Skip to main content

In Vivo Imaging of the Mouse Reproductive Organs, Embryo Transfer, and Oviduct Cilia Dynamics Using Optical Coherence Tomography

  • Protocol
  • First Online:
Mouse Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1752))

Abstract

The oviduct (or fallopian tube) serves as the site where a number of major reproductive events occur for the start of a new life in mammals. Understanding the oviduct physiology is essential to uncover hidden mechanisms of the human reproduction and its disorders, yet the current analysis of the oviduct that is largely limited to in vitro imaging is a significant technical hurdle. To overcome this barrier, we have recently developed in vivo approaches based on optical coherence tomography for structural and functional imaging of the mouse oviduct. In this chapter, we describe the details of such live imaging methods that allow for three-dimensional visualization of the oviduct wall morphology, microscale mapping of the oviduct cilia beat frequency, and high-resolution observation of the cumulus–oocyte complex at the cellular level. We expect this set of imaging tools will enable novel studies toward a comprehensive knowledge of the mammalian reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coy P, García-Vázquez FA, Visconti PE, Avilés M (2012) Roles of the oviduct in mammalian fertilization. Reproduction 144(6):649–660. https://doi.org/10.1530/rep-12-0279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li S, Winuthayanon W (2017) Oviduct: roles in fertilization and early embryo development. J Endocrinol 232(1):R1–R26. https://doi.org/10.1530/joe-16-0302

    Article  CAS  PubMed  Google Scholar 

  3. Besenfelder U, Havlicek V, Brem G (2012) Role of the oviduct in early embryo development. Reprod Domest Anim 47(Suppl 4):156–163. https://doi.org/10.1111/j.1439-0531.2012.02070.x

    Article  PubMed  Google Scholar 

  4. Lyons RA, Saridogan E, Djahanbakhch O (2006) The reproductive significance of human fallopian tube cilia. Hum Reprod Update 12(4):363–372. https://doi.org/10.1093/humupd/dml012

    Article  CAS  PubMed  Google Scholar 

  5. Abe H, Oikawa T (1993) Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases. Anat Rec 235(3):399–410. https://doi.org/10.1002/ar.1092350309

    Article  CAS  PubMed  Google Scholar 

  6. Teilmann SC, Byskov AG, Pedersen PA, Wheatley DN, Pazour GJ, Christensen ST (2005) Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev 71(4):444–452. https://doi.org/10.1002/mrd.20312

    Article  CAS  PubMed  Google Scholar 

  7. Bylander A, Nutu M, Wellander R, Goksör M, Billig H, Larsson DJ (2010) Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube. Reprod Biol Endocrinol 8(1):1–8. https://doi.org/10.1186/1477-7827-8-48

    Article  Google Scholar 

  8. Burton JC, Wang S, Stewart CA, Behringer RR, Larina IV (2015) High-resolution three-dimensional in vivo imaging of mouse oviduct using optical coherence tomography. Biomed Opt Express 6(7):2713–2723. https://doi.org/10.1364/BOE.6.002713

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang S, Burton JC, Behringer RR, Larina IV (2015) In vivo micro-scale tomography of ciliary behavior in the mammalian oviduct. Sci Rep 5:13216. https://doi.org/10.1038/srep13216. http://www.nature.com/articles/srep13216#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography—principles and applications. Rep Prog Phys 66(2):239

    Article  Google Scholar 

  11. Schmitt JM, Xiang SH, Yung KM (1999) Speckle in optical coherence tomography. J Biomed Opt 4(1):95–105. https://doi.org/10.1117/1.429925

    Article  CAS  PubMed  Google Scholar 

  12. Cho A, Haruyama N, Kulkarni AB (2009) Generation of transgenic mice. In: Juan S. Bonifacino et al (eds) Current protocols in cell biology. Chapter19:Unit 19.11. John Willey & Sons, Inc., New Jersey. doi:https://doi.org/10.1002/0471143030.cb1911s42

  13. Ploutarchou P, Melo P, Day AJ, Milner CM, Williams SA (2015) Molecular analysis of the cumulus matrix: insights from mice with O-glycan-deficient oocytes. Reproduction 149(5):533–543. https://doi.org/10.1530/REP-14-0503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oldenburg AL, Chhetri RK, Hill DB, Button B (2012) Monitoring airway mucus flow and ciliary activity with optical coherence tomography. Biomed Opt Express 3(9):1978–1992. https://doi.org/10.1364/boe.3.001978

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang S, Burton JC, Behringer RR, Larina IV (2016) Functional optical coherence tomography for high-resolution mapping of cilia beat frequency in the mouse oviduct in vivo. Proc SPIE 9689:96893R-96895

    Google Scholar 

  16. Caligioni C (2009) Assessing reproductive status/stages in mice. In: Jacqueline N. Crawley et al (eds) Current protocols in neuroscience. Appendix:Appendix-4I. John Willey & Sons, Inc., New Jersey. doi:https://doi.org/10.1002/0471142301.nsa04is48

Download references

Acknowledgments

This work was supported by the National Institute of Health grant R01HL120140 (I.V.L.) and the American Heart Association grant 16POST30990070 (S.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Larina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, S., Larina, I.V. (2018). In Vivo Imaging of the Mouse Reproductive Organs, Embryo Transfer, and Oviduct Cilia Dynamics Using Optical Coherence Tomography. In: Delgado-Olguin, P. (eds) Mouse Embryogenesis. Methods in Molecular Biology, vol 1752. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7714-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7714-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7713-0

  • Online ISBN: 978-1-4939-7714-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics