proposed method using local Lagrange – SSFC-SC in Matlab 2014 and executed on a PC VAIO laptop with Core i5 processor. The experimental results are taken as the average values after 20 runs. Experimental datasets are taken from Hanoi Medical University, Vietnam including 56 dental images in the period 2014 – 2015 (Fig. 2). The datasets were uploaded to Matlab Central for sharing [18].

Fig. 2
figure 2

Some images in the dataset

The aims of the experimental validation are: i) Evaluating accuracy of segmentation of the algorithms through 8 validity functions [37] whose descriptions are shown below; ii) Investigating the most appropriate values of parameters of the SSFC-FS algorithm; iii) Verifying the theoretical analyses summed up in Section 3.5 on real datasets.

The following shows the validity functions and their criteria:

  • Davies-Bouldin (DB): relates to the variance ratio criterion, which is based on the ratio between the distance inner group and outer group. Especially, quality of partition is determined by the following formula:

$$ DB=\frac{1}{k}\sum\limits_{l=1}^{k} {D_{l}} , $$
(92)
$$ D_{l} =\underset{l\ne m}{\max} O\{D_{l,m} U\}, $$
(93)
$$ D_{l,m} =\left({\bar{{d}}_{l} +\bar{{d}}_{m}} \right)/d_{m,l} , $$
(94)

Where \(\bar {{d}}_{l} ,\bar {{d}}_{m} \) are the average distances of clusters l and m, respectively. d l, m is the distance between these clusters.

$$ \bar{{d}}_{l} =\frac{1}{N_{l}} \sum\limits_{x_{i} \in C_{l}} ^{\left\| {x_{i} -\bar{{x}}_{l}} \right\|} ; \quad d_{l,m} =\left\| {\bar{{x}}_{l} -\bar{{x}}_{m}} \right\|. $$
(95)

The lower value of DB criterion is better.

  • Simplified Silhouete Width Criterion (SSWC):

$$ SSWC=\frac{1}{N}\sum\limits_{j=1}^{N} {s_{x_{j}}}, $$
(96)
$$ s_{x_{j}} =\frac{b_{p,j} -a_{p,j}} {\max \left\{ {a_{p,j} ,b_{p,j}} \right\}}. $$
(97)

Where a p, j is defined as the difference of object j to its cluster p. Similarly, d q, j is the difference of objects to cluster j to q, qp and b p, j . The minimum value of d q, j , j = 1, 2, …k and qp becomes different levels of objects to cluster j nearest neighbor. The idea is to replace the average distance by the distance to the expected point. Using SSWC, the greater value shows more efficient algorithm.

  • PBM : based on the distance of the clusters and the distance between the clusters and is calculated by the formula:

$$ PBM=\left({\frac{1}{k}\frac{E_{1}} {E_{K}} D_{K}} \right)^{2}, $$
(98)
$$\begin{array}{@{}rcl@{}} E_{1} =\sum\limits_{i=1}^{N} {\left\| {x_{i} -\bar{{x}}} \right\|} , \quad E_{k} =\sum\limits_{l=1}^{k} {\sum\limits_{x_{i} \in C_{l}} \left\| {x_{i} -\bar{{x}}_{l}} \right\|} , \end{array} $$
(99)
$$ D_{K} ={\max}_{l,m=1,...,k} \left\| {\bar{{x}}_{l} -\bar{{x}}_{m}} \right\| . $$
(100)

It is clear that in PBM criteria, higher value means higher algorithm performance. Hence the best partition indicates when PBM get the highest value, D K maximizes and E K reaches minimization.

  • IFV :

$$\begin{array}{@{}rcl@{}}IFV&=&\frac{1}{C}\sum\limits_{j=1}^{C} \left\{ {\frac{1}{N}\sum\limits_{k=1}^{N} {u_{kj}^{2}\left[{\log_{2} C-\frac{1}{N}\sum\limits_{k=1}^{N} {\log_{2} u_{kj}}} \right]^{2}}} \right\}\\ &\times& \frac{SD_{\max}}{\overline{\sigma_{D}}}, \end{array} $$
(101)
$$ SD_{\max} =\underset{k\ne j}{\max} \left\| {V_{k} -V_{j}} \right\|^{2}, $$
(102)
$$ \overline {\sigma_{D}} =\frac{1}{C}\sum\limits_{j=1}^{C} {\left({\frac{1}{N}\sum\limits_{k=1}^{N} {\left\| {X_{k} -V_{j}} \right\|^{2}}} \right)} . $$
(103)

The maximal value of IFV indicates the better performance.

  • Ball and Hall index (BH): to measure the sum of within-group distances. The larger value of BH criterion is better.

    $$ BH=\frac{1}{N}\sum\limits_{l=1}^{k} {\sum\limits_{x_{i} \in C_{l}}{\left\| {x_{i} -\bar{{x}}_{l}} \right\|}} . $$
    (104)
  • Calinski-Harabasz index (VCR): is used to evaluate the quality of a data partition by variance ratio of between and within group matrices. The larger value of VCR is better.

    $$ VCR=\frac{trace(B)}{trace(W)}\times \frac{N-k}{k-1}, $$
    (105)
    $$ UW=\sum\limits_{l=1}^{k} {U_{l} ,UW_{l} =\sum\limits_{x_{i} \in C_{l}} {\left({x_{i} -\bar{{x}}_{l}} \right)\left({x_{i} -\bar{{x}}_{l}} \right)}^{T}} , $$
    (106)
    $$\begin{array}{@{}rcl@{}} trace(W)&=&\sum\limits_{l=1}^{k} {trace(W_{l} )} ;\\ trace(W_{l} )&=&\sum\limits_{p=1}^{r} {\sum\limits_{x_{i} \in C_{l}} {\left({x_{ip} -\bar{{x}}_{lp}} \right)}} , \end{array} $$
    (107)
    $$\begin{array}{@{}rcl@{}} B=\sum\limits_{l=1}^{k} {N_{l} \left({\bar{{x}}_{l} -\bar{{x}}} \right)\left({\bar{{x}}_{l} -\bar{{x}}} \right)^{T}}, \end{array} $$
    (108)
    $$\begin{array}{@{}rcl@{}} trace(B)&=&trace(T)-trace(W),\\trace(T)&=&\sum\limits_{p=1}^{r} {\sum\limits_{i=1}^{N} {\left({x_{ip} -\bar{{x}}_{p}} \right)}}^{2}. \end{array} $$
    (109)
  • Banfeld-Raftery index (BR): is an index using variance-covariance matrix of each cluster. This index is calculated as below.

$$ BR=\sum\limits_{i=1}^{k} {n_{i}} \log \left({\frac{Tr\left({WG^{\left\{ k \right\}}} \right)}{n_{k}} }\right), $$
(110)
$$\begin{array}{@{}rcl@{}} WG^{\left\{ k \right\}}&=&\sum\limits_{p=1}^{r} {\sum\limits_{x_{i} \in C_{l}} \left({x_{ip} -\bar{{x}}_{l}} \right)\left({x_{ip} -\bar{{x}}_{l}} \right)} ,\\ Tr\left({WG^{\left\{ k \right\}}} \right)&=&\sum\limits_{x_{i} \in C_{k}} {\left\| {x_{i} -\bar{{x}}_{l}} \right\|}^{2}. \end{array} $$
(111)

Where n k is number of data points in k th cluster. We note that if n k = 1, this trace is equal to 0 and then the logarithm is undefined.

  • Difference-like index (TRA): is shown below where trace(W) is calculated in (51). The larger value of TRA is better.

$$ TRA=trace(W). $$
(112)

Firstly, in the following Table 5, the experimental results of the algorithms on 56 dental images with parameters C =3, m =2, weights b 1 = 0.3, b 2 = 0.6, b 3 = 0.1 are given. According to the results in Table 5, SSFC-FS obtains the best values in most of criteria (4 per 8 criteria) and in all datasets. Among 4 worse criteria to SSFC-FS, the IFV values of SSFC-FS are always higher than those of SSFC-SC. This clearly affirms that the clustering quality of SSFC-FS is better than that of SSFC-SC as proven in Theorem 1 and Property 3. Furthermore, it is clear that SSFC-FS is also better than SSCMOO and FMMBIS in most of criteria.

Table 5 The accuracies of methods

In order to understand the values of criteria by all datasets, we have synthesized mean and variance of each criterion from Table 5 and presented them in Table 6. From this table, we record the best result in a row as 1 and calculate the number of times that the best algorithm is better than another in the same row. The statistics are given in Table 7.

Table 6 Means and variances of the criteria for all algorithms on the real dataset
Table 7 Performance comparison of all algorithms on the real dataset

Now, we illustrate the segmentation results on a dataset in Fig. 3.

Fig. 3
figure 3

(a) Original image; (b) Results of Otsu; (c) Results of FCM; (d) Clustering by eSFCM; (e) Clustering by SSFC-SC; (f) Clustering by SSFC-FS; (g) SSCMOO; (h) FMMBIS

Secondly, we verify the values of parameters calculated in Consequence 1 by evaluating SSFC-FS in six different cases of parameter set (b 1, b 2, b 3) as follows.

  1. Case 1:

    (b 1 > b 2 > b 3): (b 1 = 0.6, b 2 = 0.3, b 3 = 0.1).

  2. Case 2:

    (b 1 > b 3 > b 2): (b 1 = 0.6, b 2 = 0.1, b 3 = 0.3).

  3. Case 3:

    (b 2 > b 1 > b 3): (b 1 = 0.3, b 2 = 0.6, b 3 = 0.1).

  4. Case 4:

    (b 2 > b 3 > b 1): (b 1 = 0.1, b 2 = 0.6, b 3 = 0.3).

  5. Case 5:

    (b 3 > b 1 > b 2): (b 1 = 0.3, b 2 = 0.1, b 3 = 0.6).

  6. Case 6:

    (b 3 > b 2 > b 1): (b 1 = 0.1, b 2 = 0.3, b 3 = 0.6).

In Table 8, we measure the results of SSFC-FS on 6 cases by the number of clusters. It is clear that except C =3, other results showed that Case 3 obtains more number of best results in term of validity indices. Again, similar to Table 67, we also calculate means of the criteria for SSFC-FS on six cases in a real dataset (Table 9) and the performance comparison (Table 10). The results pointed out the most appropriate values of parameters namely Case 3 (b 1 = 0.3, b 2 = 0.6, b 3 = 0.1). Those values are identical with the observation in Consequence 1.

Table 8 Results of SSFC-FS algorithm by the number of clusters
Table 9 Means of the criteria for SSFC-FS on six cases in a real dataset
Table 10 Performance comparison of the criteria for SSFC-FS on six cases

Thirdly, we validate the lower bounds of IFV index of the optimal solution stated in (75) of Theorem 2 on six cases in Tables 8-10. The results are shown below.

  1. Case 1:

    IFV = 88.78 >\(\frac {1}{C^{2}}\times \frac {SD_{\max } } {\overline {\sigma _{D}} } \times \left [ {\log _{2} C} \right ]^{2} \quad =\) 4.89.

  2. Case 2:

    IFV = 96.65 > \(\frac {1}{C^{2}}\times \frac {SD_{\max } } {\overline {\sigma _{D}} } \times \left [ {\log _{2} C} \right ]^{2} \quad =\) 5.43.

  3. Case 3:

    IFV = 110.62 >\(\frac {1}{C^{2}}\times \frac {SD_{\max } } {\overline {\sigma _{D}} } \times \left [ {\log _{2} C} \right ]^{2} \quad =\) 6.15.

  4. Case 4:

    IFV = 102.63 >\(\frac {1}{C^{2}}\times \frac {SD_{\max } } {\overline {\sigma _{D}} } \times \left [ {\log _{2} C} \right ]^{2} \quad =\) 5.72.

  5. Case 5:

    IFV = 123.53 >\(\frac {1}{C^{2}}\times \frac {SD_{\max } } {\overline {\sigma _{D}} } \times \left [ {\log _{2} C} \right ]^{2} \quad =\) 6.88.

  6. Case 6:

    IFV = 134.76>\(\frac {1}{C^{2}}\times \frac {SD_{\max } } {\overline {\sigma _{D}} } \times \left [ {\log _{2} C} \right ]^{2} \quad =\) 7.56.

It is obvious that the experimental results satisfy Theorem 2. The upper bound validation in Theorem 3 is checked analogously.

Lastly, we check the difference between two consecutive iterations of the SSFC-FS algorithm expressed in (86) of Theorem 4. The validation is made on six cases above and expressed in Table 11. We can clearly recognize that the theoretical values are nearly approximate to the experimental ones.

Table 11 Average values of IFV index in theory (IFV(LT)) and experiment (IFV(TN)) on six cases

5 Conclusions

In this paper, we concentrated on the dental X-ray image segmentation problem and proposed a new semi-supervised fuzzy clustering algorithm based on Interactive Fuzzy Satisficing named as SSFC-FS. The new contributions include: i) Modeling dental structures of a dental X-Ray image into a spatial objective function; ii) Designing a new semi-supervised fuzzy clustering model for the dental X-ray image segmentation; iii) Proposing a semi-supervised fuzzy clustering algorithm – SSFC-FS based on the Interactive Fuzzy Satisficing method; iv) Examining theoretical aspects of SSFC-FS comprising of the convergence rate, bounds of parameters, and the comparison with solutions of other relevant methods. SSFC-FS has been experimentally validated and compared with the relevant ones in terms of clustering quality on a real dataset including 56 dental X-ray images in the period 2014-2015 of Hanoi Medial University, Vietnam.

As discussed in Section 3.5 and later verified in the experiments, we summarize the main findings of this research as follows. Firstly, SSFC-FS has better clustering quality than the relevant methods – FCM, Otsu, SSCMOO [2] and FMMBIS [5] as well as the well-known semi-supervised fuzzy clustering - eSFCM and a variant of the proposed method using local Lagrange – SSFC-SC. Besides, the clustering quality of SSFC-FS is better than SSFC-SC theoretically proven in Theorem 1 and Property 3. Secondly, the most appropriate values for the parameters of the algorithm are: b 3 belongs to [0, 0.2], b 1 belongs to [0.1, 0.4] and b 2 belongs to [0.3, 0.7] (Consequence 1). Thirdly, the upper and lower bounds of IFV index of the optimal solution at an iteration step obtained by the Interactive Fuzzy Satisficing, which shows us the interval that the quality value of the new algorithm can fall into, were shown in equations (7578) of Theorem 2 & 3. Fourthly, the difference between two consecutive iterations of the SSFC-FS algorithm, which helps us control the variation of results between iterations, was expressed in equation (86) of Theorem 4. Lastly, a generalized termination of the SSFC-FS method, which is used to avoid redundant iterations and reduce the processing time of the algorithm, was given in (91) of Consequence 2. Those findings are significant to both theoretical and practical implication, especially to the dental X-ray image segmentation problem and semi-supervised fuzzy clustering approaches.

Further works of this research can be done in the following ways: (1) Speeding up the algorithm by approximation methods; (2) Finding the most appropriate additional values for semi-supervised fuzzy clustering; and (3) Investigating fast matching strategy in the medical diagnosis context.