Skip to main content

Biosynthetic Approaches to Squalene Production: The Case of Yeast

  • Protocol
  • First Online:
Vaccine Adjuvants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1494))

Abstract

Squalene is a precursor in the eukaryotic sterol biosynthesis. It is a valuable compound with several human health-related applications. Since the traditional natural resources of squalene are limited, alternatives for the production of squalene on industrial scale have been intensively explored during past years. The yeast Saccharomyces cerevisiae represents an attractive option due to elaborated techniques of genetic and metabolic engineering that can be applied to improve squalene yields. We discuss in this chapter some theoretical aspects of genetic manipulations of the ergosterol biosynthesis pathway aimed at increased squalene production and describe analytical methods for squalene purification and determination of its content in yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spanova M, Daum G (2011) Squalene—biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Technol 113:1299–1320

    Article  CAS  Google Scholar 

  2. Chang MH, Kim HJ, Jahng KY, Hong SC (2008) The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene. Appl Microbiol Biotechnol 78:963–972

    Article  CAS  PubMed  Google Scholar 

  3. Daum G, Lees N, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    Article  CAS  PubMed  Google Scholar 

  4. Basson ME, Thorsness M, Rine J (1986) Saccharomyces cerevisiae contains 2 functional genes encoding 3-hydroxy-3-methylglutaryl coenzyme-A reductase. Proc Natl Acad Sci U S A 83:5563–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burg JS, Espenshade PJ (2011) Regulation of HMG-CoA reductase in mammals and yeast. Prog Lipid Res 50:403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wright R, Basson M, D'Ari L, Rine J (1988) Increased amounts of HMG-CoA reductase induce “karmellae”: a proliferation of stacked membrane pairs surrounding the yeast nucleus. J Cell Biol 107:101–114

    Article  CAS  PubMed  Google Scholar 

  7. Donald KA, Hampton RY, Fritz IB (1997) Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme a reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 63:3341–3344

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Polakowski T, Stahl U, Lang C (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol 49:66–71

    Article  CAS  PubMed  Google Scholar 

  9. Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J (2010) Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 106:86–96

    CAS  PubMed  Google Scholar 

  10. Jandrositz A, Turnowsky F, Hogenauer G (1991) The gene encoding squalene epoxidase from Saccharomyces cerevisiae: cloning and characterization. Gene 107:155–160

    Article  CAS  PubMed  Google Scholar 

  11. Ryder NS (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126(Suppl):2–7

    Article  PubMed  Google Scholar 

  12. Naziri E, Mantzouridou F, Tsimidou MZ (2011) Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. J Agric Food Chem 59:9980–9989

    Article  CAS  PubMed  Google Scholar 

  13. Ta MT, Kapterian TS, Fei W, Du X, Brown AJ, Dawes IW, Yang H (2012) Accumulation of squalene is associated with the clustering of lipid droplets. FEBS J 279:4231–4244

    Article  CAS  PubMed  Google Scholar 

  14. Garaiová M, Zambojová V, Šimová Z, Griač P, Hapala I (2014) Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 14:1567–1364

    Article  Google Scholar 

  15. Drozdíková E, Garaiová M, Csáky Z, Obernauerová M, Hapala I (2015) Production of squalene by lactose‐fermenting yeast Kluyveromyces lactis with reduced squalene epoxidase activity. Lett Appl Microbiol 61:77–84

    Article  PubMed  Google Scholar 

  16. Klobučníková V, Kohút P, Leber R, Fuchsbichler S, Schweighofer N, Turnowsky F, Hapala I (2003) Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene. Biochem Biophys Res Commun 309:666–671

    Article  PubMed  Google Scholar 

  17. Leber R, Fuchsbichler S, Klobučníková V, Schweighofer N, Pitters E, Wohlfarter K, Lederer M, Landl K, Hapala I, Turnowsky F (2003) Molecular mechanism of resistance to terbinafine in Saccharomyces cerevisiae. Antimicrob Agents Chemother 47:3890–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruckenstuhl C, Lang S, Poschenel A, Eidenberger A, Baral PK, Kohut P, Hapala I, Gruber K, Turnowsky F (2007) Characterization of squalene epoxidase of Saccharomyces cerevisiae applying terbinafine sensitive variants. Antimicrob Agents Chemother 51:275–284

    Article  CAS  PubMed  Google Scholar 

  19. Germann M, Gallo C, Donahue T, Shirzadi R, Stukey J, Lang S, Ruckenstuhl C, Oliaro-Bosso S, McDonough V, Turnowsky F, Balliano G, Nickels JT Jr (2005) Characterizing sterol defect suppressors uncovers a novel transcriptional signaling pathway regulating zymosterol biosynthesis. J Biol Chem 280:35904–35913

    Article  CAS  PubMed  Google Scholar 

  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  21. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  PubMed  Google Scholar 

  22. Strathern JN, Higgins DR (1991) Recovery of plasmids from yeast into Escherichia coli: shuttle vectors. Methods Enzymol 194:319–329

    Article  CAS  PubMed  Google Scholar 

  23. Spanova M, Czabany T, Zellnig G, Leitner E, Hapala I, Daum G (2010) Effect of lipid particle biogenesis on the subcellular distribution of squalene in the yeast Saccharomyces cerevisiae. J Biol Chem 285:6127–6133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Slovak Research and Development Agency grant APVV-0785-11 and VEGA 2/0185/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Hapala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Valachovič, M., Hapala, I. (2017). Biosynthetic Approaches to Squalene Production: The Case of Yeast. In: Fox, C. (eds) Vaccine Adjuvants. Methods in Molecular Biology, vol 1494. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6445-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6445-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6443-7

  • Online ISBN: 978-1-4939-6445-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics