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Abstract Dental X-ray image segmentation has an impor-
tant role in practical dentistry and is widely used in the
discovery of odontological diseases, tooth archeology and
in automated dental identification systems. Enhancing the
accuracy of dental segmentation is the main focus of
researchers, involving various machine learning methods to
be applied in order to gain the best performance. However,
most of the currently used methods are facing problems
of threshold, curve functions, choosing suitable parameters
and detecting common boundaries among clusters. In this
paper, we will present a new semi-supervised fuzzy clus-
tering algorithm named as SSFC-FS based on Interactive
Fuzzy Satisficing for the dental X-ray image segmenta-
tion problem. Firstly, features of a dental X-Ray image are
modeled into a spatial objective function, which are then
to be integrated into a new semi-supervised fuzzy clus-
tering model. Secondly, the Interactive Fuzzy Satisficing
method, which is considered as a useful tool to solve linear
and nonlinear multi-objective problems in mixed fuzzy-
stochastic environment, is applied to get the cluster centers
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and the membership matrix of the model. Thirdly, theoret-
ically validation of the solutions including the convergence
rate, bounds of parameters, and the comparison with solu-
tions of other relevant methods is performed. Lastly, a new
semi-supervised fuzzy clustering algorithm that uses an iter-
ative strategy from the formulae of solutions is designed.
This new algorithm was experimentally validated and com-
pared with the relevant ones in terms of clustering quality
on a real dataset including 56 dental X-ray images in the
period 2014–2015 of Hanoi Medial University, Vietnam.
The results revealed that the new algorithm has better clus-
tering quality than other methods such as Fuzzy C-Means,
Otsu, eSFCM, SSCMOO, FMMBIS and another version of
SSFC-FS with the local Lagrange method named SSFC-SC.
We also suggest the most appropriate values of parameters
for the new algorithm.

Keywords Clustering quality · Dental X-Ray image
segmentation · Fuzzy stochastic programming · Interactive
fuzzy satisficing · Semi-supervised fuzzy clustering

Abbreviation

Spatial constraints Refer to the conditions
regarding dental structure of
a dental X-ray image. Some
similar terms are: “spatial
features”, “dental feature”

FCM Fuzzy C-Means
SSFC-SC Semi-Supervised Fuzzy

Clustering algorithm
with Spatial Constraints

FS Fuzzy Satisficing method
LA Lagrange method
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SSFC-FS Semi-Supervised Fuzzy
Clustering algorithm with
Spatial Constraints using
Fuzzy Satisficing method

Membership matrix/degrees Refer to the level that a data
point belongs to a given
cluster

eSFCM Semi-supervised Entropy
regularized Fuzzy Clustering

LBP Local Binary Patterns
RGB Red-Green-Blue
DB Davies-Bouldin validity

index
SSWC Simplified Silhouete Width

Criterion validity index
PBM A validity index
IFV A spatial validity index
BH Ball and Hall index
VCR Calinski - Harabasz index
BR The Banfeld - Raftery index
TRA Difference-like index
SSCMOO Semi-Supervised Clustering

technique using Multi-
Objective Optimization

FMMBIS Fuzzy Mathematical
Morphology for Biological
Image Segmentation

1 Introduction

One of the most interesting topics in medical science, espe-
cially practical dentistry, is the segmentation problem from a
dental X-Ray image. This kind of segmentation was used to
assist the discovery of odontological diseases such as den-
tal caries, diseases of pulp and periapical tissues, gingivitis
and periodontal diseases, dentofacial anomalies, and dental
age prediction. It was also applied to tooth archeology and
automated dental identification systems [31] for examining
surgery corpses from complicated criminal cases. Because
of the special structure and composition, tooth cannot be
easily destroyed even in severe conditions such as bombing,
blasts, water falling, etc. Thus, it brings valuable informa-
tion to those analyses, and is of great interests to researchers
and practicians of how such the information can be discov-
ered from an image without much experience of experts
[27]. This demand relates to the so-called accuracy of den-
tal segmentation, which requires various machine learning
methods to be applied in order to gain the best performance
[8–13, 15]. Figure 1 shows the result of dental segmentation
where the blue cluster in the segmented image may corre-
spond to a dental disease that needs special treatments from

clinicians. The more accurate the segmentation the more
efficiently patients could receive medical treatment.

There are many different techniques used in dental X-
ray image segmentation, which can be divided into some
strategies [5, 20, 30]: i) applying image processing tech-
niques such as thresholding methods, the boundary-based
and the region-based methods; ii) applying clustering meth-
ods such as Fuzzy C-Means (FCM). The first strategy
either transforms a dental image to the binary represen-
tation through a threshold or uses a pre-defined complex
curve to approximate regions. A typical algorithm belong-
ing to this strategy is Otsu [26]. However, a drawback of
this group is how to define the threshold and the curve,
which are quite important to determine main part pixels
especially in noise images [38]. On the other hand, the sec-
ond strategy utilizes clustering, e.g. Fuzzy C-Means (FCM)
[3] to specify clusters without prior information of the
threshold and the curve. But again, it meets challenges
in choosing parameters and detecting common boundaries
among clusters [4, 21, 22, 33]. This raises the motiva-
tion of improving these methods, especially the cluster-
ing approach, in order to achieve better performance of
segmentation.

An observation in [2, 39] revealed that if additional infor-
mation is attached to clustering process then the clustering
quality is enhanced. This is called the semi-supervised fuzzy
clustering where additional information represented in one
of the three types: must-link and cannot link constraints,
class labels, and pre-defined membership matrix is used to
orient the clustering. For example, if we know that a region
represented by several pixels definitely corresponds to gin-
givitis then those pixels are marked by the class label. Other
pixels in the dental image are classified with the support of
known pixels; thus making the segmentation more accurate.
In fuzzy clustering, the pre-defined membership matrix is
often opted to be the additional information. For this kind
of information, the most efficient semi-supervised fuzzy
clustering algorithm is Semi-supervised Entropy regularized
Fuzzy Clustering algorithm (eSFCM) [40], which integrates
prior membership matrix ukj into objective function of the
semi-supervised clustering algorithm.

Our idea in this research is to design a new semi-
supervised fuzzy clustering model for the dental X-ray
image segmentation problem. This model takes into account
the prior membership matrix of eSFCM and provides a
new part regarding dental structures in the objective func-
tion. The new objective function consists of three parts:
the standard part of FCM, the spatial information part,
and the additional information represented by the prior
membership matrix. It, equipped with constraints, forms a
multi-objective optimization problem. In order to solve the
problem, we will utilized the ideas of Interactive Fuzzy
Satisficing method [19, 23, 32] which is considered a
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Fig. 1 a A dental image; b The
segmented image

useful tool to solve linear and nonlinear multi-objective
problems in mixed fuzzy-stochastic environment wherein
various kinds of uncertainties related to fuzziness and/or
randomness are presented [6]. The outputs of this pro-
cess are cluster centers and a membership matrix. A novel
semi-supervised fuzzy clustering algorithm, which is in
essence an iterative method to optimize the cluster cen-
ters and the membership matrix, is presented and evaluated
on the real dental X-ray image set with respect to the
clustering quality. The new clustering algorithm can be
regarded as a new and efficient tool for dental X-Ray image
segmentation.

From this perspective, our contributions in this paper are
summarized as follows.

a) Modeling dental structures or features of a dental X-
Ray image into a spatial objective function;

b) Design a new semi-supervised fuzzy clustering model
including the objective function and constraints for the
dental X-ray image segmentation;

c) Solve the model by Interactive Fuzzy Satisficing
method to get the cluster centers and the membership
matrix;

d) Theoretically examine the convergence rate, bounds of
parameters, and the comparison with solutions of other
relevant methods;

e) Propose a new semi-supervised fuzzy clustering algo-
rithm that segments a dental X-Ray image by the
formulae of cluster centers and membership matrix
above;

f) Evaluate and compare the new algorithm with the rele-
vant ones in terms of clustering quality on a real dataset
including 56 dental X-ray images in the period 2014–
2015 of Hanoi Medial University, Vietnam. Suggest
the most appropriate values of parameters for the new
algorithm.

The rests of this paper are organized as follow: Section 2
gives the background knowledge regarding literature review
and the Interactive Fuzzy Satisficing method. Section 3
presents the main contributions of the paper. Section 4

shows the validation of the new algorithm by experimen-
tal simulation. Finally, Section 5 gives conclusions and
highlight further works.

2 Preliminary

In this section, we firstly present details of two typical rel-
evant methods namely Otsu and Fuzzy C-Means (FCM) as
well as the most efficient semi-supervised fuzzy cluster-
ing algorithm – eSFCM in Section 2.1. A summary of the
Interactive Fuzzy Satisficing method is given in Section 2.2.

2.1 Literature review

In the previous section, we have mentioned two approaches
for the dental X-Ray image segmentation. Regarding the
first one, the most typical method namely Otsu [26] recur-
sively divides an image into two separate regions according
to a threshold value. Descriptions of Otsu are shown in
Table 1. Similarly, Table 2 shows the descriptions of FCM

Table 1 The Otsu method

Input A dental X-ray image and MaxStep

Output A binary image

Otsu:

1 Choose an estimation for the threshold initialization

T (0), t = 1

2 Repeat

3 t = t + 1

4 A partition image into 2 groups for R1, R2 (On the

threshold T (0))

5 Calculate the average gray scale value μ
(t)
1 , μ

(t)
2

of 2 groups R1, R2

6 Select the new threshold formula T (t) = 1
2 (μ

(t)
1 + μ

(t)
2 )

7 Until μ
(t)
1 = μ

(t−1)
1 , μ

(t)
2 = μ

(t−1)
2 or t = MaxStep
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Table 2 Fuzzy C-Means (FCM)

Input Dataset X includes N elements in r-dimension space; Number

of clusters C; fuzzier m; threshold; the largest number of

iterations MaxStep

Output Membership matrix U and centers of clusters V

FCM:

1 t = 0

2 u
(t)
kj ← random;

(
k = 1, N; j = 1, C

)
satisfy the conditions:

ukj ∈ [0, 1];
C∑

j=1
ukj = 1

3 Repeat

4 t = t + 1

5 Compute V
(t)
j ; (j = 1, C

)
:

Vj =
C∑

k=1
um

kj Xk

C∑

k=1
um

kj

6 Compute ukj (k = 1, N; j = 1, C):

ukj = 1
C∑

i=1

(‖Xk−Vj‖
‖Xk−Vi‖

) 1
m−1

7 Until
∥∥U(t) − U(t−1)

∥∥ ≤ ε or t > MaxStep

[3] which in essence is an iterative algorithm to calcu-
late cluster centers and a membership matrix until stopping
conditions are met.

However, those algorithms have drawbacks regarding
the selection of the threshold value, choosing parameters
and detecting common boundaries among clusters [12, 13,
15–17, 20, 22, 24, 25, 29, 34–36, 38, 41, 42]. Thus, semi-
supervised fuzzy clustering especially the eSFCM algorithm
[40] can be regarded as an alternative method to handle
these limitations. Table 3 shows the steps of this algorithm.
However, this algorithm does not contain any informa-
tion about spatial structures of an X-ray image and thus
must be improved if applying to the dental X-Ray image
segmentation problem.

2.2 The interactive fuzzy satisficing method

The Interactive Fuzzy Satisficing method was applied to
many programming problems such as: linear programming
[19], stochastic linear programming [28] and mixed fuzzy-
stochastic programming [19]. In those problems, multi-
objective objective functions are considered. The basic idea
of Interactive Fuzzy Satisficing method is: Firstly, separate
each part of the multi-objective function and solve these iso-
lated prolems via a suitable method. After that, based on the
solutions of the subproblems, build fuzzy satisficing func-
tions for each subproblem. Lastly, fomulate these isolated
functions into a combination fuzzy satisficing function and
solve the original problem by using an iterative scheme.

Table 3 Semi-supervised entropy regularized fuzzy clustering
algorithm

Input Datasets X includes N elements; the number of clusters C;

additional membership matrix U satisfying:
C∑

j=1
ūkj ≤ 1;

Thresholdε; the maximum number of iterations maxStep > 0

Output Matrix U and cluster centers V

eSFCM:

1: Calculate matrix P by given matrix U and the initial cluster

centers v̄j

OP = 1
N

C∑

j=1

N∑

k=1
u2

kj

(
xk − v̄j

) (
xk − v̄j

)T

2: t = 1

3: Repeat

4: t = t + 1

5: Compute ukj (k = 1, N ;j = 1, C)

ukj = ukj + e
−λ‖Xk−Vj‖2

A

C∑

i=1
e
−λ‖Xk−Vi‖2

A

(
1 −

C∑

i=1
uki

)

6: Compute V
(t+1)
j

Vj =
∑N

k=1 ukj Xk∑N
k=1 ukj

; j = 1, C

7: Until
∥∥U(t) − U(t−1)

∥∥ ≤ ε or t > maxStep

In the case of linear programming problems, consider a
multi-objective function formed as follows.

min
p∑

i=1

zi(x), (1)

With x ∈ Rn satisfying

Ax ≤ b,A ∈ Rm×n, b ∈ Rm. (2)

To understand the interactive fuzzy satisficing schema, we
have some definitions.

Definition 1 ([19]: (Fuzzy satisficing function))
In a feasible region X, for each objective function zi, i =

1, ...p, the fuzzy satisficing function is defined as:

μi(zi) = zi − z
i

z̄i − z
i

, i = 1, ..., p, (3)

Where z
i
, z̄i , i = 1, ...p are maximum and minimum values

of zi in X.

Definition 2 ([19]: (Pareto optimal solution))
In a feasible region X, a point x*∈X is said to be a M-

Pareto optimal solution if and only if there does not exist
another solution x ∈X such that μi(x) ≤ μi(x∗) for all i =
1, ..., p and μj (x) �= μj (x∗) for at least one j ∈ {1, ..., p}.

The interactive fuzzy satisficing method consists of two
parts: initialization and iteration as below:
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Initialization

– Solve subproblems below:

min zi(x), i = 1, ..., p, (4)

satisfying constraints in (2). Suppose that we get
optimal solutions x1, ..., xp corresponding.

– Compute values of objective functions zi, i = 1, ...p

at p solutions and create a pay-off table. After that,
determine lower and upper bounds of zi . Denote that:

z̄i = max
{
zi

(
xj
)

, j = 1, ..., p
}

; z
i

= min
{
zi

(
xj
)

, j = 1, ..., p
}

, i = 1, ..., p. (5)

– Define fuzzy satisficing functions for each objective
zi, i = 1, ...p by fomula:

μi(zi) = zi − z
i

z̄i − z
i

, i = 1, ..., p. (6)

– Set Sp = {x1, ..., xp
}
, r = 1, a

(r)
i = z

i
.

Iteration:

Step 1:

– Build a combination fuzzy satisficing function:

u = b1μ1(z1) + b2μ2(z2) + ... + bpμp(zp). (7)

Randomly selected b1, ..., bp satisfying:

b1 + b2 + b3 = 1, 0 ≤ b1, b2, b3 ≤ 1. (8)

– Solve the problem (7)–(8) with m constraints in
(2) and p constraints in (9), we get optimal solu-
tions x(r).

zi(x) ≥ z
i
, i = 1, ..., p. (9)

Step 2 :

– If μmin = min {μi(zi), i = 1, ..., p} > θ , with θ

as a threshold then x(r) is not acceptable. Other-
wise, if x(r) /∈ Sp then put x(r)on Sp.

– In the case of needing to expand Sp then set r =
r + 1 and check these conditions:

If r > L1 or after L2 consecutive iterations that
Sp is not expanded (L1, L2 has optional values)

then set a
(r)
i = z

i
, i = 1, ..., p and get a random

index h in {1, 2,..., p} to put a
(r)
h ∈ [z

h
, z̄h

)
. Then

return to Step 1.
– In the case of not needing to expand Sp then go to

Step 3.

Step 3: End of process.

3 The proposed method

In this section, we present the main contributions of this
paper including: i) Modeling dental structures of a dental X-
Ray image into a spatial objective function; ii) Designing a
new semi-supervised fuzzy clustering model for the dental
X-ray image segmentation; iii) Proposing a semi-supervised
fuzzy clustering algorithm based on the interactive fuzzy
satisficing method; iv) Examining the convergence rate,
bounds of parameters, and the comparison with solutions
of other relevant methods; v) Elaborating advantages of
the new method. Those parts are presented in sub-sections
accordingly.

3.1 Modeling dental structures

Dental images are valuable for the analysis of broken lines
and tumors. There are four main regions in a panoramic
image such as teeth and alveolar blood area, upper jaw,
lower jaw and Temporomandibular Joint syndrome (TMJ)
that should be detected for further diagnoses. In what
follows, we present 4 existing image features and equiva-
lent extraction functions that are applied to dental X-Ray
images. Lastly, the formulation of a spatial objective func-
tion for these features is given.

3.1.1 Entropy, edge-value and intensity feature

a) Entropy: is used to measure the randomness level of
achieved information within a certain extent and can be
calculated by the formula below [14].

r (x, y) = −
L∑

i=1

p (zi) log2 p (zi), (10)

In which we have a random variable z, probability of
ith pixel p(zi), for all i = 1,2, ..., L and the number of
pixels L).

R (x, y) = r (x, y)

max {r (x, y)} . (11)

b) Edge-value and intensity: these features measure the
numbers of changes of pixel values in a region [14].

e (x, y) =
	w/2
∑

p=−	w/2


	w/2
∑

q=−	w/2

b (x, y), (12)

b (x, y) =
{

1, ∇f (x, y) ≥ T1

0, ∇f (x, y) < T1
, (13)

∇f (x, y) =
√(

∂g (x, y)

∂x

)2

+
(

∂g (x, y)

∂y

)2

, (14)
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Where ∇f (x, y) is the length of gradient vector
f (x, y), b (x, y) is a binary image and e (x, y) is inten-
sity of the X-ray image respectively. T1 is a threshold.
These features are normalized as:

E (x, y) = e (x, y)

max {e (x, y)} , (15)

G (x, y) = g (x, y)

max {g (x, y)} . (16)

3.1.2 Local binary patterns - LBP

This feature is invariant to any light intensity transformation
and ensures the order of pixel density in a given area. LBP
[1] is determined under following steps:

1. Select a 3 × 3 window template from a given central
pixel.

2. Compare its value with those of pixels in the window.
If greater then mark as 1; otherwise mark as 0.

3. Put all binary values from the top-left pixel to the end
pixel by clock-wise direction into a 8-bit string. Convert
it to decimal system.

LBP (xc, yc) =
7∑

n=0

s (gn − gc) 2n, (17)

s(x) =
{

1 x ≥ 0
0 otherwise

. (18)

Where gc is value of the central pixel (xc, yc) and gn

is value of nth pixel in the window.

3.1.3 Red-green-blue - RGB

This characterize for the color of an X-ray image according
to Red-Green-Blue values. For a 24 bit image, the RGB fea-
ture [43] is computed as follows (N is the number of pixels).

hR,G,B [r, g, b] = N ∗ Pr ob {R = r, G = g, B = b} , (19)

There is another way to calculate the RGB feature that
is isolating three matrices hR[], hG[] and hB [] with val-
ues being specified from the equivalent color band in the
image.

3.1.4 Gradient feature

This feature is used to differentiate various teeth’s parts
such as enamel, cementum, gum, root canal, etc [7]. The
following steps calculate the Gradient value: Firstly, apply
Gaussian filter to the X-ray image to reduce the background
noises. Secondly, Difference of Gaussian (DoG) filter is
applied to calculate gradient of the image according to x
and y axes. Each pixel is characterized by a gradient vector.
Lastly, get the normalization form of the gradient vector and
receive a 2D vector for each pixel as follows.

θ (z) = [sin α, cos α] , (20)

where α is direction of the gradient vector. For instance,
length and direction of a pixel are calculated as
follows.

m (x, y) =
√

(L (x + 1, y) − L (x − 1, y))2 + (L (x, y + 1) − L (x, y − 1))2 (21)

θ (x, y) = tan−1 ((L (x + 1, y + 1) − L (x − 1, y − 1))
/
(L (x + 1, y) − L (x − 1, y))

)
(22)

L (x, y, kσ ) = G (x, y, kσ ) ∗ I (x, y) (23)

G (x, y, kσ ) = 1√
2πσ 2

e−(x2+y2)/
(
2σ 2)

(24)

Where I(x,y) is a pixel vector, G(x,y,k) is a Gaussian func-
tion of the pixel vector, * is the convolution operation
between x and y, θ1 is a threshold.

3.1.5 Formulation of dental structure

The spatial objective function is formulated as in equations
below.

J2 = J2a + J2b. (25)

Where

J2a =
N∑

k=1

C∑

j=1

um
jkR

2
jk, (26)

J2b =
N∑

k=1

C∑

j=1

um
jk

(
1

l

l∑

i=1

wik

)

. (27)
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The aim of J2a is to minimize the fuzzy distances of pix-
els in a cluster so that those pixels will have high similarity.
Fuzzy distance Rik is defined as,

Rik = ‖xk − vi‖2
(

1 − α̃e−SIik

)
, (28)

Where α̃ ∈ [0, 1] is the controlling parameter. When α̃ = 0,
the function (28) returns to the traditional Euclidean dis-
tance. xk is kth pixel, and vi is ith cluster center. The spatial
information function SIik is shown in (29).

SIki =

N1∑

j=1
d−1
jk uji

N1∑

j=1
d−1
jk

, (29)

Where uji is the membership degree of data point Xi to
cluster jth. The distance djk is the square Euclidean function
between (xk, yk) and (xj , yj ). The meaning of this function
is to specify spatial information relationship of kth pixel to
ith cluster since this value will be high if its color is similar
to those of neighborhood and vice versa. The inverse func-
tion d−1

jk is used to measure the similarity between two data
points.

The aim of J2b is to minimize the features stated in
Sections 3.1.1– 3.1.4 for better separation of spatial clusters.
l is the number of features and belongs to [1, 4]. In the case
that we use all features, l = 4. wi is the normalized value of
features,

wi = pwi

max {pwi} , (30)

Where pwi (i = 1, .., 4) is the value of dental features
stated in Sections 3.1.1 – 3.1.4.

It is obvious that the new spatial objective function in
(25) combines the dental features and neighborhood infor-
mation of a pixel.

3.2 A new semi-supervised fuzzy clustering model

In this section, we present a new semi-supervised fuzzy
clustering model for dental X-Ray image segmentation
problem. The model is given in equations below.

J =
N∑

k=1

C∑

j=1

um
jk

∥∥Xk − Vj

∥∥2 +

+
N∑

k=1

C∑

j=1

um
jkR

2
jk +

N∑

k=1

C∑

j=1

um
jk

(
1

l

l∑

i=1

wik

)

+

+
N∑

k=1

C∑

j=1

∣∣ujk − ujk

∣∣m ∥∥Xk − Vj

∥∥2 → min (31)

With the constraint:

C∑

j=1

ujk = 1; ∀k = 1, N with ujk ∈ [0, 1] ; (32)

∀k = 1, N, ∀j = 1, C

It is obvious that in (31), the first part is the objective func-
tion of FCM [3]. It contains standard information of object
function in fuzzy clustering.

J1 =
N∑

k=1

C∑

j=1

u2
jk

∥∥Xk − Vj

∥∥2. (33)

The second and third parts are contained in the spatial
objective function in (25). The last part relates to the
semi-supervised fuzzy clustering model wherein additional
information represented in prior membership matrix ujk is
taken into the objective function.

J3 =
N∑

k=1

C∑

j=1

∣∣ujk − ujk

∣∣m ∥∥Xk − Vj

∥∥2. (34)

According to [40], ujk satisfies the following constraint:

C∑

j=1

ujk ≤ 1; ∀k = 1, N with ujk ∈ [0, 1] ;

∀k = 1, N, ∀j = 1, C. (35)

In the paper [40], the authors did not show any method to
determine this kind of additional information. Thus, in order
for better implementation, we propose a method to spec-
ify the prior membership matrix for dental X-Ray image
segmentation as follows.

ujk =
{

αu1, when u1 ≥ u2

αu2, when u1 < u2
, (36)

Where α ∈ [0, 1] is the expert’s knowledge with α = 0
implying that the additional value ukj is not necessary for
the entire clustering process. u1 is the final membership
matrix taken from FCM on the same image. u2 is calculated
as follows.

u2 =

l∑

i=1
wi

max

{
l∑

i=1
wi

} . (37)

wi is the normalized value of features given in (30).
It is clear that the problem in (31)–(32) is a multi-

objective optimization problem. Therefore, it is better if
we apply the Interactive Fuzzy Satisficing method for this
problem.
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3.3 The SSFC-FS algorithm

In this section, we propose a novel clustering algorithm
namely Semi-Supervised Fuzzy Clustering algorithm with
Spatial Constraints using Fuzzy Satisficing (SSFC-FS) to
find optimal solutions including cluster centers and the
membership matrix for the problem stated in (31)–(32).
The new algorithm which is based on the Interactive Fuzzy
Satisficing method is presented as follows.

Analysis the problem In the previous section, we have
defined the multi-objective function below.

J = J1 + J2 + J3 → min . (38)

Three single objectives are:

J1 =
N∑

k=1

C∑

j=1

um
jk

∥∥Xk − Vj

∥∥2, (39)

J2 =
N∑

k=1

C∑

j=1

um
jkR

2
jk +

N∑

k=1

C∑

i=1

um
jk

(
1

l

l∑

i=1

wik

)

=
N∑

k=1

C∑

i=1

(

R2
jk + 1

l

l∑

i=1

wki

)

um
jk, (40)

J3 =
N∑

k=1

C∑

j=1

∣∣ujk − ujk

∣∣m ∥∥Xk − Vj

∥∥2. (41)

Applying the Weierstrass theorem for this problem, the
existence of optimal solutions is described as in Lemma 1.

Lemma 1 The multi-objective optimization problem in
(39)–(41) with the constraint in (32) has objective func-
tions being continuous on a compact and not empty domain.
Thus this problem has global optimal solutions that are
continuous and bounded.
Based on Lemma 1 and the Interactive Fuzzy Satisficing
method, we build a schema to find out the optimal solution
of this problem as follow.

Finding optimal solutions:

Initialization: Solve the following subproblems by
Lagrange method:

- Problem 1: Min{J1(u)}, u ∈ RC×N satisfies (32)}.
From this problem, we get the formulas of cluster centers

and membership degree:

Vj =

N∑

k=1
um

jkXk

N∑

k=1
um

jk

, (42)

u1
jk =
( −λk

m ∗ djk

) 1
m−1

,

λk = 1
(

C∑

j=1

(
1

m∗djk

) 1
m−1

)m−1
, (43)

Where dkj = ∥∥Xk − Vj

∥∥2, k = 1,. . . , N; j = 1,. . . , C.
Rewrite objective function J1 as:

J1 =
N∑

k=1

C∑

j=1

um
jkdjk. (44)

- Problem 2: Min {J2(u)}, u ∈ RC×N satisfies (32)}.
Let αjk = R2

jk + 1
l

l∑

i=1
wki , k = 1,. . . , N; j = 1,. . . , C, we

have:

J2 =
N∑

k=1

C∑

j=1

um
jkαjk. (45)

The optimal solutions are shown as follows.

u2
jk =
( −βk

m ∗ αjk

) 1
m−1

, βk = 1
(

C∑

j=1

(
1

m∗αjk

) 1
m−1

)m−1
.

(46)

- Problem 3: Min {J 3(u)}, u ∈ RC×N satisfies (32)}.
It is easy to find out cluster centers.

Vj =

N∑

k=1

∣∣ujk − ūjk

∣∣m Xk

N∑

k=1

∣∣ujk − ūjk

∣∣m
. (47)

Objective function J3 can be rewritten as,

J3 =
N∑

k=1

C∑

j=1

∣∣ujk − ujk

∣∣mdjk. (48)
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The optimal solution of this problem is u3
jk which is

computed by:

u3
jk =
( −γk

m ∗ djk

) 1
m−1 +ūjk, γk =

⎛

⎜⎜⎜⎜
⎝

1 − ūjk

C∑

j=1

1

(m∗djk)
1

m−1

⎞

⎟⎟⎟⎟
⎠

m−1

.

(49)

From obtained optimal solutions of isolated problems,
values of objective functions at these solutions are given
in pay-off table (Table 4).

Denote that:

z1 = min {zt1, t =1, 2, 3} , z1 =max {zt1, t =1, 2, 3} , (50)

z2 = min {zt2, t =1, 2, 3} , z2 =max {zt2, t =1, 2, 3} , (51)

z3 = min {zt3, t =1, 2, 3} , z3 =max {zt3, t =1, 2, 3} , (52)

Sp =
{
u1, u2, u3

}
, r =1, a

(r)
i = z

i
(53)

Iterative steps:

Step 1: Fuzzy satisficing functions for each of subprob-
lems are defined by,

μ1(J1) = J1 − z1

z1 − z1
; μ2(J2) = J2 − z2

z2 − z2
; μ3(J3) = J3 − z3

z3 − z3
.

(54)

Based on these functions, we have the combination satis-
ficing function:

Y = b1μ1(J1) + b2μ2(J2) + b3μ3(J3) → min, (55)

Where,

b1 + b2 + b3 = 1 and 0 ≤ b1, b2, b3 ≤ 1. (56)

Then we solve the optimal problem with the objective
function as in (55) and the constraints including original
constraints (32) and additional constraints below.

Ji(x) ≥ a
(r)
i , i = 1, 2, 3.. (57)

Table 4 Pay-off table of interative fuzzy satisficing

Objective

functions

Solutions

J1 J2 J6

u
(1)
jk z11 z12 z13

u
(2)
jk z21 z22 z23

u
(3)
jk z31 z32 z33

The objective function of this problem can be clearly
written as,

Y = b1

z1 − z1
J1 + b2

z2 − z2
J2 + b3

z3 − z3
J3

−
(

b1z1

z1 − z1
+ b2z2

z2 − z2
+ b3z3

z3 − z3

)
. (58)

Taking the derivative of (58), we obtain

∂Y

∂ujk

= b1

z1 − z1

∂J1

∂ujk

+ b2

z2 − z2

∂J2

∂ujk

+ b3

z3 − z3

∂J3

∂ujk

+ηk, j = 1, C, k = 1, N. (59)

For each of sets (b1, b2, b3) satisfying (56), we have an

optimal solution u(r) =
(
u

(r)
jk

)

C×N
of this problem.

Step 2:

– If μmin = min {μi(Ji), i = 1, ..., 3} > θ , with θ

is an optional threshold then u(r) is not acceptable.
Otherwise, if u(r) /∈ Sp then u(r)is put on Sp.

– In the case of needing to expand Sp, set r = r + 1
and check the conditions:

If r >L1 or after L2 consecutive iterations that Sp

is not expanded (L1, L2 has optional values) then set
a

(r)
i = z

i
, i = 1, 2, 3 and get a random index h in {1,

2, 3} to put a
(r)
h ∈ [z

h
, z̄h

)
. Then return to step 1.

– In the case of not needing to expand Sp then go to
step 3.

Step 3:

– Rejecting dominant solutions from Sp .
– End of process.

Lemma 2 With the given parameter set (b1, b2, b3), the
solution u(r) to minimize objective function Y in (58) are:

∂Y

∂ujk

= b1

z1 − z1

∂J1

∂ujk

+ b2

z2 − z2

∂J2

∂ujk

+ b3

z3 − z3

∂J3

∂ujk

+ηk = 0, j = 1, C, k = 1, N, (60)
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⇔ u
(r)
jk =

b
(r)
3

z̄3−z3
× djk × ūjk − η

(r)
k

2
(

b
(r)
1

z̄1−z1
+ b

(r)
3

z̄3−z3

)
djk + b

(r)
2

z̄2−z2
× αjk

,

j = 1, C, k = 1, N

η
(r)
k = 2 ×

C∑

j=1

b
(r)
3

z̄3−z3
×djk×ūjk

(
b
(r)
1

z̄1−z1
+ b

(r)
3

z̄3−z3

)

djk+ b
(r)
2

z̄2−z2
×αjk

− 1

C∑

j=1

1(
b
(r)
1

z̄1−z1
+ b

(r)
3

z̄3−z3

)

djk+ b
(r)
2

z̄2−z2
×αjk

,

k = 1, N,

(61)

V
(r)
j =

N∑

k=1

(
b
(r)
1

z̄1−z1
×
(
u

(r)
jk

)2+ b
(r)
3

z̄3−z3

(
u

(r)
jk −ujk

)2)
Xk

N∑

k=1

(
b
(r)
1

z̄1−z1
×
(
u

(r)
jk

)2+ b
(r)
3

z̄3−z3

(
u

(r)
jk −ujk

)2)
.

(62)

3.4 Theoretical analyses of the SSFC-FS algorithm

In Section 3.3, we used the Interactive Fuzzy Satisficing
method to get the optimal solutions u(r). This section pro-
vides the theoretical analyses of the solutions including the
convergence rate, bounds of parameters, and the comparison
with solutions of other relevant methods.

Firstly, from the formula of cluster centers V
(r)
j in (62),

it is obvious that the following properties and propositions
hold.

Property 1 When b2 = 1, b1 = b3 = 0, the cluster centers
are not defined.

Property 2 Solution u(r) is continuous and bounded by
(b1, b2, b3).

Proposition 1 For all values of (b1, b2, b3), from formulas
of u(r) in (61) we have:

b
(r)
3

z̄3 − z3
× djk × ūjk −

[(
b

(r)
1

z̄1 − z1
+ b

(r)
3

z̄3 − z3

)

djk

+ b
(r)
2

z̄2 − z2
× αjk

]

≤ η
(r)
k

2
≤ b

(r)
3

z̄3 − z3
× djk × ūjk,

j = 1, C, k = 1, N. (63)

Proof This characteristic can easily be achieved based on
constraints of ujk:

0 ≤ ujk ≤ 1, j = 1, C, k = 1, N

Secondly, we compare the solutions with those achieved
by local Lagrange method. Consider the optimization prob-
lem in (31)–(32), one can regard the function as a single
objective and uses the Lagrange method to get the optimal
solutions. To differentiate with our approach in this paper,
we name this method the local Lagrange. It is easy to derive
the following proposition.

Proposition 2 The optimal solutions of the problem (31)–
(32) are,

Vj =

N∑

k=1

(
um

jk + ∣∣ujk − ujk

∣∣
)

xk

N∑

k=1

(
um

jk + ∣∣ujk − ujk

∣∣
) , (64)

ujk = −λk + 2ujk

∥∥Xk − Vj

∥∥2

2 ∗
(

2
∥∥Xk − Vj

∥∥2 + R2
jk + 1

l

l∑

i=1
wik

) , (65)

λK =

⎛

⎜⎜⎜
⎝

C∑

j=1

ujk

∥
∥Xk − Vj

∥
∥2

(
2
∥∥Xk − Vj

∥∥2 + R2
jk + 1

l

l∑

i=1
wik

) − 1

⎞

⎟⎟⎟
⎠

/

⎛

⎜⎜⎜
⎝

C∑

j=1

1

2

(
2
∥
∥Xk − Vj

∥
∥2 + R2

jk + 1
l

l∑

i=1
wik

)

⎞

⎟⎟⎟
⎠

. (66)

Now, we measure the quanlities of optimal solutions
using the local Lagrange and Interactive Fuzzy Satisficing
methods in terms of clustering quality represented by the
IFV criterion. The maximal value of IFV indicates the better
quality.

IFV = 1

C

C∑

j=1

⎧
⎨

⎩
1

N

N∑

k=1

ujk
2

[

log2 C − 1

N

N∑

k=1

log2 ujk

]2
⎫
⎬

⎭

×SDmax

σD

, (67)

SDmax = max
k �=j

∥∥Vk − Vj

∥∥2 , (68)

σD = 1

C

C∑

j=1

(
1

N

N∑

k=1

djk

)

(69)
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Let IFV(LA) be the value of IFV index at the optimal
solutions obtained by using Lagrange method and IFV(FS)

stands for this value at the one by using fuzzy satisfacing
method. It follows that,

IFV(LA) = 1

C

C∑

j=1

⎧
⎨

⎩
1

N

N∑

k=1

(
djkūjk − λk

2

2djk + αjk

)2

[

log2 C − 1

N

N∑

k=1

log2
djkūjk − λk

2

2djk + αjk

]2
⎫
⎬

⎭

×SDmax

σD

, (70)

IFV(FS) = 1

C

C∑

j=1

{
1

N

N∑

k=1

(
w3djkūjk − ηk

2

(w1 + w3) djk + w2αjk

)2

[

log2 C − 1

N

N∑

k=1

log2
w3djkūjk − ηk

2

(w1 + w3) djk + w2αjk

]2
⎫
⎬

⎭

×SDmax

σD

.

(71)

To evaluate the difference of IFV values in these methods,
we need an assumption presented in Lemma 3 below.

Lemma 3 In the local Lagrange method, the parameter λk

is computed by formula (66). Thus, in order to compare the
local Lagrange with Interactive Fuzzy Satisficing, we can
choose parameters (b1, b2, b3) in which the below condition
is satisfied (j = 1, C, k = 1, N):

(
djkūjk − λk

2

2djk + αjk

)

×
(

log2 C− 1

N

N∑

k=1

log2
djkūjk − λk

2

2djk + αjk

)

≤
⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

×
⎛

⎝log2 C− 1

N

N∑

k=1

log2

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠, (72)

αjk = R2
jk + 1

l

l∑

i=1

wik. (73)

Theorem 1 Given the set of parameters (b1, b2, b3) satis-
fied the condition as in Lemma 3, we have:

IFV(LA) - IFV(FS) = 1

C
× 1

N
× SDmax

σD

C∑

j=1

N∑

k=1

⎧
⎨

⎩

(
djkūjk − λk

2

2djk + αjk

)2 [

log2 C − 1

N

N∑

k=1

log2
djkūjk − λk

2

2djk + αjk

]2

−
(

w3djkūjk − ηk

2

(w1 + w3) djk + w2αjk

)2
[

log2 C − 1

N

N∑

k=1

log2
w3djkūjk − ηk

2

(w1 + w3) djk + w2αjk

]2
⎫
⎬

⎭
≤ 0 (74)

Proof

IFV(LA) − IFV(FS) = 1

C
× 1

N
× SDmax

σD

C∑

j=1

N∑

k=1

⎧
⎨

⎩

(
djkūjk − λk

2

2djk + αjk

)2 [

log2 C − 1

N

N∑

k=1

log2
djkūjk − λk

2

2djk + αjk

]2

−
⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

2⎡

⎣log2 C − 1

N

N∑

k=1

log2

⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

⎤

⎦

2
⎫
⎪⎬

⎪⎭

= 1

C
× 1

N
× SDmax

σD

C∑

j=1

N∑

k=1

⎧
⎨

⎩

(
djkūjk − λk

2

2djk + αjk

[

log2 C − 1

N

N∑

k=1

log2
djkūjk − λk

2

2djk + αjk

])2

−
⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎡

⎣log2 C − 1

N

N∑

k=1

log2

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎤

⎦

⎞

⎠

2
⎫
⎪⎬

⎪⎭
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Thus, IFV (LA) − IFV (FS) = 1
C

× 1
N

×
SDmax

σD

C∑

j=1

N∑

k=1

(
Ajk + Bjk

) (
Ajk − Bjk

)
. Where,

A jk =
(

djkūjk − λk

2

2djk + αjk

)[

log2 C − 1

N

N∑

k=1

log2
djkūjk − λk

2

2djk + αjk

]

Bjk =
⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

⎡

⎣log2 C − 1

N

N∑

k=1

log2

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎤

⎦

It is clear that,

Ajk + Bjk ≥ 0, for all values of (b1, b2, b3)

Ajk − Bjk < 0, for all values of (b1, b2, b3) in Lemma 3
⇔ (Ajk + Bjk

) (
Ajk − Bjk

) ≤ 0

Then

IFV(LA) - IFV(FS) ≤ 0

Property 3 The optimal solutions obtained by using Inter-
active Fuzzy Satisficing are better than those using local
Lagrange.

From Theorem 1, we have

IFV(LA) - IFV(FS) ≤ 0 ⇔ IFV(LA) ≤ IFV(FS).

It means that the optimal solutions obtained by Interactive
Fuzzy Satisficing are better than by local Lagrange.
Thirdly, we would like to investigate the range of IFV values
of the solutions at an iteration step u(r) obtained by Interac-
tive Fuzzy Satisficing method. This question is handled by
the following theorem.

Theorem 2 The lower bound of IFV index on optimal solu-
tion u = u(r) obtained by Interactive Fuzzy Satisficing is
evaluated by:

IFV(FS) ≥ 1

C2
× SDmax

σD

× [log2 C
]2

. (75)

Proof We have

IFV(FS) = 1
C

C∑

j=1

⎧
⎨

⎩
1
N

N∑

k=1

(
b3

z̄3−z3
djk ūjk− ηk

2(
b1

z̄1−z1
+ b3

z̄3−z3

)
djk+ b2

z̄2−z2
αjk

)2

×
[

log2 C − 1
N

N∑

k=1
log2

b3
z̄3−z3

djk ūjk− ηk
2(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk+ b2

z̄2−z2
αjk

]2
⎫
⎬

⎭

× SDmax
σD

= 1
C

× SDmax
σD

C∑

j=1

⎧
⎨

⎩
1
N

N∑

k=1

(
b3

z̄3−z3
djk ūjk− ηk

2(
b1

z̄1−z1
+ b3

z̄3−z3

)
djk+ b2

z̄2−z2
αjk

)2

×
[

log2 C − 1
N

N∑

k=1
log2

b3
z̄3−z3

djk ūjk− ηk
2(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk+ b2

z̄2−z2
αjk

]2
⎫
⎬

⎭

where

u
(r)
jk =

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

≤ 1, j = 1, C, k

= 1, N ⇒ log2

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

< 0

⇒ log2 C − 1

N

N∑

k=1

log2

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

≥ log2 C

It follows that

IFV(FS) ≥ 1

C
× SDmax

σD

× 1

N
× [log2 C

]2

×
C∑

j=1

⎧
⎪⎨

⎪⎩

N∑

k=1

⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

2
⎫
⎪⎬

⎪⎭

≥ 1

C × N
× SDmax

σD

× [log2 C
]2

×
N∑

k=1

C∑

j=1

⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

2

Apply Cauchy–Schwarz inequality, we obtain

C ×
C∑

j=1

⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

2

=
C∑

j=1

(1)2

×
C∑

j=1

⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

2

≥ 1

⇒
C∑

j=1

⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

2

≥ 1

C
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From that, we get:

IFV(FS) ≥ 1

C
× SDmax

σD

× 1

N
× [log2 C

]2 ×
N∑

k=1

(
1

C

)

≥ 1

C2
× SDmax

σD

× [log2 C
]2

In Theorem 2, we consider the lower bound of IFV index,
the upper bound of this index will be evaluated in Theorem
3 below. For this purpose, limitation L is defined.

L = lim
ujk→0

⎧
⎨

⎩

N∑

k=1

log2

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎫
⎬

⎭
.

(76)

Lemma 4 For every set of (b1, b2, b3), we always have:

N∑

k=1

log2

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

≥

lim
ujk→0

⎧
⎨

⎩

N∑

k=1

log2

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎫
⎬

⎭
≥ L

(77)

It is easy to get this from property of logarithm.

Theorem 3 The upper bound of IFV index of the opti-
mal solution obtained by the Interactive Fuzzy Satisficing is
evaluated by:

IFV(FS) ≥ 1

C
× SDmax

σD

×
(

log2 C − L

N

)2

. (78)

Proof Again, from formula of IFV, we have:

IFV(FS) = 1

C
× SDmax

σD

× 1

N

×
C∑

j=1

⎧
⎪⎨

⎪⎩

N∑

k=1

⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

2

×
⎡

⎣log2 C − 1

N

N∑

k=1

log2

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎤

⎦

2
⎫
⎪⎬

⎪⎭

Using the inequality in Lemma 3, this is equivalent to:

IFV(FS) ≥ 1

C
× SDmax

σD

× 1

N

×
C∑

j=1

N∑

k=1

⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

2

×
[

log2 C − L

N

]2

≥ 1

C
× SDmax

σD

× 1

N

×
N∑

k=1

C∑

j=1

⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

2

× 1

C

C∑

j=1

[
log2 C − L

N

]2

≥ 1

C
× SDmax

σD

× 1

N

×
N∑

k=1

1

C

⎧
⎨

⎩

C∑

j=1

⎛

⎝
b3

z̄3−z3
djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

⎞

⎠

×
[

log2 C − L

N

]}2

It follows that,

IFV (FS) ≥ 1

C
× SDmax

σD

× 1

N
×

N∑

k=1

1

C
×
[

log2 C − L

N

]2

= 1

C2
× SDmax

σD

Consequence 1 From the Cauchy–Schwarz inequality,
used in above transformation, the equality happens when:

b3
z̄3−z3

djkūjk− ηk
2(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk+ b2

z̄2−z2
αjk

log2 C − L
N

= constant

With the constraint (32), it can be deduced as follow.

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

= 1

log2 C − L
N

(79)
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The result in Consequence 1 has revealed some typically
cases:

- Suppose that b2 is a constant that differs from 1, we can
represent b1 and b3 by this expression:

b1 =1−b2−b3, 0 ≤ b1, b2, b3 ≤ 1, b2 �= 1, b2 =constant.

(80)

In this case, according to (79), we can express parameter
b3 by b2 as below:

b3
z̄3−z3

djkūjk − ηk

2
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

= 1

log2 C − L
N

⇔
b3

z̄3−z3
djkūjk − ηk

2
(

1−b2−b3
z̄1−z1

+ b3
z̄3−z3

)
djk + b2

z̄2−z2
αjk

= 1

log2 C − L
N

⇔
(

b3

z̄3 − z3
djkūjk − ηk

2

)(
log2 C − L

N

)

=
(

1 − b2

z̄1 − z1
− b3

z̄1 − z1
+ b3

z̄3 − z3

)
djk + b2

z̄2 − z2
αjk

⇔
(

log2 C − L

N

)
djkūjk

z̄3 − z3
b3 − ηk

2

(
log2 C − L

N

)

=
(

1

z̄1 − z1
+ 1

z̄3 − z3

)
djkb3

+ αjk

z̄2 − z2
b2 + 1 − b2

z̄1 − z1
djk

⇔
[(

log2 C − L

N

)
ūjk

z̄3 − z3

−
(

1

z̄1 − z1
+ 1

z̄3 − z3

)]
djkb3

+
(

djk

z̄1 − z1
− αjk

z̄2 − z2

)
b2 − ηk

2

(
log2 C − L

N

)

− djk

z̄1 − z1
= 0

⇔ Hjkb3 + Gjkb2 − ηk

2
P − djk

z̄1 − z1
= 0, (81)

Where

Hjk =
[(

log2 C − L

N

)
ūjk

z̄3 − z3

−
(

1

z̄1 − z1
+ 1

z̄3 − z3

)]
djk,

Gjk =
(

djk

z̄1 − z1
− αjk

z̄2 − z2

)
, P =
(

log2 C − L

N

)

In which:

ηk

2
=

C∑

j=1

b3
z̄3−z3

djkūjk
(

b1
z̄1−z1

+ b3
z̄3−z3

)
djk+ b2

z̄2−z2
αjk

− 1

C∑

j=1

1(
b1

z̄1−z1
+ b3

z̄3−z3

)
djk+ b2

z̄2−z2
αjk

=

C∑

j=1

b3
z̄3−z3

djkūjk
(

1−b2−b3
z̄1−z1

+ b3
z̄3−z3

)
djk+ b2

z̄2−z2
αjk

− 1

C∑

j=1

1(
1−b2−b3

z̄1−z1
+ b3

z̄3−z3

)
djk+ b2

z̄2−z2
αjk

=

C∑

j=1

djk ūjk
z̄3−z3

b3
(

1
z̄3−z3

− 1
z̄1−z1

)
djkb3+

(
djk

z̄1−z1
− αjk

z̄2−z2

)
b2− djk

z̄1−z1

− 1

C∑

j=1

1(
1

z̄3−z3
− 1

z̄1−z1

)
djkb3+

(
djk

z̄1−z1
− αjk

z̄2−z2

)
b2− djk

z̄1−z1

⇔ ηk

2
=

C∑

j=1

Ajkb3
Bjkb3+Gjkb2+Fjk

− 1

C∑

j=1

1
Bjkb3+Gjkb2+Fjk

, (82)

Where

Ajk = djkūjk

z̄3 − z3
, Bjk =

(
1

z̄3 − z3
− 1

z̄1 − z1

)
djk,

Fjk = − djk

z̄1 − z1
(83)
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Replacing ηk

2 in (81) by formula (82) and denotations in
(83), we have:

Hjkb3 + Gjkb2−

C∑

j=1

Ajkb3
Bjkb3+Gjkb2+Fjk

− 1

C∑

j=1

1
Bjkb3+Gjkb2+Fjk

P − djk

z̄1 − z1
=0

⇔
C∑

j=1

1

Bjkb3 + Gjkb2 + Fjk

Hjkb3

+
C∑

j=1

1

Bjkb3 + Gjkb2 + Fjk

Gjkb2

−
⎛

⎝
C∑

j=1

Ajkb3

Bjkb3 + Gjkb2 + Fjk

− 1

⎞

⎠P

−
C∑

j=1

1

Bjkb3 + Gjkb2 + Fjk

djk

z̄1 − z1
= 0

⇔
⎡

⎣
C∑

j=1

Hjk

Bjkb3 + Gjkb2 + Fjk

−P

C∑

j=1

Ajk

Bjkb3 + Gjkb2 + Fjk

⎤

⎦ b3

+
C∑

j=1

Gjk

Bjkb3 + Gjkb2 + Fjk

b2 − P

−
C∑

j=1

1

Bjkb3 + Gjkb2 + Fjk

Fjk = 0

⇔
C∑

j=1

(
Hjk − PAjk

)
b3 + Gjkb2 − Fjk

Bjkb3 + Gjkb2 + Fjk

−P =0

⇔
C∑

j=1

Mjkb3 + Gjkb2 − Fjk

Bjkb3 + Gjkb2 + Fjk

− P = 0,

Mjk = Hjk − PAjk, (84)

b3 =
(
Gjk − PGjk

)
b2 + Fjk − FjkP

PGjkb2 − Mjk + FjkP

Together with assumptions in (83), we get the value of
b3 belonging to [0,0.2]. Again with the changing role of
b2, b3 as constants, we also get values of b1 belonging to

[0.1, 0.4] and b2 belonging to [0.3, 0.7]. These remarks help
us choosing appropriate values for the parameters of the
algorithm.

Fourthly, we would like to investigate the difference
between two consecutive iterations of the algorithm using
Interactive Fuzzy Satisficing, let us denote:

ε1 =
∣∣∣b(r)

3 b
(r+1)
1 − b

(r)
1 b

(r+1)
3

∣∣∣ , ε2

=
∣∣∣b(r)

3 b
(r+1)
2 − b

(r)
2 b

(r+1)
3

∣∣∣ , ε3

= 8
∣∣∣η(r)

k η
(r+1)
k

∣∣∣
(85)

The following theorem helps us answer this question.

Theorem 4 When the parameters of rth iter-

ation
(
b

(r)
1 , b

(r)
2 , b

(r)
3

)
and (r+1)th iteration

(
b

(r+1)
1 , b

(r+1)
2 , b

(r+1)
3

)
are determined as in Lemma 4, the

difference between solutions of two consecutive iterations
can be evaluated by

∣∣∣u(r+1)
jk − u

(r)
jk

∣∣∣ ≤
[ (

djk

)2
ūjkε1

(
z̄1 − z1

) (
z̄3 − z3

)2

+ djkūjkαjkε2(
z̄2 − z2

) (
z̄3 − z3

)

]

× ε3. (86)

Proof Based on the (61), we have

∣
∣∣u(r+1)

jk − u
(r)
jk

∣
∣∣ |=

∣∣
∣∣∣
∣∣∣

b
(r+1)
3

z̄3−z3
× djk × ūjk − η

(r+1)
k

2(
b
(r+1)
1

z̄1−z1
+ b

(r+1)
3

z̄3−z3

)
djk + b

(r+1)
2

z̄2−z2
× αjk

−
b
(r)
3

z̄3−z3
× djk × ūjk − η

(r)
k

2(
b
(r)
1

z̄1−z1
+ b

(r)
3

z̄3−z3

)
djk + b

(r)
2

z̄2−z2
× αjk

∣∣∣
∣∣∣
∣∣

=
∣
∣∣∣
A × D − E × B

B × D

∣
∣∣∣

= |A × D − E × B|
|B × D|
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where

|A × D − E × B| =
∣∣∣∣∣

[
b

(r+1)
3

z̄3 − z3
× djk × ūjk − η

(r+1)
k

2

]

×
[(

b
(r)
1

z̄1 − z1
+ b

(r)
3

z̄3 − z3

)

djk + b
(r)
2

z̄2 − z2
× αjk

]

−
[

b
(r)
3

z̄3 − z3
× djk × ūjk − η

(r)
k

2

]

×
[(

b
(r+1)
1

z̄1 − z1
+ b

(r+1)
3

z̄3 − z3

)

djk + b
(r+1)
2

z̄2 − z2
× αjk

]∣∣∣∣∣

=
∣∣∣∣∣

(
djk

)2 × ūjk
(
z̄1 − z1

) (
z̄3 − z3

)2

[
b

(r+1)
3 b

(r)
1 − b

(r+1)
1 b

(r)
3

]
+ djk × ūjk × αjk(

z̄2 − z2

) (
z̄3 − z3

)
[
b

(r+1)
2 b

(r)
3 − b

(r+1)
3 b

(r)
2

]

+ djk(
z̄1 − z1

) (
z̄3 − z3

)

[(
b

(r+1)
1 + b

(r+1)
3

) η
(r)
k

2
−
(
b

(r)
1 + b

(r)
3

) η
(r+1)
k

2

]

+ αjk

z̄2 − z2

[

b
(r+1)
2

η
(r)
k

2
− b

(r)
2

η
(r+1)
k

2

]∣∣∣∣∣

Apply the inequality in Proposition 1:

η
(r)
k

2
≤ b

(r)
3

z̄3 − z3
× djk × ūjk, j = 1, C, k = 1, N,

and denotations in (85), we have:

|A × D − E × B| ≤ 2 ×
[ (

djk

)2
ūjkε1

(
z̄1 − z1

) (
z̄3 − z3

)2 + djkūjkαjkε2(
z̄2 − z2

) (
z̄3 − z3

)

]

(87)

|B × D| =
∣∣∣∣∣

[(
b

(r+1)
1

z̄1 − z1
+ b

(r+1)
3

z̄3 − z3

)

djk + b
(r+1)
2

z̄2 − z2
× αjk

]

×
[(

b
(r)
1

z̄1 − z1
+ b

(r)
3

z̄3 − z3

)

djk + b
(r)
2

z̄2 − z2
× αjk

]∣∣∣∣∣
(88)

Again, apply the inequality in Proposition 1:

η
(r)
k

2
≥ b

(r)
3

z̄3 − z3
× djk × ūjk −

[(
b

(r)
1

z̄1 − z1
+ b

(r)
3

z̄3 − z3

)

djk + b
(r)
2

z̄2 − z2
× αjk

]

, j = 1, C, k = 1, N

⇔
(

b
(r)
1

z̄1 − z1
+ b

(r)
3

z̄3 − z3

)

djk + b
(r)
2

z̄2 − z2
× αjk ≥ b

(r)
3

z̄3 − z3
× djk × ūjk − η

(r)
k

2
≥

⇔
((

b
(r)
1

z̄1 − z1
+ b

(r)
3

z̄3 − z3

)

djk + b
(r)
2

z̄2 − z2
× αjk

)

≥ −η
(r)
k

2

Use denotation ε3 in (85), we get:

|B × D| ≥
∣∣∣∣∣
η

(r)
k

2
× η

(r+1)
k

2

∣∣∣∣∣
=
∣∣∣η(r+1)

k η
(r)
k

∣∣∣

4
= 2

ε2
. (89)

Combine (87) and (89), we obtain the result in (86).

Consequence 2 The termination of the method using Inter-
active Fuzzy Satisficing is:

∣∣∣u(r+1)
jk − u

(r)
jk

∣∣∣ < ε. (90)
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Fig. 2 Some images in the
dataset

In this situation, the relation between the number of itera-
tions and the stopping condition is presented by following
formula:

P
{∣∣∣u(r+1)

jk − u
(r)
jk

∣∣∣ < ε
}

≥ 1 − (1 − ε)r . (91)

3.5 Theoretical analyses of the new method

From the above presentation, we reach the advantages and
differences of the new algorithm in comparison with the
relevant methods.

a) This research presents the first attempt to model the
dental X-Ray image segmentation in the form of semi-
supervised fuzzy clustering. By the introduction of a
new spatial objective function in (25) of Section 3.1.5
that combines the dental features and neighborhood
information of a pixel, results of the semi-supervised
fuzzy clustering model including cluster centers and the
membership matrix are oriented by dental structures of
a dental X-ray image. This brings much meaning to
practical dentistry for getting segmented images that
are close to accurate results.

b) Additional information, represented in a prior mem-
bership matrix in (36) of Section 3.2, that combines
expert’s knowledge, spatial information of a dental X-
Ray image, and the optimal results of FCM is proposed.

Comparing with the semi-supervised fuzzy clustering –
eSFCM in [40], the new algorithm provides determinis-
tic ways to specify the additional information as well as
integrate the spatial objective function into the model.
The new components are significant to the dental X-
Ray image segmentation, and promise to enhance the
accuracy of results.

c) This research firstly considers the solutions of the
optimization problem under the Interactive Fuzzy Sat-
isficing view. Unlike traditional methods using local
Lagrange, the proposed algorithm differentiates iso-
lated problems and solves them in a same context. The
efficiency of the new method has been theoretically val-
idated on Section 3.4 where the clustering quality of
the algorithm using Interactive Fuzzy Satisficing is bet-
ter than that using local Lagrange (See Theorem 1 and
Property 3). Thus, this proves reasons of developing the
algorithm based on Interactive Fuzzy Satisficing but not
by other approaches.

d) The new algorithm has been equipped with theoretical
analyses. Many theorems and propositions have been
presented, but some main paints can be demonstrated
as below. These remarks help us better understanding
of the new algorithm and are significant to implemen-
tation.

• The clustering quality of the new method SSFC-FS
is better than the algorithm using local Lagrange
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Table 5 The accuracies of methods

Method FCM OTSU eSFCM SSFC-SC SSFC-FS SSCMOO FMMBIS

Data 1

PBM 35392.31 49481.95 31968.31 53890.83 52760.86 23743.48 47933.84

DB 0.672 0.641 0.716 0.763 0.873 0.874 0.763

IFV 19.99 Inf 254.27 47.91 52.87 102.39 198.39

SSWC 0.573 0.531 0.565 0.672 0.763 0.643 0.654

VRC 5612596 4560556 7515346 9561056 9863236 3457443 5676343

BH 1562.7 992.97 1593.96 1792.98 2092.63 738.39 1120.49

BR −25903698 −7902369 −17025698 −27902536 −26763253 −27323634 −19827832

TRA 6694858357 3942808802 6348058034 7394808580 9827367263 5634376734 6532633374

Data 2

PBM 30446.06 43436.17 27974.27 52836.96 47165.56 21736.49 32434.38

DB 0.685 0.677 0.730 0.827 0.932 0.847 0.784

IFV 19.77 Inf 302.12 47.44 51.67 68.38 113.98

SSWC 0.637 0.613 0.627 0.788 0.963 0.764 0.783

VRC 8743783 6473732 7832723 9142301 9873233 4577433 7643732

BH 1457.76 898.76 1342.76 1663.43 2102.76 798.49 1238.49

BR −22763522 −9817261 −29883723 −37109750 −19823886 −32783864 −23463465

TRA 6726772872 983272384 6323837283 7060336779 9392863327 6743764344 8743476344

Data 11

PBM 24644.46 45375.36 18817.62 50335.46 46868,76 14873.47 24433.98

DB 0.677 0.689 0.792 1.053 0.986 0.893 0.874

IFV 18.28 Inf 126.473 37.38 43.64 41.49 98.39

SSWC 0.562 0.549 0.556 0.604 0.726 0.645 0.764

VRC 5032562 3990227 6728338 7316438 10107326 9834783 9843653

BH 2174.65 839.95 2345.65 2569.27 4576.75 849.49 1873.49

BR −2887198 −2707995 −2937823 −3226926 −2876363 −2718244 −1973634

TRA 1057048405 454140396 1076332327 1317999052 1523356237 984734734 893467343

Data 12

PBM 39878.59 52729.14 36423.76 57903.41 51723.73 28433.39 34352.93

DB 0.651 0.667 0.689 0.864 0.983 0.784 0.873
IFV 20.43 Inf 269.35 48.84 52.37 53.29 182.39
SSWC 0.614 0.612 0.637 0.782 0.893 0.743 0.732
VRC 9983628 2437832 9283567 10032631 11087463 8943485 9873447
BH 1626.33 1112.62 1676.67 1789.64 2013.32 847.93 1273.49
BR −29873342 −12736722 −23862735 −30452677 −2078876 −1983343 −1462533
TRA 6092883998 4536892823 7075233323 7665931742 9837623677 5637484344 6782686434

Data 24
PBM 66353.80 87072.03 58902.38 85614.38 85345.53 74734.59 98347.49
DB 0.687 0.694 0.746 0.725 0.745 0.702 0.698
IFV 26.96 Inf 426.53 65.50 68.12 78.94 234.92
SSWC 0.664 0.647 0.666 0.788 0.986 0.849 0.864
VRC 2214186 701570 219097 402216 602763 323754 383474
BH 1295.93 601.65 1382.29 1393.09 2039.87 784.94 1782.36
BR −3493752 −2839612 −3868308 −4021788 −3267632 −3327834 −2346334
TRA 851979150 326906239 868430556 876629350 1023287863 899364343 992836343
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Table 5 (continued)

Method FCM OTSU eSFCM SSFC-SC SSFC-FS SSCMOO FMMBIS

Data 25

PBM 34160.40 87072.78 58902.47 95843.57 89377.28 43748.34 56347.98
DB 0.676 0.698 0.767 0.804 0.753 0.784 0.764
IFV 19.93 Inf 215.55 48.92 59.87 67.98 189.29
SSWC 0.613 0.572 0.627 0.674 0.765 0.677 0.721
VRC 8923836 3452523 9032732 9590540 10467523 8987435 8733743
BH 1652.68 1122.99 1672.67 1746.19 2123.87 874.38 1983.48
BR −35889874 −12753232 −33688622 −36706866 −28747634 −19763434 −18736633
TRA 6728978833 5625732273 6928732872 7404344603 9437263623 8343674533 8923667433

Data 34

PBM 39713.89 50655.23 36488.91 50983.62 49672.76 32744.49 49373.39
DB 0.660 0.653 0.692 0.984 0.787 0.723 0.712
IFV 20.74 Inf 259.63 30.67 32.84 34.39 189.39
SSWC 0.597 0.568 0.583 0.615 0.725 0.674 0.709
VRC 6509202 1137633 5672323 6525342 9373434 7834634 8646364
BH 1627.63 982.27 1567.64 1782.67 2349.98 946.94 2012.93
BR −31675122 −12643232 −32563572 −34546532 −23763433 −18474334 −27637432
TRA 6726676732 998372675 6342451522 7812757635 9825656322 6743743444 7636255233

Data 35

PBM 45713.65 67630.24 4788.92 72735.67 70375.78 52783.59 65345.74
DB 0.678 0.646 0.762 0.987 0.893 0.856 0.784
IFV 28.78 Inf 899.34 35.53 39.87 43.94 432.93
SSWC 0.598 0.767 0.618 0.827 0.857 0.684 0.745
VRC 5502202 998263 5727323 5825742 7275425 6674834 6874754
BH 1427.27 1122.26 1627.36 1982.62 2876.89 756.98 1983.49
BR −31984122 −19633642 −32572983 −34653332 −29887363 −21743434 −19347454
TRA 6732768232 5623656273 5287829333 7027763985 10153253442 8753364434 9843676453

Data 55

PBM 35393.31 49481.96 31810.87 35437.44 32643.63 27334.48 29834.98
DB 0.672 0.641 0.718 0.687 0.721 0.720 0.712
IFV 19.998 Inf 237.19 53.68 67.78 70.94 178.38
SSWC 0.583 0.618 0.604 0.782 0.893 0.743 0.698
VRC 10008732 9832872 11012239 11050436 12768433 9843475 10247843
BH 1562.56 893.37 1638.20 1644.56 2012.83 748.94 1938.98
BR −27315336 −18376313 −28315913 −28576399 −21638234 −22486433 −19838264
TRA 6644192705 5634768373 6844192705 6884326070 8378927344 7843864364 8298374454

Data 56

PBM 105923.25 96292.40 97066.77 98112.67 93256.74 87434.89 98437.48
DB 0.634 0.605 0.681 0.631 0.712 0.689 0.701
IFV 26.43 Inf 859.763 69.736 71.893 78.985 543.29
SSWC 0.636 0.766 0.633 0.867 0.985 0.823 0.873
VRC 3129468 11051793 32011478 3207013 3427647 1873464 2676434
BH 1381.91 836.42 1364.29 1369.07 2037.67 783.93 1239.49
BR −3698685 −2214459 −4494308 −4804435 −3862542 −2774663 −2364634
TRA 852833978 332193679 853175839 856453152 11226457427 9843643764 10274874483

(Bold values indicate the better in a row)
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Table 6 Means and variances of the criteria for all algorithms on the real dataset

Method FCM OTSU eSFCM SSFC-SC SSFC-FS SSCMOO FMMBIS

PBM 34590.6 39438.83 30357.89 51209.25 49523.87 34423.77 45376.48

± 5.54E+08 857679906 ± 5.69E+08 ± 1.43E+09 ± 2.34E+09 ± 3.28E+08 ± 1.09E+09

DB 0.658 0.846 0.708 0.795 0.832 0.673 0.703

± 0.006 ± 1.034 ± 0.01 ± 0.037 ± 0.045 ± 0.034 ± 0.056

IFV 30.344 499.25 47.05 50.87 53.64 234.98

± 245.41 Inf ± 77655.09 ± 430.12 ± 562.73 ± 231.38 ± 1983.98

SSWC 0.629 0.656 0.646 1.067 1.263 0.983 1.098

± 0.008 ± 0.01 ± 0.01 ± 5.43 ± 4.36 ± 0.943 ± 0.939

VRC 8773901 6422160 8657364 10649217 11535244 8743643 8936473

± 1.67E+14 ± 1.68E+14 ± 1.69E+14 ± 1.98E+14 ± 0.83E+14 ± 0.73E+13 ± 0.98E+13

BH 1466.96 838.30 1520.20 1673.08 2109.98 832.73 1983.98

± 40315.4 ± 90125.07 ± 50465.31 ± 107667.7 ± 178232.9 ± 98433.9 ± 78374.9

BR −1.9E+07 −1.5E+07 −1.9E+07 −2.5E + 07 −2.3E+07 −2.1E+07 −2.2E+07

± 1.64E+14 ± 6.85E+14 ± 1.51E+14 ± 1.24E+14 ± 0.98E+14 ± 0.78E+14 ± 0.81E+14

TRA 5.09E+09 2.43E+09 5.34E+09 5.89E+09 6.78E + 09 5.99E+09 6.04E+09

± 8.51E+18 ± 4.18E+18 ± 7.66E+18 ± 8.08E+18 ± 6.08E+18 ± 5.49E+18 ± 4.58E+18

(Bold values indicate the better in a row)

denoted as SSFC-SC as proven in Theorem 1 and
Property 3.

• The upper and lower bounds of IFV index of the
optimal solution at an iteration step obtained by
the Interactive Fuzzy Satisficing are shown in (75),
(78) of Theorem 2 & 3. This shows us the interval
that the quality value of the new algorithm can fall
into.

• Consequence 1 suggests appropriate values for the
parameters of the algorithm, namely b3 belong-
ing to [0,0.2], b1 belonging to [0.1, 0.4] and b2

belonging to [0.3, 0.7].
• The difference between two consecutive itera-

tions of the SSFC-FS algorithm is expressed

in (86) of Theorem 4. This helps us con-
trol the variation of results between iterations,
which is a basis to predict the termination
point.

• A generalized termination of the SSFC-FS method
is given in (91) of Consequence 2, which is likely
to avoid redundant iterations and reduce the pro-
cessing time of the algorithm.

4 Experimental Evaluation

The proposed algorithm called SSFC–FS has been imple-
mented in addition to the relevant methods - FCM [3],

Table 7 Performance comparison of all algorithms on the real dataset

Hits more FCM OTSU eSFCM SSFC-SC SSFC-FS SSCMOO FMMBIS

PBM 1.48 1.30 1.69 1 1.03 1.49 1.13

DB 1 1.29 1.08 1.21 1.26 1.02 1.07

IFV 14.81 inf 1 9.55 8.83 8.38 1.91

SSWC 2.01 1.93 1.96 1.18 1 1.28 1.15

VRC 1.31 1.80 1.33 1.08 1 1.32 1.29

BH 1.44 2.52 1.39 1.26 1 2.53 1.06

BR 1.32 1.67 1.32 1 1.09 1.19 1.14

TRA 1.33 2.79 1.27 1.15 1 1.13 1.12

(Bold values indicate the better in a row)
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Fig. 3 (a) Original image; (b)
Results of Otsu; (c) Results of
FCM; (d) Clustering by eSFCM;
(e) Clustering by SSFC-SC; (f)
Clustering by SSFC-FS; (g)
SSCMOO; (h) FMMBIS

Otsu [26], SSCMOO [2] and FMMBIS [5] as well as
a semi-supervised fuzzy clustering - eSFCM [40] and a
variant of the proposed method using local Lagrange –
SSFC-SC in Matlab 2014 and executed on a PC VAIO lap-
top with Core i5 processor. The experimental results are
taken as the average values after 20 runs. Experimental
datasets are taken from Hanoi Medical University, Viet-
nam including 56 dental images in the period 2014 – 2015

(Fig. 2). The datasets were uploaded to Matlab Central
for sharing [18].

The aims of the experimental validation are: i) Evaluat-
ing accuracy of segmentation of the algorithms through 8
validity functions [37] whose descriptions are shown below;
ii) Investigating the most appropriate values of parame-
ters of the SSFC-FS algorithm; iii) Verifying the theoretical
analyses summed up in Section 3.5 on real datasets.
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Table 8 Results of SSFC-FS algorithm by the number of clusters

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

C=3

PBM 110873.56 98323.63 115721.36 112632.63 124733.36 126733.87

DB 2.372 2.253 1.276 2.352 0.983 0.772

IFV 88.78 96.65 127.64 102.63 123.53 134.76

SSWC 0.778 0.752 0.872 0.877 0.798 0.782

VRC 3972352 3839150 4178632 4275322 4472652 4328662

BH 3002.83 3127.52 5572.63 5472.63 3527.56 3722.56

BR −3438321 −3326862 −2835723 −2973223 −2532356 −2472573

TRA 1027532367 1132766323 1928236868 1865323323 1527352332 1432633265

C=5

PBM 108362.37 132562.32 176232.63 142736.43 78232.67 198347.74

DB 0.983 1.672 2.732 0.0927 0.837 0.891

IFV 89.73 99.38 123.63 103.76 113.78 120.83

SSWC 0.783 0.812 0.871 0.887 0.825 0.722

VRC 3876232 3237663 4373862 4257321 4242627 4226262

BH 4128.67 4087.39 5598.63 5387.72 4323.22 3273.67

BR −4027632 −4026372 −3252342 −3574253 −2982342 −2827636

TRA 1027437643 1026327327 1887532323 1777352474 1626527427 1232674433

C=7

PBM 76364.78 67343.28 96237.37 34625.73 93546.22 87232.63

DB 2.354 2.451 0.989 2.870 1.092 0.862

IFV 56.67 59.89 89.76 78.32 67.89 84.78

SSWC 0.678 0.715 0.824 0.917 0.732 0.776

VRC 3086463 2986264 4376223 4176232 4565235 3987437

BH 2098.72 2283.27 4723.84 4709.89 3982.74 3872.83

BR −4578322 −3948886 −3327427 −3293834 −2982323 −2883275

TRA 987237874 936744424 1029326443 1008722333 982364224 956726323

(Bold values indicate the better in a row)

The following shows the validity functions and their
criteria:

• Davies-Bouldin (DB): relates to the variance ratio cri-
terion, which is based on the ratio between the distance
inner group and outer group. Especially, quality of
partition is determined by the following formula:

DB = 1

k

k∑

l=1

Dl, (92)

Dl = max
l �=m

O{Dl,mU}, (93)

Dl,m = (d̄l + d̄m

)
/dm,l, (94)

Where d̄l , d̄m are the average distances of clusters l and
m, respectively. dl,m is the distance between these clusters.

d̄l = 1

Nl

‖xi−x̄l‖∑

xi∈Cl

; dl,m = ‖x̄l − x̄m‖ . (95)

The lower value of DB criterion is better.

• Simplified Silhouete Width Criterion (SSWC):

SSWC = 1

N

N∑

j=1

sxj
, (96)
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Table 9 Means of the criteria for SSFC-FS on six cases in a real dataset

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

PBM 98533.57 99409.74 129397.12 96664.93 98837.42 137438.08

DB 1.903 2.125 1.666 1.772 0.971 0.842

IFV 78.39 85.31 113.68 94.90 101.73 113.46

SSWC 0.746 0.760 0.856 0.894 0.785 0.760

VRC 3645016 3354359 4309572 4236292 4426838 4180787

BH 3076.74 3166.06 5298.37 5190.08 3944.51 3623.02

BR −4014758 −3767373 −3138497 −3280437 −2832340 −2727828

TRA 1014069295 1031946025 1615031878 1550466043 1378747994 1207344674

(Bold values indicate the better in a row)

sxj
= bp,j − ap,j

max
{
ap,j , bp,j

} . (97)

Where ap,j is defined as the difference of object j to
its cluster p. Similarly, dq,j is the difference of objects to
cluster j to q, q �= p and bp,j . The minimum value
of dq,j , j =1, 2, . . . k and q �= p becomes different lev-
els of objects to cluster j nearest neighbor. The idea is to
replace the average distance by the distance to the expected
point. Using SSWC, the greater value shows more efficient
algorithm.

• PBM: based on the distance of the clusters and the
distance between the clusters and is calculated by the
formula:

PBM =
(

1

k

E1

EK

DK

)2

, (98)

E1 =
N∑

i=1

‖xi − x̄‖, Ek =
k∑

l=1

∑

xi∈Cl

‖xi − x̄l‖, (99)

DK = maxl,m=1,...,k ‖x̄l − x̄m‖ . (100)
It is clear that in PBM criteria, higher value means higher

algorithm performance. Hence the best partition indicates
when PBM get the highest value, DK maximizes and EK

reaches minimization.

• IFV:

IFV = 1

C

C∑

j=1

⎧
⎨

⎩
1

N

N∑

k=1

u2
kj

[

log2 C − 1

N

N∑

k=1

log2 ukj

]2
⎫
⎬

⎭

× SDmax

σD

, (101)

SDmax = max
k �=j

∥∥Vk − Vj

∥∥2 , (102)

σD = 1

C

C∑

j=1

(
1

N

N∑

k=1

∥∥Xk − Vj

∥∥2
)

. (103)

The maximal value of IFV indicates the better
performance.

Table 10 Performance comparison of the criteria for SSFC-FS on six cases

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

PBM 1.395 1.383 1.062 1.422 1.391 1

DB 2.261 2.525 1.979 2.105 1.153 1

IFV 1.450 1.333 1 1.198 1.117 1.002

SSWC 1.197 1.176 1.044 1 1.138 1.176

VRC 1.214 1.320 1.027 1.045 1 1.059

BH 1.722 1.673 1 1.021 1.343 1.462

BR 1 1.066 1.279 1.224 1.417 1.472

TRA 1.593 1.565 1 1.042 1.171 1.338

(Bold values indicate the better in a row)
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Table 11 Average values of IFV index in theory (IFV(LT)) and experiment (IFV(TN)) on six cases

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

C=3

IFV(LT) 87.89 96.72 109.71 103.69 123.04 133.83

IFV(TN) 88.78 96.65 110.62 102.63 123.53 134.76

C=5

IFV(LT) 88.60 98.35 123.02 102.89 111.92 119.89

IFV(TN) 89.73 99.38 123.63 103.76 113.78 120.83

C=7

IFV(LT) 55.36 58.82 89.02 76.78 66.67 84.03

IFV(TN) 56.67 59.89 89.76 78.32 67.89 84.78

• Ball and Hall index (BH): to measure the sum of within-
group distances. The larger value of BH criterion is
better.

BH = 1

N

k∑

l=1

∑

xi∈Cl

‖xi − x̄l‖. (104)

• Calinski-Harabasz index (VCR): is used to evaluate the
quality of a data partition by variance ratio of between
and within group matrices. The larger value of VCR is
better.

V CR = trace(B)

trace(W)
× N − k

k − 1
, (105)

UW =
k∑

l=1

Ul, UWl =
∑

xi∈Cl

(xi − x̄l) (xi − x̄l)
T ,

(106)

trace(W) =
k∑

l=1

trace(Wl);

trace(Wl) =
r∑

p=1

∑

xi∈Cl

(
xip − x̄lp

)
, (107)

B =
k∑

l=1

Nl (x̄l − x̄) (x̄l − x̄)T , (108)

trace(B) = trace(T ) − trace(W),

trace(T ) =
r∑

p=1

N∑

i=1

(
xip − x̄p

)
2

. (109)

• Banfeld-Raftery index (BR): is an index using variance-
covariance matrix of each cluster. This index is calcu-
lated as below.

BR =
k∑

i=1

ni log

(
T r
(
WG{k})

nk

)

, (110)

WG{k} =
r∑

p=1

∑

xi∈Cl

(
xip − x̄l

) (
xip − x̄l

)
,

T r
(
WG{k}) =

∑

xi∈Ck

‖xi − x̄l‖2. (111)

Where nk is number of data points in kth cluster. We note
that if nk = 1, this trace is equal to 0 and then the logarithm
is undefined.

• Difference-like index (TRA): is shown below where
trace(W) is calculated in (51). The larger value of TRA
is better.

T RA = trace(W). (112)

Firstly, in the following Table 5, the experimental results
of the algorithms on 56 dental images with parameters
C=3, m=2, weights b1 =0.3, b2 =0.6, b3 =0.1 are given.
According to the results in Table 5, SSFC-FS obtains the
best values in most of criteria (4 per 8 criteria) and in all
datasets. Among 4 worse criteria to SSFC-FS, the IFV val-
ues of SSFC-FS are always higher than those of SSFC-SC.
This clearly affirms that the clustering quality of SSFC-FS
is better than that of SSFC-SC as proven in Theorem 1 and
Property 3. Furthermore, it is clear that SSFC-FS is also
better than SSCMOO and FMMBIS in most of criteria.

In order to understand the values of criteria by all
datasets, we have synthesized mean and variance of each
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criterion from Table 5 and presented them in Table 6. From
this table, we record the best result in a row as 1 and calcu-
late the number of times that the best algorithm is better than
another in the same row. The statistics are given in Table 7.

Now, we illustrate the segmentation results on a dataset
in Fig. 3.

Secondly, we verify the values of parameters calculated
in Consequence 1 by evaluating SSFC-FS in six different
cases of parameter set (b1, b2, b3) as follows.

Case 1: (b1>b2>b3): (b1 =0.6, b2 =0.3, b3 =0.1).
Case 2: (b1>b3>b2): (b1 =0.6, b2 =0.1, b3 =0.3).
Case 3: (b2>b1>b3): (b1 =0.3, b2 =0.6, b3 =0.1).
Case 4: (b2>b3>b1): (b1 =0.1, b2 =0.6, b3 =0.3).
Case 5: (b3>b1>b2): (b1 =0.3, b2 =0.1, b3 =0.6).
Case 6: (b3>b2>b1): (b1 =0.1, b2 =0.3, b3 =0.6).

In Table 8, we measure the results of SSFC-FS on 6 cases
by the number of clusters. It is clear that except C=3,
other results showed that Case 3 obtains more number of
best results in term of validity indices. Again, similar to
Table 6 & 7, we also calculate means of the criteria for
SSFC-FS on six cases in a real dataset (Table 9) and the
performance comparison (Table 10). The results pointed out
the most appropriate values of parameters namely Case 3
(b1 =0.3, b2 =0.6, b3 =0.1). Those values are identical
with the observation in Consequence 1.

Thirdly, we validate the lower bounds of IFV index of the
optimal solution stated in (75) of Theorem 2 on six cases in
Tables 8-10. The results are shown below.

Case 1: IFV= 88.78 > 1
C2 × SDmax

σD
× [log2 C

]2 = 4.89.

Case 2: IFV = 96.65> 1
C2 × SDmax

σD
× [log2 C

]2 = 5.43.

Case 3: IFV = 110.62 > 1
C2 × SDmax

σD
×[log2 C

]2 = 6.15.

Case 4: IFV = 102.63 > 1
C2 × SDmax

σD
×[log2 C

]2 = 5.72.

Case 5: IFV = 123.53 > 1
C2 × SDmax

σD
×[log2 C

]2 = 6.88.

Case 6: IFV = 134.76> 1
C2 × SDmax

σD
×[log2 C

]2 = 7.56.

It is obvious that the experimental results satisfy Theorem
2. The upper bound validation in Theorem 3 is checked
analogously.

Lastly, we check the difference between two consecutive
iterations of the SSFC-FS algorithm expressed in (86) of
Theorem 4. The validation is made on six cases above and
expressed in Table 11. We can clearly recognize that the the-
oretical values are nearly approximate to the experimental
ones.

5 Conclusions

In this paper, we concentrated on the dental X-ray image
segmentation problem and proposed a new semi-supervised

fuzzy clustering algorithm based on Interactive Fuzzy Sat-
isficing named as SSFC-FS. The new contributions include:
i) Modeling dental structures of a dental X-Ray image
into a spatial objective function; ii) Designing a new semi-
supervised fuzzy clustering model for the dental X-ray
image segmentation; iii) Proposing a semi-supervised fuzzy
clustering algorithm – SSFC-FS based on the Interactive
Fuzzy Satisficing method; iv) Examining theoretical aspects
of SSFC-FS comprising of the convergence rate, bounds of
parameters, and the comparison with solutions of other rel-
evant methods. SSFC-FS has been experimentally validated
and compared with the relevant ones in terms of clustering
quality on a real dataset including 56 dental X-ray images in
the period 2014-2015 of Hanoi Medial University, Vietnam.

As discussed in Section 3.5 and later verified in the
experiments, we summarize the main findings of this
research as follows. Firstly, SSFC-FS has better clustering
quality than the relevant methods – FCM, Otsu, SSC-
MOO [2] and FMMBIS [5] as well as the well-known
semi-supervised fuzzy clustering - eSFCM and a variant
of the proposed method using local Lagrange – SSFC-SC.
Besides, the clustering quality of SSFC-FS is better than
SSFC-SC theoretically proven in Theorem 1 and Property
3. Secondly, the most appropriate values for the parame-
ters of the algorithm are: b3 belongs to [0, 0.2], b1 belongs
to [0.1, 0.4] and b2 belongs to [0.3, 0.7] (Consequence 1).
Thirdly, the upper and lower bounds of IFV index of the
optimal solution at an iteration step obtained by the Inter-
active Fuzzy Satisficing, which shows us the interval that
the quality value of the new algorithm can fall into, were
shown in equations (75, 78) of Theorem 2 & 3. Fourthly,
the difference between two consecutive iterations of the
SSFC-FS algorithm, which helps us control the variation
of results between iterations, was expressed in equation
(86) of Theorem 4. Lastly, a generalized termination of the
SSFC-FS method, which is used to avoid redundant iter-
ations and reduce the processing time of the algorithm,
was given in (91) of Consequence 2. Those findings are
significant to both theoretical and practical implication,
especially to the dental X-ray image segmentation problem
and semi-supervised fuzzy clustering approaches.

Further works of this research can be done in the follow-
ing ways: (1) Speeding up the algorithm by approximation
methods; (2) Finding the most appropriate additional values
for semi-supervised fuzzy clustering; and (3) Investigating
fast matching strategy in the medical diagnosis context.
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Appendix

Matlab source codes of all algorithms and experimental data
can be found at the URL:
https://www.mathworks.com/matlabcentral/fileexchange/
52762-semi-supervised-fuzzy-clustering-with-fuzzy-
satisficing
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