Skip to main content

Polymers from Renewable Resources

  • Chapter
Degradable Polymers

Abstract

The current utilization of natural resources cannot be sustained forever. Most of the fuel utilized in our societies comes from fossil fuel, such as oil that, other than being subjected to price fluctuations, must eventually be depleted. Rising atmospheric carbon dioxide levels from combustion of fossil fuels are thought to be increasing global temperature that, in turn, may cause droughts, crop losses, storm damage, etc [1]. Fuel shortage and the waste accumulation in the environment are generating a worldwide interest in alternative resources and particularly for the use of renewable resources both as an energy source [2] and as raw materials for polymers and plastics [3]. There is increasing pressure for a wider utilization of biomass feed-stocks for specialty items. The total biomass produced on earth is estimated as approximately 170 billion tons, of which a very small portion, less than 4%, is used. [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shogren, R.L. and Bagley, E.B. (1999) Natural Polymer as Advanced Materials: Some Research Needs and Directions, in S.H. Imam, R.V. Greene, B.R. Zaidi, (eds.) Biopolymers–Utilizing Nature’s, Advanced Materials; ACS Symp. Ser. 723, ACS, Washington DC, pp. 2–11.

    Google Scholar 

  2. El Bassam, N. (2001) Renewable Energy for Rural Communities, Renewable Energy, 24, 401–408

    Article  Google Scholar 

  3. Rowell, R.M., Sanadi, A.R., Caulfield D.F., and Jacobson R.E., (1997) Utilization of Natural Fibers in Plastic Composites: Problems and Opportunites, in A.L. Leao, F.X. Carvalho, E.Frollini, (eds.) Lignocelluloisc-Plastic Composites, Sao Paulo, Brazil, pp. 23–52.

    Google Scholar 

  4. Warwel, S., Brüse, F., Demes, C., Kunz, M. and Klaas M.R. (2001) Polymers and Surfactants on the Basis of Renewable Resources, Chemosphere, 43, 39–48.

    Article  CAS  Google Scholar 

  5. Ayong Le Kama, A.D. (2001) Sustainable Growth, Renewable Resources and Pollution, Journal of Economic Dynamics Control, 25, 1911–1918

    Article  Google Scholar 

  6. Reijnders, L. (2000) A Normative Strategy for Sustainable Resource Choice and Recycling, Resou.r Conserv. Recycl., 28, 121–133.

    Article  Google Scholar 

  7. Van Wyk, J.P.H. (2001) Biotechnology and the Utilization of Biowaste as a Resource for Bioproduct Development, Trends in Biotechnology 19, 172–177

    Article  Google Scholar 

  8. Sperling L.H. and Carraher C.E. (1988) Polymers from Renewable Resources in H. F. Mark, N. M. Bikales, C.G. Overberger, and G. Menges (eds.) Encyclopedia of Polymer Science and Engineering, Wiley, New York, Vol.12, pp.658–690

    Google Scholar 

  9. Chemicals and Materials from Renewable Resources (2001), Proceedings of a Symposium Held at the 218th National Meeting of the ACS in New Orleans, Louisiana, 22–26 August 1999, ACS Symp. Ser. 784, J.J. Bozell (ed.) ACS, Washington D.C., USA, 226 pp.

    Google Scholar 

  10. Scott, G. (2000) Green Polymers, Polym. Degrad. Stab. 68, 1–7.

    Article  CAS  Google Scholar 

  11. Doane, W. M. (1994) Biodegradable Plastics. J. Polym. Mater. 11, 229–237.

    CAS  Google Scholar 

  12. Heyde, M. (1998) Ecological Consideration on the Use Production of Biosynthetic and Synthetic Biodegradable Polymers, Polym. Degrad. Stab. 59, 3–6.

    Article  CAS  Google Scholar 

  13. Mayer, J.M. and Kaplan D.L. (1994) Biodegradable Materials: Balancing Degradability and Performance, TRIP/Reviews 2, 227–235.

    CAS  Google Scholar 

  14. MacGregor, E. A., and Greenwood, C.T. (1980) Polymers in Nature, John Wiley Sons, New York, USA, 391 pp.

    Google Scholar 

  15. Scott, G. and Wiles, D.M. (2001) Programmed-Life Plastics from Polyolefins: A New Look at Sustainability, Biomacromolecules 2, 615–622.

    Article  CAS  Google Scholar 

  16. Feil H. (1998) Sense and Non-Sense About Polymers Macromol.Symp. 127, 711

    Article  Google Scholar 

  17. O’Brien, J., Fahnestock, S.R., Termonia, Y. and Garnder, K.C.H. (1998) Nylon from Nature: Syntethic Analogs to Spider Silk, Adv. Mater 10, 1185–1195.

    Article  Google Scholar 

  18. Van Os, G. (2001) The European Plastics Industry–A Sunset Industry?, Polymers in Europe Quo Vadis? EPF-Special Issue, 19–22.

    Google Scholar 

  19. French, A.D., Bertoniere, N.R., Battista, O.A., Cuculo, J.A., and Gray, D.G. (1993) Cellulose, Chapter in: Kirk-Othmer Encyclopedia of Chemical Technology, 4th Ed. Vol. 5, John Wiley Sons, New York, pp. 476–496.

    Google Scholar 

  20. Petersen, K., Nielsen, P.V., Bertelsen, G., Lawther, M., Olsen, M.B., Nilsson, N.H. and Mortensen, G. (1999) Potential of Biobased Materials for Food Packaging, Trends Food Sci. Technol. 10, 52–68.

    Article  CAS  Google Scholar 

  21. Elion, G.R. (1993) Synthesis of Plastic from Recycled Paper and Sugar Cane U.S. Patent 5,244, 945.

    Google Scholar 

  22. Simon, J., Müller, H.P., Koch, R., and Müller V. (1998). Thermoplastic and Biodegradable Polymers of Cellulose, Polym. Degrad. Stab. 59, 107–115

    Article  CAS  Google Scholar 

  23. Lagoa, R., Murtinho, D., and Gil, M. H. (1999) Membranes of Cellulose Derivatives as Supports for Immobilization of Enzymes, Biopolymers–Utilizing Nature’s, Advanced, Materials; Acs Symp. Ser. 723, S. H. Imam, R. V. Greene, B. R. Zaidi, (eds.) ACS, Washington DC, pp. 228–234.

    Google Scholar 

  24. Hoenich, N., A., and Stamp, S. (2000) Clinical Investigation of the Role of Membrane Structure on Blood Contact and Solute Transport Characteristics of a Cellulose Membrane, Biomaterials, 21, 317–324.

    CAS  Google Scholar 

  25. Vert, M. (2001) Biopolymers and Artificial Biopolymers in Biomedical Applications, an Overview, In Biorelated Polymers, Sustainable Polymer Science and Technology, in E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm, and M. Van der Zee (eds.), Kluwer Academic/Plenum Publishers, pp. 63–79.

    Google Scholar 

  26. Malm, C., Mench, J., Kendall, D., and Hiatt, G. (1951) Aliphatic Acid Esters of Cellulose. Preparation by Acid Chloride-Pyridine Procedure, Ind. Eng. Chem. 43, 684–688.

    Article  CAS  Google Scholar 

  27. Vaca-Garcia, C., and Borredon, M.E. (1999) Solvent-Free Fatty Acylation of Cellulose and Lignocellulosic Wastes II. Reactions with Fatty Acids., Bioresource Technol. 70, 135–142.

    Article  CAS  Google Scholar 

  28. Girardeau, S., Aburto, J., Vaca-Garcia, C., Alric, I., Borredon, E., and Gaset, A. (2001) An Original Method of Esterification of Cellulose and Starch, In Biorelated Polymers, Sustainable Polymer Science and Technology, E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm, and M. Van der Zee (eds.), Kluwer Academic/Plenum Publishers, pp. 53–59.

    Google Scholar 

  29. Wang, P., Tao B.Y. (1999) Characterization of Plasticized and Mixed Long-Chain Fatty Cellulose Esters, Biopolymers–Utilizing Nature’s, Advanced, Materials; ACS Symp. Ser. 723, S. H. Imam, R. V. Greene, B. R. Zaidi, (eds.) ACS, Washington DC, pp. 77–87.

    Google Scholar 

  30. Just E.K., and Majewicz T.G., Cellulose Ethers (1987), In Encycorklopedia of Polymer Science and Engineering, 2nd ed. J.I.Kroschwitz (ed.) John Wiley Sons; New Y, Vol.3. pp. 226–269

    Google Scholar 

  31. Komarek, R.J., Gardner, R.M. and Buchanan, C.M. (1993) Biodegradation of Radiolabeled Cellulose Acetate and Cellulose Propionate J. Appl. Polym. Sci. 50, 1739–1746

    Article  CAS  Google Scholar 

  32. Buchanan, C. M., Gardner, C. M., and Komarek, R. J. (1993) Aerobic Biodegradation of Cellulose Acetate J. Appl. Polym. Sci. 47, 1709–1719

    Article  CAS  Google Scholar 

  33. Mormann, W., and Demeter, J. (1999) Silylation of Cellulose with Hexamethyldisilizane in Liquid Ammonia-First Examples of Compltely Trimethylsilylated Cellulose, Macromolecules, 32, 1706–1710

    Article  CAS  Google Scholar 

  34. Mormann, W. and Spitzer, D. (2001) Silylation of OH-Polymers by Reactive Extrusion, Macromol.Symp. 176, 279–287.

    Article  CAS  Google Scholar 

  35. Nishio, Y., Hratani, T., Takahashi, T., and Manley, R.S. (1989) Cellulose/Poly(vinyl alcohol) Blends: An Estimation of Thermodynamic Polymer-Polymer Interaction by Melting point Depression Analysis, Macromolecules. 22, 2547–2549.

    Article  CAS  Google Scholar 

  36. Masson, J.F. and Manley, R.St.J. (1991) Cellulose/Poly(4-vinylpyridine) Blends, Macromolecules 24, 5914–5921.

    Article  CAS  Google Scholar 

  37. Masson,.J.F. and Manley, R.St.J (1991) Miscible Blends of Cellulose and Poly(vinylpyrrolidone), Macromolecules 24, 6670–6679.

    Google Scholar 

  38. Nishioka, N., Hamabe, S., Murakami, T. and Kitagawa, T. (1998) Thermal Decomposition Behavior of Miscible Cellulose/Synthetic Polymer Blends, J. Appl. Polym. Sci. 69, 2133–2137.

    Article  CAS  Google Scholar 

  39. Hon D.N.S. (1992) New Development in Cellulosic Derivatives and Copolymers, in Emerging Technologies for Materials and Chemicals from Biomass 1992, R.M. Rowell, T.P. Scultz, R. Narayan (eds.) ACS Symp. Ser. 476, pp. 176–196.

    Chapter  Google Scholar 

  40. Gatenholm, P., Kubat, J. and Mathiasson, A. (1992) Biodegradable Natural Composites. 1. Processing and Properties J. Appl. Polym. Sci. 45, 1667–1677.

    Article  CAS  Google Scholar 

  41. Collier, J.R., Lu, M., Fahrurrozi, M., and Collier B.J. (1996) Cellulosic Reinforcement in Reactive Composite System, J.Appl.Polym.Sci., 61, 14231430

    Google Scholar 

  42. Gatenholm, P. (1997) Interfacial Adhesion and Dispersion in Biobased Compoasites. Molecular Interacions Between cellulose and Other Polymers, in Lignocellulosic-Plastic Composites, A. Leao, F.X.Carvalho, E. Frollini (eds.) Sao Paulo, Brasil, 53–59.

    Google Scholar 

  43. Rowell, R.M., Tillman, A.M., Simonson, R. (1986) A Simplified Procedure for the Acetylation of Hardwood and Softwood Flakes for Flakeboard Production J. Wood Chem. Tech, 6, 427

    Article  CAS  Google Scholar 

  44. Maldas, D., Kokta, B. V., and Daneault, C. (1989) Influence of Couping Agents and Treatments. on the Mechanical Properties of Cellulose Fiber-Polystyrene Composites. J. Appl. Polym. Sci., 37, 751–775.

    Article  CAS  Google Scholar 

  45. Raj, R. G., Kokta, B.V., Maldas, D., and Daneault, C. (1989) Use of Wood Fibers in Thermoplastics. VII. The Effect of Coupling Agents in Polyethylene-Wood Fiber Composites. J. Appl. Polym. Sci., 37, 1089–1103.

    Article  CAS  Google Scholar 

  46. Raj, R.G. and Kokta, B.V. (1992) Mechanical Properties.of Surface-Modified Cellulose Fibers-Thermoplastic Composites in Emerging Technologies for Materials and Chemicals from Biomass, R.M. Rowell, T.P. Scultz, R. Narayan (eds.) ACS Symp. Ser. 476, pp.76–87

    Google Scholar 

  47. Stannet, V. (1982) Some Challenges in Grafting to Cellulose and Cellulose Derivatives in Graft Copolymerization of Lignocellulosic Materials, Hon, D.N.S. (ed.), ACS Symp. Series, 187, pp.1–20.

    Google Scholar 

  48. Narayan, R. (1988) Synthesis of Controlled Cellulose–Synthetic Polymer Graft Copolymer Structures in Cellulose Wood: Chemistry and Technology; C. Schuerch (ed), John Wiley Sons: New York, p. 945.

    Google Scholar 

  49. Young, R.A. (1997) Utilization of Natural Fibers: Characterization, Modification, and Applications in Lignocellulosic-Plastic Composites, A. Leao, F.X.Carvalho, E. Frollini (eds.), Sao Paulo, Brasil, pp. 1–22.

    Google Scholar 

  50. Takase, S., and Shiraishi, N. (1989) Studies on Composites from Wood and Polypropilenes. II. J. Appl. Polym. Sci., 37, 645–659.

    Article  CAS  Google Scholar 

  51. Felix, J. M., and Gatenholm, P. (1991) The Nature of Adhesion in Composites of Modified Cellulose Fibers and Polypropylene. J. Appl. Polym. Sci., 42, 609620.

    Google Scholar 

  52. Narayan, R. (1992) Compatibilization of Lignocellulosics with Plastics, in Emerging Technologies for Materials and Chemicals from Biomass, R.M. Rowell, T.P. Scultz, R. Narayan (eds.) ACS Symp. Ser. 476, pp. 57–75.

    Google Scholar 

  53. Byun, H.S., Burford, R.P. and Fane, A.G. (1994) Sulfonation of Cross-linked Asymmetric Membrane Based on Polystirene and Divinyl Benzene J. Appl. Polym. Sci. 52, 825–835

    Article  CAS  Google Scholar 

  54. Gaylord, N. G. and Anand, L.C. (1971). Alternating Copolymer Graft Copolymers. III. Cellulose Graft Copolymers. I. Grafting of Alternating Styrene-Acrylonitrile Copolymers onto Cellulose in Presence of Zink Chloride. J. Polym. Sci.: Part B: Polym. Phys., 9, 617–621.

    CAS  Google Scholar 

  55. Nie, L. and Narayan, R. (1993). Upper Limit on Grafting Conversion and Phase Homogeneity in Grafting Reaction Products of Cellulose Acetate/Poly[Styreneran-(Maleic Anhydride). Polym. Mater. Sci. Eng., 69, 309–311.

    CAS  Google Scholar 

  56. Chauhan, G.S., Mahajan, S. and Guleria, L.K. (2000) Polymers from Renewable Resources: Sorption of Cu+2 Ions by Cellulose Graft Copolymers, Desalination 130, 85–88.

    Article  CAS  Google Scholar 

  57. BeMiller, J.N. (1994) Carbohydrates, in: Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 4, John Wilet Sons, New York, pp. 911948

    Google Scholar 

  58. Zdrahala, R. J. (1997) Thermoplastic Starch Revisited, Macromol. Symp., 123, 113–121

    Article  CAS  Google Scholar 

  59. Doane, W.M. (1992) Emerging Polymeric Materials Based on Starch, in Emerging Technologies for Materials and Chemicals from Biomass, R.M. Rowell, T.P. Scultz, R. Narayan (eds.) ACS Symp. Ser. 476, pp. 197–230.

    Chapter  Google Scholar 

  60. Wurzburg, O. B. (1986) Modified Starches: Preparation and Uses, in O. B. Wurzberg (ed.), CRC, Inc.; Boca Raton, FL, pp. 23–28.

    Google Scholar 

  61. Otey, F.H., and Doane W.M. (1984) Starch Chemistry and Technology, 2nd ed., R. L. Whistler, J. M. Bemiller, and E. F. Paschall (eds) Academic Press, New York, pp. 389–416.

    Book  Google Scholar 

  62. Imam, S.H., Mao, L., Chen, L., and Greene R. V. (1999) Wood Adhesive from Crosslinked Poly(vinylalcohol) and Partially Gelatinized Starch: Preparation and Propreties, Starch/Stärke 51, 225–229

    Article  CAS  Google Scholar 

  63. Tessler, M.M., and Billmers, R.L. (1996) Preparation of Starch Esters, J.Env.Polym.Degr. 4, 85–89

    Article  CAS  Google Scholar 

  64. Sagar, A. D., and Merril, E.W. (1995) Properties of Fatty-Acid Esters of Starch, J. Appl. Polym. Sci. 58, 1647–1656.

    Article  CAS  Google Scholar 

  65. Caldwell, C.G. (1949) Starch Ester Derivatives and Method of Making the Same U.S. Patent 2,461, 139.

    Google Scholar 

  66. Smith, C.E. and Tuschoff, J.V. (1960) Acylation of Hydroxy Compounds with Vinyl Esters, U.S. Patent 2,928, 828.

    Google Scholar 

  67. Smith, C.E. and Tuschoff, J.V. (1962) Acylation of Starch, U.S. Patent 3,022, 289

    Google Scholar 

  68. Tessler, M.M. and Rutenberg, M.W. (1972) Process for Reacting Ungelatinized Starch with a Mixed Carbonic -Carboxylic Anhydride of a Polycarboxylic Acid, U.S. Patent 3,699, 095

    Google Scholar 

  69. Tessler, M.M. and Rutenberg, M.W. (1973) Preparation of Starch Esters, U.S. Patent 3,720, 662.

    Google Scholar 

  70. Tessler, M.M. and Rutenberg, M.W. (1973) Preparation of Starch Esters, U.S. Patent 3,728, 332

    Google Scholar 

  71. Tessler, M.M. (1973) Preparation of Starch esters, U.S. Patent 3,720, 663

    Google Scholar 

  72. Tessler, M.M. (1977) Preparation of Starch Esters, U.S. Patent 4,020, 272

    Google Scholar 

  73. Tessler, M.M. (1975) Preparation of Starch Esters, U.S. Patent 3,928, 321

    Google Scholar 

  74. Jarowenko, W. and Wurzburg, O.B. (1966) Novel Starch Ester Derivatives, U.S. Patent 3,284, 442

    Google Scholar 

  75. Tessler, M.M. (1974) Starch Phosphate Esters, U.S. Patent 3,838, 149

    Google Scholar 

  76. Tessler, M.M. (1978) Method for Preparing Starch Sulfate Esters, U.S. Patent 4,093, 798

    Google Scholar 

  77. Tessler, MM., Wurbzurg O.B. and Dirscherl T.A. (1983) Alkyl and Alkenyl Sulfosuccinate Starch Half Esters, a Method for the Preparation Thereofore, U.S. Patent 4,387, 221

    Google Scholar 

  78. Clode, D.M., and Horton, D. (1971) Preparation and Characterization of the 6- Aldehyde Derivatives of Amylose and Whole Starch, Carbohydr. Res. 17, 365–373.

    Article  CAS  Google Scholar 

  79. Horton, D., and Meshreki, M.H. (1975) Syntheses of 2,3-Unsaturated Polysaccharides from Amylose and Xylan., Carbohydr. Res. 40, 345–352.

    Article  CAS  Google Scholar 

  80. Heinze, U., Haack, V. and Heinze, T. (2001) New Highly Functionalised Starch Derivatives, In: Biorelated Polymers-Sustainable Polymer Science and Technology, E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm, and M. Van der Zee (eds.), Kluwer Academic/Plenum Publishers, pp. 20–218.

    Google Scholar 

  81. Aburto, J., Alric, I., and Borredon, E. (1999) Preparation of Long-Chain Esters of Starch Using Fatty Acid Chlorides in the Absence of an Organic Solvent., Starch/Stärke, 51, 132–135.

    Article  CAS  Google Scholar 

  82. Rutenberg, M.W., and Solarek, D. (1984) Starch: Chemistry and Technology; R. L. Whister, J. N. BeMiller and E. F. Paschall, (eds.), Academic Press: New York, NY pp. 315–323.

    Google Scholar 

  83. Kruger L.H. (1989) Degradation of Granular Starch U.S. Patent 4,838, 944

    Google Scholar 

  84. Ewing, F.G. (1970) Starch Process U.S. Patent 3,539, 366

    Google Scholar 

  85. Marsman, J.H., Pieters, R.T., Janssen, L.P.B.M., and Beenackers, A.A.C.M. (1990) Determination of Degree of Substitation of Extruded Benzylated Starch by H-NMR and UV Spectrometry, Starch/Starke 42, 191–196.

    Article  CAS  Google Scholar 

  86. Meuser, F., Gimmler, N., and Oeding, J. (1990) System Analytical Consideration of Derivatization of Starch with a Cooking Extruder as Reactor, Starch/Starke 42, 330–336.

    Article  CAS  Google Scholar 

  87. Chinnaswamy, R., and Hanna, M.A. (1991) Extrusion–Grafting Starch onto Vinyling Polymers, Starch/Starke 43, 396–402.

    Article  CAS  Google Scholar 

  88. Can, M.E., Kim, S., Yoon, K.J., and Stanley, K.D. (1992) Graft–Polymerization of Cationic Methacrylate and Acrylonitrile Monomers onto Starch, Cereal Chem. 69, 70–75.

    Google Scholar 

  89. Chang, Y.H., and Lii, C.Y. (1992) Preparation of Starch Phosphates by Extrusion, J. Food Sci. 57, 203–205.

    Article  CAS  Google Scholar 

  90. Esan, M., Brummer,T.M., and Meuser, F. (1996) Chemical and Processing Aspects of the Production of Cationic Starch Using Extrusion Cooking, Starch/Starke 48, 131–136.

    CAS  Google Scholar 

  91. Wing, R. E. and Willett J. L. (1999) Thermochemical Processes for Derivatization of Starches with Different Amylose Content in Biopolymers–Utilizing Nature’s, Advanced, Materials; Acs Symp. Ser. 723, in S. H. Imam, R.V. Greene, and B.R. Zaidi, (eds.) ACS, Washington DC, pp. 55–64.

    Google Scholar 

  92. Carr, M.E. (1994) Preparation of Cationic Starch Containing Quaternary Ammonium Substituents by Reactive Twin-Screw Extrusion Processing, J.Appl.Polym.Sci, 54, 1855–1861.

    Article  CAS  Google Scholar 

  93. Wang, L., Shogren, R.L. and Willett, J.L. (1997) Preparation of Starch Succinates by Reactive Extrusion, Starch /Stärke 49, 116–120.

    Article  CAS  Google Scholar 

  94. Tomasik P., Wang, Y.J., and Jane, J.L. (1995) Facile Route to Anionic Starches- Succinylation, Maleination, and Phatalation of Corn Starch on Extrusion, Starch/Starke, 47, 96–99

    Article  CAS  Google Scholar 

  95. Wing, R. E., and Willett, J.L. (1997) Water Soluble Oxidized Starches by Peroxide Reactive Extrusion, Ind. Crop. Prod. 7, 45–52.

    Article  CAS  Google Scholar 

  96. Fanta, G.F. and Bagley, E.B. (1977) Starch, Graft Copolymers, in: Encyclopedia of Polymer Science and Technology, Suppl. Vol. 2, Wiley-Interscience, New York, pp. 665–699.

    Google Scholar 

  97. Fanta, G. F., and Doane W. M. (1986) Grafted Starches, Modified Starches: Properties and Uses, Wurzburg, O. B. (ed.), CRC Press. Boca Raton, pp. 149–178.

    Google Scholar 

  98. Weaver, M.O., Bagley, E.B., Fanta, G.F. and Doane, W.M. (1976) Method of Reducing Water Content of Emulsions, Suspensions, and Dispersions with Highly Absorbent Starch-Containing Polymeric Compositions, U.S. Patent 3,935, 099.

    Google Scholar 

  99. Weaver, M.O., Bagley, E.B., Fanta, G.F. and Doane, W.M. (1976) Highly- Absorbent Starch-Containing Polymeric Compositions, U.S. Patent 3,997, 484.

    Google Scholar 

  100. Skinner, E. L., and Elmquist, L.F. (1979) Film Forming SGP, U.S. Patent 4, 156, 664.

    Google Scholar 

  101. Swanson, C.L., Shogren, R.L., Fanta, G.F. and Imam, S.H. (1993) Starch-Plastic Materials- Preparation, Physical Properties, and Biodegradability (A review of Recent USDA Research), J. Environ. Polym. Degrad. 1, 155–166.

    Article  CAS  Google Scholar 

  102. Ratto, J.A., Stenhouse, P.J., Auerbach, M., Mitchell, J. and Farrell, R. (1999) Processing Performance and Biodegradability of a Thermoplastic Aliphatic Polyester/Starch System, Polymer, 40, 6777–6788.

    Article  CAS  Google Scholar 

  103. de Graaf L.A. and Kolster P. (1998) Industrial Proteins as a Green Alternative for “Petro” Polymers: Potentials and Limitatioms, Macromol. Symp. 127: 51–58

    Article  Google Scholar 

  104. Biresaw, G. and Carriere C.J. (2000) Interfacial Properties of Starch/Biodegradable Esters Blends, Polym. Prepr, 41, 64–65

    CAS  Google Scholar 

  105. Averous, L., Moro, L., Dole, P., and Fringant, C. (2000) Properties of Thermoplastic Blends: Starch-Polycapolactone, Polymer, 41, 4157–4167.

    Article  CAS  Google Scholar 

  106. Avella, M., Errico, M.E., Laurienzo, P., Martuscelli E., Raimo, M., and Rimedio, R. (2000) Preparation and Characterization of Compatibilised Polycaprolactone/Starch Composites, Polymer, 41, 3875–3881

    Article  CAS  Google Scholar 

  107. Ramsay, B.A, Langlade,.Carreau, P.J., Ramsay, J.A. (1993) Biodegradability amd Mechanical Properties of poly(beta hydroxy butirate-co-betahydroxyvalerate) starch blends, Appl.Environm. Microbiol., 59, 1242–1246.

    CAS  Google Scholar 

  108. Shogren, R.L. (1995) Poly(ethylene oxide)-Coated Granular StarchPoly(hydroxybutyrate-co-hydroxyvalrate) Composite Materials J.Environm.Polym.Deg., 3, 75–80.

    Article  CAS  Google Scholar 

  109. Kotnis, M.A., O’Brien, G.S and Willett, J.L. (1995) Processing and Mechanical Properties of Biodegradable Poly(hydroxybutyrate-co-valerate)-Starch Compositions, J.Environm. Polym Deg. 3, 97–105

    Article  CAS  Google Scholar 

  110. Imam, S.H., Gordon, S.H., Shogren, R.L. and Greene, R.V. (1995) Biodegradation of Starch-Poly(b-hydroxybuterate-co-valerate) Composites in Municipal Activated Sludge, J. Environ. Polym. Deg. 3, 205–213.

    Article  CAS  Google Scholar 

  111. Muzzarelli, R. (1977) Chitin, Chitin, Pergamon Press, New York.

    Google Scholar 

  112. Singh, D.K., and Ray, A.R. (2000) Biomedical Application of Chitin, Chitosan, and Their Derivatives, J.M.S. Rev. Macromol. Chem. Phys., C40, 69–83.

    Article  Google Scholar 

  113. Li, J., Revol, J.F. and Marchessault, R.H. (1999) Alkali Induced Polymorphic Changes of Chitin, Biopolymers–Utilizing Nature’s, Advanced, Materials; Acs Symp. Ser. 723, S.H. Imam, R. V. Greene, B.R. Zaidi, (eds.) ACS, Washington DC, pp. 88–96.

    Google Scholar 

  114. Kurita, K., Tornita, K., Tada, T., Niscimura, S., and Scimoda, K. (1993) Squid Chitin as a Potential Alternative Chitin Source-Deacetylation Behaviour and Characteristics Properties. J. Polym. Sci., Part A: Polym. Chem. 31, 485–491.

    Article  CAS  Google Scholar 

  115. Kurita, K., Tomita, K., Ishi,i S., Nishimura, S., and Shimoda, K. (1993) Beta-Chitin as a Convenient Starting Material for Acetolysis for Efficient Preparation of N-Acetyl Chitooligosaccharides, J. Polym. Sci., Part A: Polym. Chem. 31, 2393–2395.

    Article  CAS  Google Scholar 

  116. Kurita, K., Ishii, S., Tomita, K., Nishimura, S., and Shimoda, K. (1993) Reactivity Charactestics of Squid Beta-Chitin as Compared with Those of Shrimp Chitin-High Potentials of Squid Chitin as a Starting Material for Facile Chemical Modifications J. Polym. Sci., Part A: Polym. Chem. 32, 1027–1032.

    Article  Google Scholar 

  117. Kim, S.S., Kim, S.J., Moon, Y.D. and Lee, Y.M. (1994) Thermal Characteristics of Chitin and Hydroxypropyl Chitin, Polymer 35, 3212–3216.

    Article  CAS  Google Scholar 

  118. Muzzarelli, R. (1985). Chitin, in: Encyclopedia of Polymer Science and Engineering, John Wiley, New York, Vol. 3, pp. 430–441.

    Google Scholar 

  119. Yamada, K., Chen, T., Kumar, G., Vesnovsky, O., Topoleski, L.D.T and Payne, G.F. (2000) Chitosan Based Water-Resistant Adhesive. Analogy to Mussel Glue, Biomacromolecules 1, 252–258.

    Article  CAS  Google Scholar 

  120. Kurita, K. (1998) Chemistry and Application of Chitin and Chitosan, Polym. Degrad. Stab. 59, 117–120.

    Article  CAS  Google Scholar 

  121. Wu, A.C.M., and Bough, W.A. (1978) Proceedings of lts International Conference on Chitin/Chitosan, in R. Muzzarelli and E.R. Pariser (eds.), MIT-SG, Cambridge p. 88

    Google Scholar 

  122. Sannan, T., Kurita K. and Iwakura Y. (1976) Studies on Chitin, 2. Effect of Deacetylation on Solubility. Makromol.Chem., 177, 3589–6000

    Article  CAS  Google Scholar 

  123. Brugnerotto, J., Desbrières, J., Heux, L., Mazeau, K. and Rinaudo, M. (2001) Overview on Structural Characterization of Chitosan Molecules in relation with the Behaviour in Solution, Macromol.Symp. 168, 1–20.

    Google Scholar 

  124. Rinaudo, M., and Domard, A. (1989) Solution Properties of Chitosan, in Chitin and Chitosan, G. Sjak-Braek, T. Anthonsen, and P. Sandford (eds.), Elsevier, New York, p. 77

    Google Scholar 

  125. Dutkiewicz, J., and Tuora, M. (1992) Advances in Chitin and Chitosan, in Advances in Chitin and Chitosan, C. J. Brine, P. A. Sanford, and J. P. Zikakis, (eds.), Elsevier, New York, p. 496.

    Chapter  Google Scholar 

  126. Peniche, C., and Argillles-Monal, W. (2001) Chitosan Based Polyelectrolyte Complexes, Macromol.Symp., 168, 103–116.

    Article  CAS  Google Scholar 

  127. Tones, J. A., Dewitt-Mireles, C., and Savant, V. (1999) Two Food Applications of Biopolymers: Edible Coatings Controlling Microbial Surface Spoilage and Chitosan Use to Recover Proteins from Aqueous Processing Wastes, In Biopolymers–Utilizing Nature’s, Advanced, Materials; ACS Symp. Ser. 723, S.H. Imam, R.V. Greene, B.R. Zaidi, (eds.) ACS, Washington DC, pp. 248–282.

    Google Scholar 

  128. McKay, G., Blair, H.S. and Gardner J.R. (1982) Adsorption of Dyes on Chitin. I. Equilibrium Studies J.Appl.Polym.Sci. 27, 3043–3057.

    Article  CAS  Google Scholar 

  129. Lee, Y.M., Kim, S.H., and Kim, S.J. (1996) Preparation and Characteristics of f3-Chitin and Poly(vinyl alcohol) Blend, Polymer, 37, 5897–5905.

    Article  Google Scholar 

  130. Mima, S., Miya, M., and Yoshikawa, S. (1983) Highly Deacetylated Chitosan and Its Properties J. Appl. Polym. Sci. 28, 1909–1917.

    Article  CAS  Google Scholar 

  131. Kim, J.H., Lee, Y.M., and Kim, K.Y. (1992) Properties and Swelling Characteristics of Crosslinked Poly(vinyl alcohol) Chitosan Blend Membrane J. Appl. Polym. Sci. 45, 1711–1717.

    Article  CAS  Google Scholar 

  132. Mucha, M., Piekielna, J., Wieczorek, A. (1999) Characterisation and Morphology of Biodegradable Chitosan/Synthetic Polymer Blends, Macromol Symp., 144, 391–412.

    Article  CAS  Google Scholar 

  133. Nino, K.A., Imam, S.H., Gordon, S. H., and Wong, L.J.G. (1999) Extruded Plastics Containing Starch and Chitin: Physical Properties and Evaluation of Biodegradability, in Biopolymers–Utilizing Nature’s, Advanced, Materials; Acs Symp. Ser. 723, S.H. Imam, R.V. Greene, B.R. Zaidi, (eds.) ACS, Washington DC, pp. 198–203.

    Google Scholar 

  134. Kurita, K. (1986) Chitin in Nature and Technology, in: Chitin in Nature and Technology, R. Muzzarelli, C. Jeuniaux, G.W. Gooday, (eds.), Plenum Press, New York, p. 287.

    Chapter  Google Scholar 

  135. Reinhart, C.T. and Peppas, N.A. (1984) Solute Diffusion in Swollen Membranes. Part II. Influence of Crosslinking on Diffusive Properties J.Membr.Sci. 18, 227–239.

    Article  CAS  Google Scholar 

  136. Chandy, T., and Sharma, C. P. (1990) Chitosan–as a Biomaterial, Artif Cells Artif. Org. 18, 1–24.

    CAS  Google Scholar 

  137. Chandy, T. and Sharma, C.P. (1992) Prostaglandin-El-Immobilized Poly(vinyl alcohol)-Blended Chitosan Membranes–Blood Compatibility and Permeability Properties, J. Appl. Polym. Sci. 44, 2145–2156.

    Article  CAS  Google Scholar 

  138. Muzzarelli, R., Baldassarre, V., Conti, F., Ferrara, P., Biagini, G., Gazzanelli, G. and Vasi, V. (1988) Biological Activity of Chitosan: Ultrastructural Study, Biomaterials, 9, 247–252.

    Article  CAS  Google Scholar 

  139. Muzzarelli R. (1994) In Vivo Biochemical Significance of Chitin-Based Medical Items, in Polymeric Biomaterials, D.S.Dekker (ed.), New York, pp. 179–197.

    Google Scholar 

  140. Zupanets, I.A., Drogovoz, S.M., Yakovleva, L.V., Pavlii, A.I., and Bykova, O.V. (1990) Physiological Importance of Glucosamine, Fiziol.Zh., 36, 115–120

    CAS  Google Scholar 

  141. Setnikar, I., Greda, R., Pacini, M. A., and Revel, L. (1991) Antireactive Properties of Glicosamine Sulfate, Arzneim.-Forsch. 41, 157–161.

    CAS  Google Scholar 

  142. Carlozzi M., and Iezzoni, D.G. (1966) Facilitating Healing of Body Surface Wounds by Intravenous Administration of n-Acetyl Glucosamine, Glucosamine, or Pharmaceutically Acceptable Acid Salts of Glucosamine, U.S. Pat. 3,232, 836

    Google Scholar 

  143. Okamoto, Y., Shibazaki, K., Minami, S., Matsuhashi, A., Tanioka, S. and Shigemasa, Y. (1995) Evaluation of Chitin and Chitosan on Open Wound-Healing in Dogs, J. Veterinary Medical Science, 57, 851–854.

    Article  CAS  Google Scholar 

  144. Shigemasa Y., and Minami, S. (1996) Application of Chitin and Chitosan for Biomaterials, in Biotechnology and Genetic Engineering Reviews, Vol.13, 383–420.

    Google Scholar 

  145. Hirano, S. (2001) Fibers Based on Chitin and Chitosan, Macromol.Symp., 168, 21–30

    Article  CAS  Google Scholar 

  146. Goheen, D. H., and Hoyt, C. H. (1981) Lignin, in: Kirk-Othmer Encyclopedia of Polymer Science and Technology, 3th Ed., Vol. 14,. John Wilet Sons, New York pp. 294–312.

    Google Scholar 

  147. Pollak, A. (1952) Lignin, in: Kirk-Othmer Encyclopedia of Chemical Technology, 1st Ed., Vol. 8, John Wilet Sons, New York, pp. 327–338.

    Google Scholar 

  148. Piccolo, R. S. J., Santos, F., and Frollini, E. (1997) Sugar Cane Bagasse Lignin in Resol–Type Resin: Alternative Application for Lignin-Phenol-Formaldehyde Resins, J.M.S. Pure Appl. Chem. A34, 153–164.

    Google Scholar 

  149. Shirashi, N. (1992) Liquefaction of Lignocellulosics in Organic Solvents and its Applications, in Emerging Technologies for Materials and Chemicals from Biomass, R.M. Rowell, T.P.Scultz, R. Narayan (eds.), ACS Symp. Ser. 476, pp. 136–145.

    Chapter  Google Scholar 

  150. Shiraishi, N., and Kishi, N. (1986) Wood-Phenol Adhesives Prepared from Carboxymethylated Wood. I. J. Appl. Polym. Sci., 32, 3189–3209.

    Article  CAS  Google Scholar 

  151. Lin, L., Yoshioka, M., Yao, Y. and Shiraiahi N. (1994) Liquefaction of Wood in the Presence of Phenol Using Phosphoric Acid as a Catalyst and the Flow Properties of the Liquefied Wood, J. Appl. Polym. Sci. 52, 1629–1636

    Article  CAS  Google Scholar 

  152. Lin, L., Yoshioka, M., Yao, Y. and Shiraishi, N. (1995) Physical Properties of Moldings from Liquefied Wood Resins, J. Appl. Polym. Sci. 55, 1563–1571.

    Article  CAS  Google Scholar 

  153. Alma, M.H., Yoshioka, M., Yao, Y., and Shiraishi, N. (1996) Phenolation of Wood Using Oxalic Acid as a Catalyst: Effect of Temperature and Hydrochloric Acid Addition, J. Appl. Polym. Sci. 61, 675–683.

    Article  CAS  Google Scholar 

  154. Northey, R.A. (1992) Low Cost Uses of Lignin, in Emerging Technologies for Materials and Chemicals from Biomass, ACS Symp. Ser. 476, R.M. Rowell, T.P. Scultz, R. Narayan (eds.) ACS, Washington, D.C., pp. 146–175.

    Google Scholar 

  155. Glasser, W.G., Riasl, T.G., Kelly, S.L., and Ward, T.C. (1989) Engineered Lignin-Containing Material with Multiphase Morphology, TAPPI Proc. Wood Pulping.Chem., pp. 35–38.

    Google Scholar 

  156. Meister, J.J. and Chen, M.J. (1991) Graft 1-Phenylethylene Copolymers of Lignin. I. Synthesis and Proof of Copolymerization, Macromolecules, 24, 6843–6848.

    Article  CAS  Google Scholar 

  157. Meister, J.J. (1991) Soluble or Crosslinked Graft Copolymers of Lignin, Acrylamide and Hydroxymethacrylate, U.S. Patent 5,037, 931

    Google Scholar 

  158. Meister, J. J. and Li, C.T. (1992) Synthesis and Properties of Several Cationic Graft Copolymers of Lignin, Macromolecules 25, 611–616

    Google Scholar 

  159. Narayan R., Stacy N., Ratcliff M., and Chum H.L. (1989) Engineering Lignopolystirene Materials of Controlled Strucutres, in Lignin: Properties and Materials, ACS Symp.Ser. 397, W.G.Glasser, S.Sarkanen (eds.) ACS, Washington, D.C., pp. 475–485.

    Google Scholar 

  160. Matuana, L. M., Riedl, B. and Barry, 0. (1993). Kinetic Characterization by Differential Enthalpy Analysis of Lignosulfonate-Based Phenol-Formaldehyde Resins. Eur. Polym. J., 29, 483–490.

    Article  CAS  Google Scholar 

  161. Ash, T., Wu, C.F., Creamer, A.W., and Lora J.H. (1992) Improved Lignin- Based Wood Adhesives, PCT Int. Appl. Wo 92 /18557.

    Google Scholar 

  162. Peng, W., Riedl, B. and Barry, A.O. (1993) Study on the Kinetics of Lignin Methylolation. J. Appl. Polym. Sci., 48, 1757–1763.

    Article  CAS  Google Scholar 

  163. Hall, R. L. (1980) Enzymatic Transformation of Lignin, Enzyme Microbiol. Technol. 2, 170–176.

    Article  CAS  Google Scholar 

  164. Kirk, T. K., and Farrell, R. L. (1987) Enzymatic Combustion: The Microbial Degradation of Lignin, Annu. Rev. Microbiol. 41, 465–505.

    Article  CAS  Google Scholar 

  165. Lequart C., Kurek, B., Debeire P., Monites, B. (1998) MnO2 and Oxalate: An Abiotic Route for the Oxidation of Aromatic Components in Wheat Straw J.Agr.Fodd.Chem., 46, 3868–3874

    Google Scholar 

  166. Kurek, B., Martinez-Inigo, M.J., Artaud I., Hames, B.R., Lequart, C. and Monties, B. (1998) Structural Features of Lignin Determining its Biodegradation by Oxidative Enzymes and Related Systems, Polym.Deg.Stab., 59, 359–364.

    Google Scholar 

  167. Martinez Inigo, M.J. and Kurek, B. (1997) Oxidative Degradation of Alkali Wheat Straw Lignin by Fungal Lignin Peroxidase, Manganese Peroxidase and Laccase: A Comparative Study Holzforschung, 51, 543–548.

    Article  CAS  Google Scholar 

  168. Chapman, G. M. (1994) Status of Technology and Applications of Degradable Products in Polymers from Agricultural Coproducts, ACS Symp. Ser. 575, M. L. Fishman, R. B. Friedman and S. J. Huang (eds.), ACS, Washington,D.C., pp. 29–47.

    Google Scholar 

  169. Milstein, O., Gersonde, R., Huttermann, A., Chen, M.J. and Meister, J.J. (1996) Fungal Biodegradation of Lignin Graft Copolymers from Ethene Monomers, J.M.S. Pure Appl. Chem. A33, 685–702.

    Google Scholar 

  170. Lopez, B.L., Mejia A.I., and Sierra, L. (1999) Biodegradability of Poly(vinyl alcohol) Polym.Eng.Sci., 39, 1346–1352.

    Article  Google Scholar 

  171. Mejia, A., Lopez, B.L., Mulet, A., (1999) Biodegradation of Poly (vinylalcohol) with Enzymatic Extracts of Phanerochaete Chrysosporium, Mac.Symp. 148, 131–147.

    Article  Google Scholar 

  172. Chiellini, E., Cinelli P., Imam S.H., and Mao L. (2001) Composite Films Based on Biorelated Agro-Industrial Waste and Poly(vinyl alcohol). Preparation and Mechancial Propertie Characterization, Biomacromolecules, 2, 1029–1037.

    Article  CAS  Google Scholar 

  173. Chiellini, E., Cinelli P., Imam S.H., and Mao L. (2001) Composite Films Based on Poly(vinyl alcohol) and Lignocellulosic Fibres: Preparation and Characterization, In: Biorelated Polymers-Sustainable Polymer Science and Technology, E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm, and M. Van der Zee (eds.), Kluwer Academic/Plenum Publishers, pp. 87–100.

    Google Scholar 

  174. Saraf, V. P., Glasser, W. G., Wilkes, G. L., and McGrath, J. E. (1985). Engineering Plastics from Lignin. VI. Structure-Property Relationships of PEG-Containing Polyurethane Networks, J. Appl. Polym. Sci., 30, 2207–2224.

    Article  CAS  Google Scholar 

  175. Yoshida, H., Mörck, R., Kringstadt, K.R. and Hatakeyama, H. (1987) Kraft Lignin in Polyurethanes I. Mechanical Properties of Polyurethanes from a Kraft Lignin-Polyether Triol-Polymeric MDI System, J. Appl. Polym. Sci. 34, 1187–1198.

    Article  CAS  Google Scholar 

  176. Gandini, A., Belgacem, N.M. (1998) Recent Advances in the Elaboration of Polymeric Materials Derived from Biomass Components, Polym. Int. 47, 267–276.

    Article  CAS  Google Scholar 

  177. Kosikova, B., Demianova, V., and Kacuracova M. (1993) Sulfur-Free Lignins as Composites of Polypropylene Films, J. Appl. Polym. Sci. 47, 1065–1073.

    Article  CAS  Google Scholar 

  178. Ghosh, I., Jain, R.K., and Glasser, W.G. (1999) Multiphase Materials with Lignin. XV. Blends of Cellulose Acetate Butyrate with Lignin Esters, J.Appl.Polym.Sci. 74, 448–457.

    Article  CAS  Google Scholar 

  179. Rials, T.G., and Glasser, W.G. (1989) Multiphase Materials with Lignin. IV, J. Appl. Polym. Sci. 37, 2399–2415.

    Article  CAS  Google Scholar 

  180. Rials, T. G., and Glasser, W.G. (1990) Multiphase Materials with Lignin.5. Effect of Lignin Strucutre on Hydroxypropylcellulose Blend Morphology, Polymer., 31, 1333–1338.

    Article  CAS  Google Scholar 

  181. Dave, V., and Glasser, W.G. (1997) Cellulose-Based Fibres from Liquid Crystalline Solution.5. Processing and Morphology of CAB Blends with Lignin, Polymer, 38, 2121–2126.

    Article  CAS  Google Scholar 

  182. Hüttermann, A., Mai, C., and Kharazipour A. (2001) Modification of Lignin for the Production of New Compounded Materials, Appl. Microbiol. Biotechnol. 55, 387–394.

    Article  Google Scholar 

  183. Mester, T., and Tien, M. (2000) Oxidation Mechanism of Ligninolytic Enzymes Involved in the Degradation of Environmental Pollutants, Int.Biodeter.Biodegr., 46, 51–59.

    Article  CAS  Google Scholar 

  184. Tien, M., and Kirk T.K. (1983) Lignin Degrading Enzyme from Phanaerochaete Chrysosporium, Science, 221, 661–663.

    Article  CAS  Google Scholar 

  185. Hutterman A., and Haars A. (1987) Biochemical Control of Forest Pathogen Inside the Tree, In: I. Chet (ed) Innovative Approaches toPlant Disease Control. John Wiley Sons, New York, pp. 275–296.

    Google Scholar 

  186. Kruus K., Niku-Paavola, M.L. and Viikari L.(2001) Laccase-a Useful Enzyme for Modification of Biopolymers, In: Biorelated Polymers-Sustainable Polymer Science and Technology, E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm, and M. Van der Zee (eds.), Kluwer Academic/Plenum Publishers, pp. 255–261

    Google Scholar 

  187. Chiellini E., Cinelli P., Dantone S.and Ilieva V.I. (2002) Environmentally Degradable Polymeric Materials in Agriculture Applications-An Overview, Polymery, 47, 538–544.

    CAS  Google Scholar 

  188. Feughelman, M. (2002) Natural Protein Fibers, J. Appl. Polym. Sci. 83, 489–507.

    Article  CAS  Google Scholar 

  189. Ward, A. G., and Courts, A. (1977) The Science and Technology of Gelatin; Academic Press: New York.

    Google Scholar 

  190. Veis, A. (1964) The Macromolecular Chemistry of Gelatin; Academic Press: New York.

    Google Scholar 

  191. Feughelman, M. (2002) Natural Protein Fibers. J. Appl. Polym. Sci., 83, 489–507.

    Google Scholar 

  192. Rose P.I. (1987) Gelatin in Encyclopedia of Polymer Science and Engineering, H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges (eds.) John Wiley, New York, Vol.7, pp.488–513.

    Google Scholar 

  193. Yannas, I.V., and Tobolsky A.V. (1968) Stress Relaxation of Anhydrous Gelatin Rubbers, J. Appl. Polym. Sci., 12, 1–8

    Article  CAS  Google Scholar 

  194. Yannas I.V. (1972) Collagen and Gelatin in the Solid State, J. Macomol. Sci. Macromol. Chem., C7, 49–104

    Article  CAS  Google Scholar 

  195. Panduranga R.K. (1995) Recent Developments of Collagen-Based Materials for Medical Applications and Drug Delivery Systems. J. Biomater. Sci. Polym. Ed., 7, 623–645.

    Article  Google Scholar 

  196. Cuq B., Gontard N., and Guilbert S.I. (1998) Proteins as Agricultural Polymers for Packaging Production. Ceral.Chem, 75, 1–9.

    Article  CAS  Google Scholar 

  197. Kester, J. J., and Fennema, O. R. (1986) Edible Films and Coatings: a Review., Food Technol. 40, 47–59.

    CAS  Google Scholar 

  198. De Graaf L.A., Kolster P., and Vereijken, J.M. (1998), Plants Protein from European Crops, Food and non-food applications; Springer Verlag Berlin, Heidelberg, New York, pp. 335–339.

    Google Scholar 

  199. Arvanitoyannis, I., Psomiadou, E. and Nakayama A. (1996). Edible Films Made from Sodium Caseinate, Starches, Sugars or Glycerol. Part 1. Carbohydr. Polym., 31, 179–192.

    Article  Google Scholar 

  200. Arvanitoyannis, I., Psomiadou, E., Nakayami, A., Aiba, S., and Yamamoto, N. (1997) Edible Films Made from Gelatin, Soluble Starch and Polyols, Part 3., Food Chem. 60, 593–604.

    Article  CAS  Google Scholar 

  201. Garcia-Rodenas, C.L., Cuq, J.L., and Aymard, C. (1994) Comparison of in Vitro Proteolysis of Casein and Gluten as Edible Films or as Untreated Proteins, Food.Chem., 51, 275–280.

    Article  CAS  Google Scholar 

  202. Gennadios, A., Weller, C.L., and Testin, R.F. (1993) Modification of Physical and Barrier Properties of Edible Wheat-Gluten Based Films, Cereal. Chem., 70, 426–429

    CAS  Google Scholar 

  203. Kester, J.J. and Fennema, 0. (1986) Edible Films and Coatings: a Review. Food.technol., 100, 47–59.

    Google Scholar 

  204. McHugh, T.H., Aujard, J.F., and Krochta, J.M. (1994) Plasticized Whey Protein Edible Films: Water Vapor Permeability Properties, J.Food.Sci., 59, 394–398.

    Article  Google Scholar 

  205. Tolstoguzow, V.B. (1994) Some Physiochemical Aspects of Protein Processing in Foods. In Gums and Stabilizers for the Food Industry, G.O.Philips, P.A. Williams and D.J. Wedlock (eds.), Vol. 7, IRL Press, Oxford, pp. 115–154.

    Google Scholar 

  206. Gennadios, A., and Weller, C. L. (1990) Edible Films and Coatings from Wheat and Corn Proteins., Food Technol. 44, 63–69.

    CAS  Google Scholar 

  207. Baldwin, E. A., Nisperos-Carriedo, M. O., and Baker, R. A. (1995) Use of Edible Coatings to Preserve Quality of Lightly (and Slightly) Processed Products., Crit. Rev. Food Sci. Nutr. 35, 509–524.

    Article  CAS  Google Scholar 

  208. Jonston-Banks, F. A. (1990) Gelatin, in Food Gels, P. Harris, (ed.), Elsevier Appl. Sci., London, pp. 233–289.

    Chapter  Google Scholar 

  209. Hood, L.L. (1987) Collagen in Sausage Casings., Adv. Meat. Res. 4, 109–129.

    Google Scholar 

  210. Tones, J. A. (1994) Edible Films and Coatings from Proteins., Protein Functionality in Food Systems, in N. S. Hettiarachchy and G. R. Ziegler (eds.), IFT Basic Sympos. Ser., Marcel Dekker Inc., New York, pp. 467–507.

    Google Scholar 

  211. Slade, L., and Levine, H. (1987). Polymer Chemical Properties of Gelatin In Advances in Meat Research. Collagen as Food, A.M. Pearson, T.R. Dutson and A.Q.J. Bailey (eds.), Van Nostrand Reinhold Co, New York, Vol.4, pp. 251–266.

    Google Scholar 

  212. Lens, J.P., Mulder, W.J., and Kolster, P. (1999) Modification of Wheat Gluten for Non-food Applications, Cereal Foods World, 44, 5–9.

    Google Scholar 

  213. Ayhllon-Meixuero F., Tropini V., and Silvestre F. (2001) Fatty Esterification of Plant Proteins, in: Biorelated Polymers-Sustainable Polymer Science and Technology, E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm, and M. Van der Zee (eds.), Kluwer Academic/Plenum Publishers, pp. 231–236

    Google Scholar 

  214. Brother, G.H., and McKinney, L.L. (1938). Protein Plastics from Soyben Products. Action of Hardening or Tanning Agents on Protein Material. Ind. Eng. Chem., 30, 1236–1240.

    Article  CAS  Google Scholar 

  215. Fraenkel-Conrat, H., and Olcott, H.S. (1948) The Reaction of Formaldehyde with Proteins. V. Cross-Linking between Amino and Primary Amide or Guanidyl Groups., J. Am. Chem. Soc., 70, 2673–2684.

    Article  CAS  Google Scholar 

  216. Paetau, I., Chen, C.Z., and Jane, J. (1994) Biodegradable Plastic Made from Soybean Products. II. Effects of Cross-Linking and Cellulose Incorporation on MechanicalProperties and Water Absorbtion, J. Environ. Polym. Degrad. 2, 211–217.

    Article  CAS  Google Scholar 

  217. Marquié, C., Aymard, C., Cuq, J. L., and Guilbert, S. (1995) Biodegradable Packaging Made from Cottonseed Flour: Formation and Improvement by Chemical Treatments with Gossypol, Formaldehyde and Glutaraldehyde. J. Agric. Food Chem. 43, 2762–2767.

    Article  Google Scholar 

  218. Tropini, V., Lens, J.P., Mulder, W. J., and Silvestre, F. (2001) Chemical Modification of Wheat Gluten, in Biorelated Polymers, Sustainable Polymer Science and Technology, E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm, and M. Van der Zee (eds.), Kluwer Academic/Plenum Publishers, pp. 237–242.

    Google Scholar 

  219. Stuchell, Y. M., and Krochta, J. M. (1994) Enzymatic Treatments and Thermal Effects on Edible Soy Protein Films. J. Food Sci. 59, 1332–1337.

    Article  CAS  Google Scholar 

  220. Yildirim, M., and Hettiarachchy, N. S. (1997) Biopolymers Produced by Cross-Linking Soybean 11S Globulin with Whey Proteins Using Transglutaminase., J. Food Sci. 62, 270–275.

    Article  CAS  Google Scholar 

  221. Motoki, M., Aso, H., Seguro, K., and Nio, N. (1987) a sl Casein Film Prepared Using Transglutaminase., Agric. Biol. Chem. 51, 993–996.

    Google Scholar 

  222. Larré, C., Deshaye, G., Lefebre, J., and Popineau, Y. (1998) Hydrated Gluten Modified by a Transglutaminase., Nahrung. 42, 155–157.

    Article  Google Scholar 

  223. Larré C., Desserme, C., Barbot, J., Mangavel, C., and Guéguen J. (2001) Enzymatic Crosslinking Enhance Film Properties of Deamidated Gluten, In Biorelated Polymers, Sustainable Polymer Science and Technology,E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm, and M. Van der Zee (eds.), Kluwer Academic/Plenum Publishers, pp. 243–253.

    Google Scholar 

  224. Akin H., and Harisci N., (1995) Preparation and Characterization of Crosslinked Gelatin Microspheres, J. Appl. Polym. Sci., 58: 95–100

    Article  CAS  Google Scholar 

  225. Chatterji P. R. (1989) Gelatin with Hydrophilic/Hydrophobic Grafts and Glutaraldehyde Crosslinks, J. Appl. Polym. Sci., 37, 2203–2212

    Article  CAS  Google Scholar 

  226. Digenis G.A., Gold T.B., and Shah V.P. (1994) Cross-linking of Gelatin Capsules and its Relevance to their in Vitro-in Vivo Performance, J. Pharm. Sci., 83: 915–921

    Article  CAS  Google Scholar 

  227. Fraga A.N., and Williams R.J.J. (1985) Thermal Properties of Gelatin Films, Polymer, 26: 113–118

    Article  CAS  Google Scholar 

  228. Clark, A.H., and Ross-Murphy, S.B. (1987) Structural and Mechanical Properties of Biopolymer Gels. Adv. Polym. Sci, 83, 57–192.

    Article  CAS  Google Scholar 

  229. Ross-Murphy, S. B. (1997) Structure and Rheology of Gelatin Gels. Imag. Sci. J. 45, 205–209.

    CAS  Google Scholar 

  230. Todd, A. (1961) Rigidity Factor of Gelatin Gels. Nature, 191, 567–569.

    Article  CAS  Google Scholar 

  231. Te Nijenhuis, K. (1981) Investigation into the Ageing Process in Gels of Gelatin/Water Systems by the Measurement of their Dynamic Moduli: Part I. Colloid Polym. Sci., 259, 522–530.

    Article  Google Scholar 

  232. Te Nijenhuis, K. (1981) Investigation into the Ageing Process in Gels of Gelatin/Water Systems by the Measurement of their Dynamic Moduli: Part II. Colloid Polym.Sci. 259, 1017–1026

    Article  Google Scholar 

  233. Ross-Murphy, S. B. (1992) Structure and Rheology of Gelatin Gels: Recent Progress. Polymer, 33, 2622–2627.

    Article  CAS  Google Scholar 

  234. Te Nijenhuis, K. (1997) Thermoreversible Networks: Viscoelastic Properties and Structure of Gels. Adv. Polym. Sci. 130, 160–194.

    Article  Google Scholar 

  235. Stanton, J. S., Salik, V., Bentley, G., and Dawnes, S. (1995) The Growth of Chondrocytes Using Gelfoam as a Biodegradable Scaffold. J. Mater. Sci. Mater. Med., 6, 739–744.

    Article  CAS  Google Scholar 

  236. Rault, I., Herbage, F.D., Abdul-Malak, N., and Huc, A. (1996) Evaluation of Different Chemical Methods for Cross-linking Collagen Gel, Films and Sponges. J. Mater. Sci. Mater. Med., 7, 215–221.

    Article  CAS  Google Scholar 

  237. Jayakrishnan, A., and Jameela, S.R. (1996) Glutaraldehyde as a Fixative in Bioprostheses and Drug Delivery Matrices, Biomaterials, 17, 471–484.

    Article  CAS  Google Scholar 

  238. Nieuwenhuis, P., and Feijen, J. (1995) Glutaraldehyde as a Cross-linking Agent for Collagen-Based Biomaterials. J. Mater. Sci. Mater. Med., 6, 460–472.

    Article  Google Scholar 

  239. Olde Damink, L.H, Dijkstra, P.J., Van Luyn, M.J. van Wachem, P.B., Nieuwenhuis,P. and Feijen, J. (1995) Cross-linking of Dermal Sheep Collagen Using Hexamethylene Diisocyanate J. Mater. Sci. Mater. Med., 6, 429–434

    Article  Google Scholar 

  240. Ofner, C.M., and Bubnis, W.A. (1996) Chemical and Swelling Evaluations of Amino Group Cross-linking in Gelatin and Modified Gelatin Matrices. Pharm. Res., 13, 1821–1827.

    Article  CAS  Google Scholar 

  241. Sung, H.W., Hsu, H.L., Shih, C.C. and Lin, D.S. (1996) Cross-linking Characteristics of Biological Tissues Fixed with Monofunctional or Multifunctional Epoxy Compounds. Biomaterials, 17, 1405–1410.

    Article  CAS  Google Scholar 

  242. Petite, H., Rault, I., Huc, A., Mesnache, P. and Herbage, D.J. (1990) Use of the Acyl Azide Method for Cross-Linking Collagen-Rich Tissue such as Pericardium Biomed. Mater. Res., 24, 179–188.

    Article  CAS  Google Scholar 

  243. Speer, D. P., Chvapil, M., Eskelson, C.D., Ulreich, J. (1980) Biological Effect of Residual Glutaraldehyde in Glutaraldehyde-Tanned Collagen Biomaterials. J. Biomed. Mater. Res., 14, 753–764.

    Article  CAS  Google Scholar 

  244. Khor, E., Wee, A., Loke, W.K. and Tan, B.L. (1996) Dimethyl Sulfoxide as an Anticalcification Agent for Glutaraldehyde-Fixed Biological Tissue. J. Mater. Sci. Mater. Med., 7, 691–693.

    Article  CAS  Google Scholar 

  245. Schacht, E., Nobels, M., Vansteenkiste, S., Demeester, J., Franssen, J. and Lemahieu, A. (1993) Some Aspects of the Cross-Linking of Gelatin by Dextran Dialdhydes. Polym. Gels Networks, 1, 213–224.

    Article  CAS  Google Scholar 

  246. Bogdanov, B., Schacht, E. and Van Den Bulcke, A. (1997) Thermal and Rheological Properties of Gelatin-Dextran Hydrogels, J.Therm.Anal., 49, 847–856

    Article  CAS  Google Scholar 

  247. Schacht, E., Bogdanov, B., Van Den Bulcke, A., and De Rooze, N. (1997) Hydrogels Prepared by Cross-Linking of Gelatin with Dextran Dialdehyde. React. Funct. Polym., 33, 109–116.

    Article  CAS  Google Scholar 

  248. Draye, J.P., Delaey, B., Van de Voorde, A., Van Den Bulcke, A., De Reu, B., Schacht, E. (1998) In Vitro and in Vivo Biocompatibility of Dextran Dialdehyde Cross-Linked Gelatin Hydrogel Films. Biomaterials, 19, 1677–1687.

    Article  CAS  Google Scholar 

  249. Draye, J.P., Delaey, B., Van de Voorde, A., Van Den Bulcke, A., Bogdanov, B., and Schacht, E. (1998) In Vitro Release Characteristics of Bioactive Molecules from Dextran Dialdehyde Cross-linked Gelatin Hydrogel Films, Biomaterials, 19, 99–107.

    Article  Google Scholar 

  250. Van Den Bulcke I., Bogdanov B., De Rooze N., Schacht E.H., Cornelissen M. and Berghmans H., (2000) Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels, Bioacromolecules, 1, 31–38.

    Article  CAS  Google Scholar 

  251. Environmental Bio-Process (M) Sdn. Bhd., GEL-OUT-Gelatin Eradication System. http://www.malaysia-web.com/cyberdir/environ/gelout.htm

    Google Scholar 

  252. Kenawy E. R., Cinelli P., Corti A., Miertus S. and Chiellini E. (1999) Biodegradable Composite Films Based on Waste Gelatin, Macromol. Symp., 144, 351–364

    Article  CAS  Google Scholar 

  253. Cinelli P., 1999, Formulation and Characterization of Envrionmentally Compatible Polymeric materials for Agriculture Applications. PhD Thesis, University of Pisa.

    Google Scholar 

  254. Chiellini E., Cinelli P., Corti A., Kenawy E.R., Grillo F. E., Solaro R. (2000) Environmentally Sound Blends and Composites Based on Water-Soluble Polymer Matrices, Macromol. Symp. 152: 83–94.

    Article  CAS  Google Scholar 

  255. Chiellini E., Cinelli P., Grillo Fernandes E., Kenawy E.R. and Lazzeri A. (2001) Composite Materials Based on Gelatin and Fillers from Renewable Resources: Thermal and Mechanical Properties, in Biorelated Polymers, Sustainable Polymer Science and Technology, E. Chiellini, H. Gil, G. Braunegg, J. Buchert, P. Gatenholm, and M. Van der Zee (eds.), Kluwer Academic/Plenum Publishers, pp. 101–112.

    Google Scholar 

  256. Chiellini E., Cinelli P., Corti A., and Kenawy E.L. (2001) Composite Films Based on Waste Gelatin: Themal-Mechanical Properties and Biodegradation Testing, Polym.Degrad Stab. 73, 549–555.

    Article  CAS  Google Scholar 

  257. Chiellini E., Cinelli P., Grillo Fernandes E., Kenawy E.R. and Lazzeri (2001) Gelatin-Based Blends and Composites. Morphological and Thermal Mechanical Characterization, Biomacromolecules, 2, 806–811.

    Article  CAS  Google Scholar 

  258. Cabeza L.F., Taylor M.M., DiMaio G.L., Brown E.M., Mermer W.N., Carrio R., Celma P.J. and Cot J. (1998) Processing of Leather Waste: Pilot Scale Studies on Chrome Shavings. Isolation of Potentially Valuable Protein Products and Chromium, Waste Management 18, 211–218.

    Article  CAS  Google Scholar 

  259. Taylor M.M., Diefendorf E.J., Thompson C.J., Brown E.M, and Marmer W.N. (1994) Extraction and Characterization of “Chrome Free” Protein from Chromium-Containing Collagenous Waste Generated in the Leather Industry, In: Polymer from Agricultural Coproducts, M.L.Fishman, R.B. Friedman, S.J.Huang (eds.) ACS Symp.Ser. 575, pp. 171–187.

    Chapter  Google Scholar 

  260. Kolomaznik, K, Kupec, J.and Taylor, M. (1997) CSCE/ASCE Environmental Engineering Conference, Edmonton, Alberta, Canada 22–26, July 1997.

    Google Scholar 

  261. Holloway, D. F. (1978) Process for Recovery and Separation of Nutritious Protein Hydrolysate and Chromium from Chrome Leather Scrap. U.S. Patent 4, 100, 154.

    Google Scholar 

  262. Guardini, G. (1984). Process for Recovering Proteins and Chromium from Chrome-Tanning Waste. U.S. Patent 4, 483, 829.

    Google Scholar 

  263. Taylor, M. M., Diefendorf, E. J., Na, G. C., and Marmer, W. N. (1992) Enzymatic Processing of Materials Containing Chromium and Protein. U.S. Patent 5, 094, 946.

    Google Scholar 

  264. Laszlo, J.A., and Dintzisi, F.R. (1994) Crop Residues as Ion-Exchange Materials-Treatment of Soybean Hull and Sugar-Beet Fiber (Pulp) with Epichlorohydrin to Improve Cation-Exchange Capacity and Physical Stability, J. Appl. Polym. Sci. 52, 531–538.

    Article  CAS  Google Scholar 

  265. Kubota, H., and Ogiwara, Y. (1969) Effect of Lignin in Graft Copolymerization of Methyl Methacrylate on Cellulose by Ceric Ion, J. Appl. Polym. Sci., 13, 1569–1575.

    Article  CAS  Google Scholar 

  266. Hornof, V., Kokta, B.V., and Valade, J.L. (1975) The Xanthate Method of Grafting. III. Effect of Lignin Content on the Graftability of Wood Pulp, J. Appl. Polym. Sci., 19, 1573–1584.

    Article  CAS  Google Scholar 

  267. Huang, Y.F., Zhao, B.A., He, S.J., and Gao, J. (1992) Graft-Copolymerization of Methyl-Methacrylate on Stone Ground Wood Using the H202-Fe2+ Method, J. Appl. Polym. Sci. 45, 71–77

    Article  CAS  Google Scholar 

  268. Nagaty, A., Mustafa, A.B., and Mansour, O.F. (1979) Lignocellulose-Polymer Composite, I. J. Appl. Polym. Sci., 23, 3263–3269.

    Article  CAS  Google Scholar 

  269. Zheng, G.Z., Zhao, B.A., He, S.J., and Gao, J. (1995) Initiation of Graft Copolymerization by Direct Oxidation of Lignocellulose with KMnO4 and its Mechanism, J.M.S. Pure Appl. Chem. 1281–1292.

    Google Scholar 

  270. Bhunia, H.P., Nando, G.B., Chaki, T.K., Basak, A., Lenka, S., and Nayak. P.L. (1999) Synthesis and Characterization of Polyners from Cashewnut Shell Liquid (CNSL), a Renewable Resource II. Synthesis of Polyurethanes, Eur. Polym. J., 35, 1381–1391.

    Article  CAS  Google Scholar 

  271. Pillai, C.K.S. (2000) Polymeric Materials from Renewable Resources: High Value Polymers from Cashewnut Shell Liquid, Pop. Plast. Packag., (Spec.issue), 79–84, 86–90.

    Google Scholar 

  272. Ikeda R., Tanaka, H., Uyama, H, and Kobayashi, S. (2000) A New Crosslinkable Polyphenol from a Renewable Resource, Macromol. Rapid Commun. 21, 496–499.

    Article  CAS  Google Scholar 

  273. Mahanwar P.A., and Kale D.D. (1996) Effect of Cashew Nut Shell Liquid (CNSL) on Properties of Phenolic Resins J.Appl.Polym.Sci., 61, 2107–2111.

    Article  CAS  Google Scholar 

  274. Kopf P.W. (1986) Phenolic Resins, In Encyclopedia of Polymer Science and Engineering, 2nd Ed., Wiley, New York, Vol. 11, p. 45–95.

    Google Scholar 

  275. Akkara, J.A., Senecal, K.J., and Kaplan, D.L. (1991). Synthesis and Characterization of Polymers Produced by Horseradish-Peroxidase in Dioxane, J. Polym. Sci.: A: Polym. Chem., 29, 1561–1574.

    Article  CAS  Google Scholar 

  276. Uyama, H., Kurioka H., Kaneko, I., and Kobayashi, S. (1994) Synthesis of a New Family of Phenol Resin by Enzymatic Oxidative Polymerization, Chem. Lett., 3, 423–426.

    Article  Google Scholar 

  277. Wang, P., Martin, B.D., Parida, S., Rethwisch, D.G., and Dordick, J.S. (1995) Multienzymic Synthesis of Poly(hydroquinone) for Use as a Redox Polymer, J. Am. Chem. Soc., 117, 12885–12886.

    Article  CAS  Google Scholar 

  278. Ayyagari, M., Akkara, J. A., and Kaplan, D. L. (1996). Enzyme-Mediated Polymerization Reactions: Peroxidase-Catalyzed Polyphenol Synthesis, Acta Polym., 47, 193–203.

    Article  CAS  Google Scholar 

  279. Uyama, H., Lohavisavapanich, C., Ikeda, R., Kobayashi, S. (1998) Chemoselective Polymerization of a Phenol Derivative Having a Methacryl Group by Peroxidase Catalyst, Macromol., 31, 554–556.

    Article  CAS  Google Scholar 

  280. Tonami, H., Uyama, H., Kobayashi, S., Higashimura, H., and Oguchi, T. (1999) Oxidative Polymerization of 2,6-disubstituted Phenols Catalyzed by Iron-Salen Complex. J. Macrom. Sci.-Pure Appl. Chem., A36, 719–730.

    Article  Google Scholar 

  281. Bhunia, H.P., Nando, G.B., Basak, A., Lenka, S., and Nayak, P.L. (1999) Synthesis and Caracterization of Polymers from Cashewnut Shell Liquid (CNSL), a Renewable Resource III. Synthesis of a Polyether, Eur. Polym. J. 35, 1713–1722.

    Article  CAS  Google Scholar 

  282. Bhunia, H. P., Basak, A., Chaki, T. K., and Nando, G. B. (2000) Synthesis and Characterization of Polymers from Cashewnut Shell Liquid: a Renewable Resource V. Synthesis of Copolyester, Eur. Polym. J. 36, 1157–1165

    Article  CAS  Google Scholar 

  283. John, G., Masuda, M., Okada. Y., Yase, K., and Toshimi, S. (2001) Nanotube Formation from Renewable Resources via Coiled Nanofibers, Adv. Mater. 13, 715–718

    CAS  Google Scholar 

  284. Guru, B.N., Das, T.K.and Lenka, S. (1999) Polymers from Renewable Resources. XXVII. Studies on Synthesis, Characterization, and Thermal Properties of Resins Derived from Cardanyl Acrylate-Furfural-Organic Compounds, Polym.-Plast. Technol. Eng., 38, 179–187

    CAS  Google Scholar 

  285. Das, D., Nayak, P.L., and Lenka, S. (1998) Polymers from Renewable Resources. XXV. Interpenetrating Polymer Networks Derived from Castor OilIsophorone Diisocyanate-Cardanyl Acrylate/Cardanyl Methacrylate: Thermal and XRD Studies, Polym.-Plast. Technol. Eng., 37, 419–426.

    Article  CAS  Google Scholar 

  286. Stevens E.S. (2002) Biopolymers, in Green Plastics, Princenton University Press, Princenton, New Jersey, UK, pp. 83–103.

    Google Scholar 

  287. Metzger, J. O. (2001) Organic Reactions without Organic Solvents and Oils and Fats as Renewable Raw Materials for the Chemical Industry, Chemosphere, 43, 83–87.

    Article  CAS  Google Scholar 

  288. Biermann, U., Metzger, J.O., (1999) Friedel-Crafts Alkylation of Alkenes: Ethylaluminum Sesquichloride Induced Alkylations with Alkyl Chloroformates, Angew. Chem. Int. Ed. 38, 3675–3677.

    Article  CAS  Google Scholar 

  289. Das, T.K., Das, D., Guru, B.N., Das, K.N., and Lenka, S. (1998) Polymers from Renewable Resources. XXVIII. Synthesis, Characterization, and Thermal Studies of Semi-Interpenetrating Polymer Networks Derived from Castor-OilBased Polyurethanes and Cardanol Derivatives, Polym.-Plast. Technol. Eng., 37, 427–435

    Article  CAS  Google Scholar 

  290. Das, S.K., and Lenka, S. (1999) Polymers from Renewable Resources. XXIX. Synthesis and Characterization Of Interpenetrating Networks Derived From Castor-Oil-Based Polyurethane-4-Acetyl Phenyl Methacrylate, Polym.-Plast. Technol. Eng., 38, 149–157.

    Article  CAS  Google Scholar 

  291. Li, F., Marks, D.W., Larock, R.C., and Otaigbe J.U. (2000) Fish Oil Thermosetting Polymers: Synthesis, Structure, Properties and Their Relationships, Polymer, 41, 7925–7939

    Article  CAS  Google Scholar 

  292. Padavich, R.A. and Honary, L. (1995) A Market Research and Analysis Report on Vegetable-Based Industrial Lubricants, Soc. Automotive Eng. Tech. Pap. 952077.

    Google Scholar 

  293. Battersby, N.S., Pack, S.E., and Watkinson, R.J. (1992) A Correlation Between the Biodegradability of Oil Products In the CEC L-33-T-82 and Modified Sturm Tests, Chemosphere, 24, 1989–2000.

    Article  CAS  Google Scholar 

  294. Battersby, N.S., Ciccognani, D., Evans, M.R., King, D., Painter, H.A., Peterson, D.R and Starkey, M. (1999) An Inherent Biodegradability Test for Oil Products: Description and Results of an International Ring Test, Chemosphere, 38, 3219–3235.

    Article  CAS  Google Scholar 

  295. Randles, S.J., and Wright, M. (1992) Environmentally Considerate Ester Lubricants for Automotive and Engineering Industries, J. Syn. Lub. 9, 145–161.

    Article  CAS  Google Scholar 

  296. Erhan S.Z., and Asadauskas S. (2000) Lubricant Basestock from Vegetable Oils Ind. Crop. Prod. 11, 277–282

    Article  CAS  Google Scholar 

  297. Willing, A. (1999) Oleochemical Esters Environmentally Compatible Raw Materials For Oils and Lubricants From Renewable Resources, Fett/Lipid, 101, 192–198.

    Article  CAS  Google Scholar 

  298. Willing, A. (2001) Lubricants Based on Renewable Resources-an Environmentally Alternative to Mineral Oil Products, Chemosphere 43, 89–98.

    Article  CAS  Google Scholar 

  299. Lim, S.W., Jung, I.K., Lee, K.H., and Jin, B.S. (1999) Structure and Properties of Biodegradable Gluten/Aliphatic Polyester Blends, Eur.Polym.J,. 35, 1875 1881.

    Google Scholar 

  300. Ratajska M., and Boryniec, S. (1999) Biodegradation of Some Natural Polymers in Blends with Polyolefines, Polym. Adv. Tech., 10, 625–633.

    Article  CAS  Google Scholar 

  301. Kricheldorf, H. R. (2001) Syntheses and Application of Polylactides, Chemosphere, 43, 49–54.

    Article  CAS  Google Scholar 

  302. Lunt, J. (1998) Large-Scale Production, Properties and Commercial Applications of Polylactic Acid Polymers, Polym. Degrad. Stab., 59, 145–152.

    Article  CAS  Google Scholar 

  303. Lowe C.E. (1954) Preparation of High Molecular Weight Polyhydroxy acetic ester, U.S. Pat.ent 2, 668, 162.

    Google Scholar 

  304. Enomoto, K., Ajioka, M., and Yamaguchi, A. (1994) Polyhydroxy carboxylic Acid and Preparation Process Thereofore, U.S. Patent 5, 310, 865

    Google Scholar 

  305. Kolstad, J.J., Hall, E., Iwen M.L., Benson, R.D., Borchardt, R.L., and Gruber P.R. (1992). Continuous Process for Manufacture of Lactide Polymers with Controlled Optical Purity, U.S. Patent 5,142, 023.

    Google Scholar 

  306. Spassky, N., Simic, V., Hubert-Pfalzgraf, G., and Montaudo, M. S. (1999). Synthesis of Aliphatic Polyesters by Controlled Ring-Opening Polymerization of Cyclic Esters. Characterization, Properties, Transesterification Reactions, Macrol.Symp., 144, 257–268

    Article  CAS  Google Scholar 

  307. Kricheldorf, H. R., Kreiser-Saunders, I., and Damrau, D. O. (1999). Resorbable Initiators for Polymerizations of Lactones, Macrol.Symp., 144, 269–276.

    Article  CAS  Google Scholar 

  308. Kim, S.H., and Kim, Y.H. (1999) Direct Condensation Polymerization of Lactic Acid, Macromol. Symp., 144, 277–287.

    Article  CAS  Google Scholar 

  309. Degée, P., Dubois, PH., Jérôme, R., Jacobsen, S., and Fritzh, G. (1999). New Catalysis for Fast Bulk Ring-Opening Polymerization of Lactide Monomers, Macromol. Symp., 144, 289–302.

    Article  Google Scholar 

  310. Ovchinnikova, T., Zhuravleva, I., Bush, L., and Il’in, N. (1999). Kinetics and Mechanism of Glycolide and Ethylenoxalate Copolymerization. Characteristics of the Copolymers Formed and Mechanism if the Biodegradation, Macromol. Symp., 144, 303–311.

    Article  CAS  Google Scholar 

  311. Ph. Dubois and Ph. Degée (eds.), (2000) Advances in Ring Opening (Methathesis) Polymerization, Macromol.Symp. 153,1–342 pp.

    Google Scholar 

  312. Jacobsen, S, Degée, Ph., Fritz, H.G., Dubois, Ph. and Jérome R. (1999) Polylactide (PLA)-A New Way of Production, Polym.Eng.Sci., 39, 1311–1319.

    Article  CAS  Google Scholar 

  313. Jérôme, R., Degée, Ph., Dubois, Ph., Jacobsen, S., and Fritzh, G. (1998Aliphatischer Polyester und/oder Copolyester und Verfahren zu seiner Herstellung, DE19628472.

    Google Scholar 

  314. Gogolewski, S., Jovanovic, M., Perren, S. M., Dillon, J.G., and Hughes, M. K. (1993). The Effect of Melt-Processing on the Degradation of Selected Polyhydroxyacids–Polylactides, Polyhydroxybutyrate, and Polyhydroxybutyrate-co-Valerates, Polym. Degrad. Stab., 40, 313–322.

    Article  CAS  Google Scholar 

  315. Södergard, A., and Näsman, J. H. (1994) Stabilization of Poly(L-Lactide) in the Melt, Polym. Degrad. Stab., 46, 25–30.

    Article  Google Scholar 

  316. Degée, Ph., Dubois, Ph., Jacobsen, S., Fritz, H.G., and Jérôme, R. (1999) Beneficial Effect of Triphenylphosphine on the Bulk Polymerization of L,LLactide Promoted by 2-Ethylhexanoic Acid Tin (II) Salt, J. Polym. Sci.: A: Polym. Chem., 37, 2413–2420.

    Article  Google Scholar 

  317. Kricheldorf, H. R., Berl, M., and Scharnagl, N. (1988). Poly(lactones). 9. Polymerization Mechanism of Metal Alkoxide Initiated Polymerizations of Lactide and Various Lactones, Macromolecules, 21, 286–293.

    Article  CAS  Google Scholar 

  318. Löfgren, A., Albertsson, A. C., Dubois, P., and Jérôme, R. (1995) Recent Advances in Ring-Opening Polymerization of Lactones and Related-Compounds, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C35, 379–418.

    Article  Google Scholar 

  319. Jacobsen, S., Fritz, H.G., Degée, Ph., Dubois, Ph., and Jérôme, R. (2000) Continuous Reactive Extrusion Polymerisation of L-Lactide–An Engineering View, Macromol. Symp., 153, 261–273.

    Article  CAS  Google Scholar 

  320. Jacobsen, S., Fritz, H.G., Degée, Ph., Dubois, Ph., and Jérôme, R. (2000) New Developments on the Ring Opening Polymerisation of Polylactide, Ind. Crops Prod., 11, 265–275.

    Article  CAS  Google Scholar 

  321. Jacobsen, S., and Fritz, Hans-Gerhard (1999) Plasticizing Polylactide-The Effect of Different Plasticizers on the Mechanical Properties, Polym. Eng. Sci., 39, 1303–1310.

    Article  CAS  Google Scholar 

  322. Narayan, R. (1992) Biomass (Renewable) Resources for Production of Materials, Chemicals, and Fuels/ A. Paradigm Shift, in: Emerging Technologies for Materials and Chemicals from Biomass, ACS Symp. Ser. 476, in R.M. Rowell, T.P. Schultz, and R. Narayan (eds.), ACS, Washington, DC, pp. 1–10.

    Google Scholar 

  323. Wang, L., Ma, R., Gross, R.A., and McCarthy S.P. (1998) Reactive Compatibilization of Biodegradable Blends of Poly(lactic acid) and Poly(scaprolactone), Polym.Deg.Stab., 59, 161–168.

    Article  CAS  Google Scholar 

  324. Vert, M., and LI, S.M. (1992) Bioresorbability and Biocompatibility of Aliphatic Polyesters, J. Mater. Sci. Mater. Med., 3, 432–446

    Article  CAS  Google Scholar 

  325. Freed, L.E., Grande D.A., Lingbin, Z., Emmanual, J., Marquis, J.C., and Langer, R. (1994) Joint Resurfacing Using Allograft Chondrocytes and Synthetic Biodegradable Polymer Scaffolds, J. Biomed. Mater. Res, 28, 891–899.

    Article  CAS  Google Scholar 

  326. Freed, L.E., Vunjak-Novakovic, G., Biron, RJ., Eagles, DB., Lesnoy, DC., Barlow, SK., and Langer, R. (1994) Biodegradable Polymeric Scaffolds for Tissue Engineering, BioTechnology, 12, 689–693

    Article  CAS  Google Scholar 

  327. Helmus, M.N., and Hubbell, J.A. (1993) Materials Selection, Cardiov. Pathol. 2, 53S - 71S.

    Article  Google Scholar 

  328. Hubbell, J.A. (1995) Biomaterials in Tissue Engineering, BioTechnology, 13, 565–576

    Article  CAS  Google Scholar 

  329. Cima, L.G., Ingber, D.E., Vacanti, J.P., and Langer, R. (1991) Hepatocyte Culture on Biodegradable Polymeric Substrates, Biotech. Bioeng, 38, 145–158

    Article  CAS  Google Scholar 

  330. Sawhney, A.S., Pathak, C.P., Hubbell, J.A., (1993) Bioeridible Hydrogels Based on Photopolymerized Poly(ethyleneglycol)-co-poly(a-hydroxy acid) Diacrylate Macromers, Macromolecules, 26, 581–587.

    Article  CAS  Google Scholar 

  331. Shalaby, S.W., and Johnson, R.A. (1994) Synthetic Absorbable Polyesters, Biomedical Polymers, 2–34.

    Google Scholar 

  332. Frazza, E.J., Schmitt E.E. (1971) A New Sorbable Suture, J.Biomed.Mater.Res. Symp., 1, 43–58

    Article  Google Scholar 

  333. Reed, A. M., and Gilding, D. K. (1981). Biodegradable Polymers for Use in Surgery -Poly(glycolic)/Poly(lactic acid) Homo and Copolymers: 2. In vitro Degradation, Polymer, 22, 494–498.

    Google Scholar 

  334. Gilding, D.K., and Reed, A.M. (1979) Biodegradable Polymers for Use in Surgery-Polyglycolic/Poly(lactic acid) Homo-and Copolymers: 1, Polymer, 20, 1459–1464.

    Article  CAS  Google Scholar 

  335. Wasserman, D. and Versfeit, C.C. (1975) Use of Stannous Octoate Catalyst in the Manufacture of L(-) Lactide-Glycolide Copolymer Sutures, U.S. Patent 3, 839, 297.

    Google Scholar 

  336. Miller, R.A., Brady, J.M., Curtright, D.E., (1978) Degradation Rates of Oral Resorbable Implants: Rate Modification with Changes in PLA/PGA Copolymers Ratios, J. Biomed. Mater. Res., 11, 711–719

    Article  Google Scholar 

  337. Allemann, E., Doelker, E. and Gurny, R. (1993) New Approach for the Preparation of Nanoparticles By an Emulsification-Diffusion Method, Eur. J. Pharm. Biopharm., 41, 14–18

    Google Scholar 

  338. Allemann, E., Doelker, E. and Gurny, R. (1993) Drug-Loaded Poly(Lactic Acid) Nanoparticles Produced by a Reversible Salting Out Process-Purification of an Injectable Dosage Form, Eur. J. Pharm. Biopharm, 39, 13–18.

    CAS  Google Scholar 

  339. Fishbein, I., Chorny, M., Rabinovich, L., Banai, S., Gati, I. and Golomb, G. (2000) Nanoparticulate Delivery System of a Tyrphostin For the Treatment of Restenosis, J. Contr. Rel., 65, 221–229.

    Article  CAS  Google Scholar 

  340. Leenslag, J.W., Pennings, A.J., Bos, Rund R.M., Rozema, F.R., and Boering. G. (1987) Resorbable Materials of Poly(L-lactide). VI. Plates and Screws for Internal Fracture Fixation, Biomaterials, 8, 70–73.

    Article  CAS  Google Scholar 

  341. Vainionpää, S., Kilpikari, J., Laiho, J., Helevirta, J., Rokkanen, P., and Törmälä, P. (1987) Strength and Strength Retention in Vitro, of Absorbable, Self-Reinforced Polyglycolide (PGA) Rods for Fracture Fixation, Biomaterials, 8, 45–48.

    Article  Google Scholar 

  342. Hay, D. L., von Fraunhofer, J. A., Chegini, N., and Masterson, B. J. (1988) Locking Mechanism Strength of Absorbable Ligating Devices, J. Biomed. Mater. Res., 22, 179–190.

    Article  CAS  Google Scholar 

  343. Lewis, DH., in Biodegradable Polymers as Drug Delivery Systems. (1990) Chasin M., Langer R. (eds.) Marcel Dekker, New York, NY, pp. 1–41

    Google Scholar 

  344. Vila, A., Sanchez, A., Tobio, M., Calvo, P., and Alonso, MJ. (2002) Design of Biodegradable Particles from Protein, J. Contr. Rel., 78, 15–24.

    Article  CAS  Google Scholar 

  345. http://agproducts.unl.edu/pla.htm

  346. Bogaert, J.C. and Coszach, Ph. (2000) Poly(lactic acid): A Potential Solution to Plastic Waste Dilemma, Macromol.Symp., 153, 287–303.

    Article  CAS  Google Scholar 

  347. http://www.cargilldow.com

  348. http://www.cdpoly.com/emerge.asp

  349. http://itri.loyola.edu/biopoly/mitsui.htm

  350. http://www.mitsuichemicals.com

  351. http://www.plasticstechnology.com/articles/200201bibl.html

  352. McLaren, J. S. (2001). The Vision for Renewable Resources, in Chemicals and Materials from Renewable Resources, ACS Symp. Ser. 784, in J.J. Bozell (ed.), ACS, Washington, DC, pp. 24–36.

    Google Scholar 

  353. McLaren, J.S. (2000). Future Renewable Resource Needs: Will Genomics Help?, J. Chem. Technol. Biotechnol., 75, 927–932.

    Article  CAS  Google Scholar 

  354. McLaren, J.S. (1998). The Success of Transgenic Crops in The USA, Pesticide Outlook, Dec., 36–41.

    Google Scholar 

  355. National Academy of Sciences (1999) Biobased Industrial Products: Priorities for Research and Commercialization. National Academy Press, Washington, DC.

    Google Scholar 

  356. Clark, M.S. (1999). Comparative Genomics: the Key to Understanding the Human Genome, Project. Bioessays, 21, 121–130.

    Article  CAS  Google Scholar 

  357. National Science and Technology Council (1999) National Plant Genome Initiative. National Plant Genome Initiative: Progress Report, Office of Science and Technology Policy, Washington, DC.

    Google Scholar 

  358. Bruce, W., Folkerts, O., Garnaat, C., Crasta, O., Roth, B., and Bowen, B. (2000). Expression Profiling of the Maize Flavonoid Pathwey Genes Controlled by Estradiol-Inducible Transcription Factors CRC and P, The Plant Cell, 12, 65–79.

    CAS  Google Scholar 

  359. Della Penna, D. (1999) Nutritional Genomics: Manipulating Plant Micronutrients to Improve Human Health. Science, 285, 375–379.

    Article  Google Scholar 

  360. Gulati, M., Kohlmann, K., Ladisch, M. R., Hespell, R., and Bothast, R.J. (1996). Assessment of Ethanol Production Options for Corn products, Bioresource Technol., 58, 253–264.

    Article  CAS  Google Scholar 

  361. Bozell, J.J., and Landucci, R. (1993) Alternative Feedstocks Program: Technical and Ecomomic Assessment, Thermal/Chimical and Bioprocessing Components., U.S. Department of Energy, Washington, DC.

    Google Scholar 

  362. Wilke, D. (1999). Chemicals from Biotechnology: Molecular plant Genetics will Challenge the Chemicaland Fermentation Industry, Appl.Microbiol. Biotechnol., 52, 135–145.

    Article  CAS  Google Scholar 

  363. Tirrell, D. (1996) Putting a New Spin on Spider Silk, Science, 271, 39–40.

    Article  CAS  Google Scholar 

  364. Hayashi, C.Y., and Lewis, R.V. (2000). Molecular Architecture and Evolution of a Modular Spider Silk Protein Gene, Science, 287, 1477–1479.

    Article  CAS  Google Scholar 

  365. Smith, B.L. (1998). Studying Shells: a Grouwth Industry. Chemistry Industry, 16, 649–653.

    Google Scholar 

  366. http://www.bedps.org/july2000.html

  367. Chandra, R., and Rustigi, R. (1998) Biodegradable Polymers, Prog.Polym.Sci., 23, 1273–1335.

    Article  CAS  Google Scholar 

  368. Agricultural Material as Renewable Resources, Nonfood and Industrial Applications, Fuller G., McKeon T.A. Bills D.D.Eds., ACS Symp Ser., 1999, 280 pp.

    Google Scholar 

  369. Kalia, V.C., and Raizada, N., and Sonakya, V. (2000) Bioplastics, J. Sci. Ind. Res., 59, 433–445.

    CAS  Google Scholar 

  370. Mishra, D. P. and Mahanwar, P. A (2000) Advances in Bioplastic Materials, Pop.Plast. Packag., 45, 68–76.

    CAS  Google Scholar 

  371. Albertsson, A.C. (2000) Biodegradation of Polymers in Historical Perspective Versus Modern Polymer Chemistry, Environ.Sci. Pollut. Control. Ser., 21, 421–439.

    CAS  Google Scholar 

  372. Hokens, D.; Mohanty, A. K.; Misra, M.; Drzal, L. T. (2001) Environment-Friendly “Green” Biodegradable Composites from Natural Fiber andCellulosic Plastic, Polym. Prepr, 42, 71–72.

    Article  CAS  Google Scholar 

  373. Sun, X.S. (2001) Novel Materials from Agroproteins: Current and Potential Applications of Soy Protein Polymers, ACS Symp. Ser., 786 (Biopolymers from Polysaccharides and Agroproteins) 132–148.

    Article  CAS  Google Scholar 

  374. Gerngross, T.U., Slater, S.C. (2000) How Green Are Green Plastics?, Scientific American, Aug., 37–41.

    Google Scholar 

  375. http://www.dupont.com, http://www.plastics.dupont.com

  376. http://www.basf.com

  377. http://www.monsanto.com

  378. http://www.midwestgrain.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chiellini, E., Chiellini, F., Cinelli, P. (2002). Polymers from Renewable Resources. In: Scott, G. (eds) Degradable Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1217-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1217-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6091-4

  • Online ISBN: 978-94-017-1217-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics