Skip to main content

The emergence of eukaryotic algae within the protists: A molecular phylogeny based on ribosomal RNA sequencing

  • Chapter
Cell Walls and Surfaces, Reproduction, Photosynthesis

Part of the book series: Experimental Phycology ((PHYCOLOGY,volume 1))

Abstract

The comparative analysis of homologous sequences of informational macromolecules (i.e. proteins or directly DNA) is providing a remarkably powerful tool to establish phylogenetic relationships among living organisms. Knowledge of the sequence of emergence of biological groups in turn illuminates a large number of key biological issues since, as stated long ago by Th. Dobzhansky, “Nothing in biology makes sense except in the light of evolution”. There are several advantages to sequence data as compared to morphological, physiological or biochemical ones for establishing phylogenetic relationships:

  • the sequencing of a single set of homologous genes or gene products in different species can yield numerous characters simultaneously. In fact each nucleotide (or amino acid) is potentially susceptible of corresponding to a character difference. Thus tens or even hundreds of characters can be screened through the comparative analysis of one large gene;

  • these characters evolve, to a first rough approximation, independently of each other i.e. substitution at one site is not necessarily related to substitution at another site. This is more difficult to evaluate for morphological characters whose correlated divergence may simply mean that they are under the control of the same genetic modification;

  • molecular characters are easier to quantify and, eventually, to weigh than morphological ones;

  • finally, and possibly most importantly, sequencing data can be obtained, at least for some widespread genes, even when morphology is exceedingly reduced or deformed ! (i.e. prokaryotes, poorly differentiated eukaryotes, parasites, and even DNA containing organelles).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baroin A, Perasso R, Qu LH, Brugerolle G, Bachellerie JP, Adoutte A (1988) Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc Natl Acad Sci USA 85: 3474–3478

    Article  PubMed  CAS  Google Scholar 

  • Boczar BA, Delaney TP, Cattolico RA (1989) Gene for the ribulose-1,5 bisphosphate carboxylase small subunit protein of the marin chromophyte Olisthodiscus luteus is similar to that of a chemoautotrophic bacterium. Proc Nad Acad Sci USA 86: 4996–4999

    Article  CAS  Google Scholar 

  • Burger-Wiersma T, Veenhuis M, Korthals HJ, Van De Wiel CCM, Mur LR (1986) A new prokaryote containing chlorophyll a and b. Nature 320: 262–264

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1983) A 6-kingdom classification and a unified phylogeny. In: Endocytobiology Vol II Walter de Gruyter & Co Berlin New York pp 1027–103

    Google Scholar 

  • Cavalier-Smith T (1986) The kingdom chromista: origin and systematics. In: Round, Chapman (eds) Progress in Phycological Research, Vol 4, Biopress Ltd, 309–347

    Google Scholar 

  • Cavalier-Smith T (1989) The kingdom Chromista. In: Green JC, Leadbeater BSC (eds) The Chromophyte Algae: problems and perspectives, Oxford University Press

    Google Scholar 

  • Cedergren R, Gray MW, Abel Y, Sankoff D (1988) The evolutionary relationships among known life forms. J Mol Evol 28: 98–112

    Article  PubMed  CAS  Google Scholar 

  • Corliss JO (1984) The kingdom protista and its 45 phyla. BioSystems 17: 87–126

    Article  PubMed  CAS  Google Scholar 

  • Demoulin V (1985) The red algal-higher fungi phylogenetic link: the last ten years. BioSystems 18: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Dodge JD (1979) The Phytoflagellates: Fine structure and phylogeny. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of Protozoa, Vol 1. 2nd ed. Academic Press, New York London, p 7

    Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 22: 240–249

    Article  Google Scholar 

  • Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Quaterly Rev Biol 57: 379–404

    Article  Google Scholar 

  • Felsenstein J (1983) Parsinomy in systematics: Biological and statistical issues. Ann Rev Ecol Syst 14: 313–333

    Article  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Ann Rev Genet 22: 521–565

    Article  PubMed  CAS  Google Scholar 

  • Fink WL (1986) Microcomputers and phylogenetic analysis. Science 234: 1135–1139

    Article  PubMed  CAS  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. A method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SP (1970) The comparative ultrastructure of the algal chloroplast. Ann New York Acad Sci 175: 454–473

    Article  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56: 2883–2889

    Article  Google Scholar 

  • Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann New York Acad Sci 361: 193–208

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170: 3584–3592

    PubMed  CAS  Google Scholar 

  • Gray MW (1988) Organelle origins and ribosomal RNA. Biochem Cell Biol 66: 325–348

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Cedergren R, Abel Y, Sankokk D (1989) On the evolutionary origin of the plant mitochondrion and its genome

    Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46: 1–42

    PubMed  CAS  Google Scholar 

  • Gunderson JH, Elwwod H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci 84: 5823–5827

    Article  PubMed  CAS  Google Scholar 

  • Hénaut A, Delorme MO (1988) Distance matrix comparison and tree construction. Pattern Recognition Letters 7: 207–213

    Article  Google Scholar 

  • Hibberd DJ (1979) The structure and phylogenetic significance of the flagellar transition region in the chlorophyll c-containing algae. BioSystems 11: 243–261

    Article  PubMed  CAS  Google Scholar 

  • Holmquist R, Miyamoto MM, Goodman M (1988a) Higher-primate phylogeny–Why can’t we decide? Mol Biol Evol 5: 201–216

    PubMed  CAS  Google Scholar 

  • Holmquist R, Miyamoto MM, Goodman M (1988b) Analysis of higher-primate phylogeny from transversion differences in nuclear and mitochondrial DNA by Lake’s methods of evolutionary parsimony and operator metrics. Mol Biol Evol 5: 217–236

    PubMed  CAS  Google Scholar 

  • Hori H, Osawa S (1987) Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol 4: 445–472

    PubMed  CAS  Google Scholar 

  • Hunt LT, George DG, Barker WC (1985) The prokaryote-eukaryote interface. BioSystems 18: 223–240

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78: 454–458

    Article  PubMed  CAS  Google Scholar 

  • Lake JA (1987) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4: 167–191

    PubMed  CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82: 6955–6959

    Article  PubMed  CAS  Google Scholar 

  • Lewin RA (1983) The problems of Prochloron. Ann Microbiol (Inst Pasteur) 134B: 37–41

    Article  Google Scholar 

  • Li WH, Wolfe KH, Sourdis J, Sharp PM (1987) Reconstruction of phylogenetic trees and estimation of divergence times under nonconstant rates of evolution. In: Cold Spring Harbor Symposia on Quantitative Biology, Cold Spring Harbor Lab. Vol LII:847–856

    Google Scholar 

  • Ludwig M, Gibbs SP (1985) DNA is present in the nucleomorph of cryptomonads: further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127: 9–20

    Article  Google Scholar 

  • Lynn DH, Sogin ML (1988) Assessment of phylogenetic relationships among ciliated protists using partial ribosomal RNA sequences derived from reverse transcripts. BioSystems 21: 249–254

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution: Life and its environment on the early earth. Freeman W.H., San Francisco

    Google Scholar 

  • Melkonian M (1982) Structural and evolutionary aspects of the flagellar apparatus in green algae and land plants. Taxon 31: 255–265

    Article  Google Scholar 

  • Nanney DL, Preparata RM, Preparata FP, Meyer EB, Simon EM (1989) Shifting ditypic site analysis: heuristics for expanding the phylogenetic range of nucleotide sequences in Sankoff analyses. J Mol Evol 28: 451–459

    Article  PubMed  CAS  Google Scholar 

  • Olsen GL (1987) Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. In: Cold Spring Harbor Symposia on Quantitative Biology, Cold Spring Harbor Lab. Vol LII:825–837

    Google Scholar 

  • Olsen GJ (1988) Phylogenetic analysis using ribosomal RNA. In: Methods in Enzymology. Acad. Press Inc. Vol 164: 793–812

    Google Scholar 

  • Penny D, Hendy MD, Henderson IM (1987) Reliability of evolutionary trees. In: Cold Spring Harbor Symposia on Quantitative Biology, Cold Spring Harbor Lab. Vol LII:857–862

    Google Scholar 

  • Pickett-Heaps JD (1972) Variation in mitosis and cytokinesis in plant cells: its significance in the phylogeny and evolution of ultrastructural systems. Cytobios 5: 59–77

    Google Scholar 

  • Qu LH, Michot B, Bachellerie JP (1983) Improved methods for structure probing in large RNAs: a rapid ‘heterologous’ sequencing approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5’ terminal domain of eukaryotic 28S rRNA. Nucl Acid Res 11: 5903–5920

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425

    PubMed  CAS  Google Scholar 

  • Saitou N, Imanishi T (1989) Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol Biol Evol 6: 514–525

    CAS  Google Scholar 

  • Schnepf E, Elbrächter M (1988) Cryptophycean-like double membrane-bound chloroplast in the dinoflagellate, Dinophysis Ehrenb.: evolutionary, phylogenetic and toxicological implications. Botanica Acta 101: 196–203

    Google Scholar 

  • Seewaldt E, Stackebrandt E (1982) Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron. Nature 295: 618–621

    Article  CAS  Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83: 1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243: 75–77

    Article  PubMed  CAS  Google Scholar 

  • Sourdis J, Krimbas C (1987) Accuracy of phylogenetic trees estimated from DNA sequence data. Mol Biol Evol 4: 159–166

    PubMed  CAS  Google Scholar 

  • Sourdis J, Nei M (1988) Relative efficiencies of the maximum parsimony and distancematrix methods in obtaining the correct phylogenetic tree. Mol Biol Evol 5: 298–311

    PubMed  CAS  Google Scholar 

  • South GR, Whittick A (1987) Introduction to phycology. Blackwell Scientific Publications Oxford London Edinburgh Boston Palo Alto Melbourne

    Google Scholar 

  • Stewart KD, Mattox KR (1975) Comparative cytology, evolution and classification of the green algae with some consideratioon of the origin of other organisms with chlorophylls a and b. Bot Rev 41: 104–135

    Article  Google Scholar 

  • Turner S, Burger-Wiersma T., Giovannoni SJ, Mur LR, Pace NR (1989) The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337: 380–382

    Article  PubMed  CAS  Google Scholar 

  • Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326: 411–414

    Article  PubMed  CAS  Google Scholar 

  • Whatley JM (1981) Chloroplast evolution–ancient and modern. In: Fredrick JF (ed) Origins and evolution of eukaryotic intracellular organelles. New York Acad. Sci. New York. Annals New York Acad. Sci. 361: 154–165

    Google Scholar 

  • Witt D, Stackebrandt E (1988) Disproving the hypothesis of a common ancestry for the Ochromonas danica chrysoplast andHeliobacterium chlorum. Arch Microbiol 150: 244–248

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perasso, R., Baroin, A., Adoutte, A. (1990). The emergence of eukaryotic algae within the protists: A molecular phylogeny based on ribosomal RNA sequencing. In: Wiessner, W., Robinson, D.G., Starr, R.C. (eds) Cell Walls and Surfaces, Reproduction, Photosynthesis. Experimental Phycology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48652-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48652-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48654-8

  • Online ISBN: 978-3-642-48652-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics