Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 343))

Abstract

Although the skeleton’s principal function is most often associated with the determination of size and shape of vertebrates, it also serves as a reservoir of calcium (and phosphate), from which the body maintains this important divalent cation within a critical range required for membrane polarization, muscle function, and other key physiological processes. Parathyroid hormone (PTH), the most important hormone for the minute to minute regulation of blood calcium levels, regulates the catabolic process of bone resorption. Interestingly, although osteoclasts are the cells responsible for dissolving bone collagen matrix and calcium release, receptors for PTH in bone reside chiefly on osteoblasts, the anabolically active bone cell that produces collagen and the other matrix associated macromolecules that constitute the organic scaffolding of bone and upon which mineral deposition occurs. In order to maintain a structurally intact skeleton, the amount of bone lost through resorption must be matched by an equal amount of bone produced by formation. For more than a decade this concept has been referred to as coupling, and one or more growth factors have been hypothesized to function in this capacity as coupling factors in bone remodelling1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G.A. Howard, G.A., B.L. Bottemiller, R.T. Turner, J.I. Rader, and D.J. Bay link, Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism, Proc. Natl. Acad. Sci. USA 78:3204–3208 (1981).

    Article  PubMed  CAS  Google Scholar 

  2. T.L. McCarthy, M. Centrella, and E. Canalis, Regulatory effects of insulin-like growth factors I and II on bone collagen synthesis in rat calvarial cultures, Endocrinology 124:301–309 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. J.M. Hock, M. Centrella, and E. Canalis, Insulin-like growth factor I (IGF-I) has independent effects on bone matrix formation and cell replication, Endocrinology 122:254–260 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. H. Mochizuki, Y. Hakeda, N. Wakatsuki, N. Usui, S. Akashi, T. Sato, K. Tanaka, M. Kumegawa, Insulinlike growth factor-I supports formation and activation of osteoclasts, Endocrinology 131:1075–1080 (1992)

    Article  PubMed  CAS  Google Scholar 

  5. E. Canalis, T. McCarthy, and M. Centrella, Isolation and characterization of insulin-like growth factor I (Somatomedin-C) from cultures of fetal rat calvariae, Endocrinology 122:22–27 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. C.A. Frolik, L.F. Ellis, and D.C. Williams, Isolation and characterization of insulin-like growth factor II from human bone, Biochem. Biophys. Res. Commun. 151:1011–1018 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. S. Mohan, J.C. Jennings, T.A. Linkhart, and D.J. Baylink, Primary structure of human skeletal growth factor: homology with human insulin-like growth factor II, Biochim. Biophys. Acta 966:44–55 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. Lowe, W.L. Jr., Biological actions of the insulin-like growth factors; in “Insulin-like Growth Factors: Molecular and Cellular Aspects”, D. LeRoith, Editor; CRC Press, Inc., Boca Raton, FL (1991).

    Google Scholar 

  9. D.M. Slovik, R.M. Neer, and J.T. Potts, Short term effects of synthetic human parathyroid hormone-(1–34) administration on bone mineral metabolism in osteoporotic patients, J. Clin. Invest. 68:1261–1271 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. T.L. McCarthy, M. Centrella, and E. Canalis, Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone, Endocrinology 124:1247–1253 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. E. Canalis, M. Centrella, W. Burch, and T.L. McCarthy, Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures, J. Clin. Invest. 83:60–65 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. T.L. McCarthy, M. Centrella, and E. Canalis, Cyclic AMP induces insulin-like growth factor I synthesis in osteoblast-enriched cultures, J. Biol. Chem. 265:15353–15356 (1990).

    PubMed  CAS  Google Scholar 

  13. L.R. Chase, and G.D. Aurbach, The effect of parathyroid hormone on the concentration of adenosine 3’,5’ monophosphate in skeletal tissue in vivo, J. Biol. Chem. 245:1520–1526 (1970).

    PubMed  CAS  Google Scholar 

  14. D.T. Yamaguchi, T.J. Hahn, A. Iida-Klein, C.R. Kleeman, and S. Muallem, Parathyroid hormone-activated calcium channels in an osteoblast-like clonal osteosarcoma cell line, J. Biol. Chem. 262:7711–7718 (1987).

    PubMed  CAS  Google Scholar 

  15. R. Civitelli, I.R. Reid, S. Westbrook, L.V. Avioli, and K.A. Hruska, Parathyroid hormone elevates inositol polyphosphates and diacylglycerol in a rat osteoblast-like cell line, Am. J. Physiol. 255:E660–E667 (1988).

    PubMed  CAS  Google Scholar 

  16. A.B. Abou-Samra, H. Jueppner, D. Westerberg, J.T. Potts Jr., and G.V. Segre, Parathyroid hormone causes translocation of protein kinase-C from cytosol to membranes in rat osteosarcoma cells, Endocrinology 124:1107–1113 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. J. Klein-Nulend, P.N. Bowers, and L.G. Raisz, Evidence that adenosine 3’,5’-monophosphate mediates hormonal stimulation of prostaglandin production in cultured mouse parietal bones, Endocinology 126:1070–1075 (1990).

    CAS  Google Scholar 

  18. T.L. McCarthy, M. Centrella, L.G. Raisz, and E. Canalis, Prostaglandin E2 stimulates insulin-like growth factor I synthesis in osteoblast-enriched cultures from fetal rat bone, Endocrinology 128:2895–2900 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. T.L. McCarthy, M. Centrella, and E. Canalis, Constitutive synthesis of insulin-like growth factor-II by primary osteoblast-enriched cultures from fetal rat calvariae, Endocrinology 130:1303–1308 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. C. Chenu, A. Valentin-Opran, P. Chavassieux, S. Saez, P.J. Meunier, and P.D. Delmas, Insulin like growth factor I hormonal regulation by growth hormone and by 1,25(OH)2D3 and activity on human osteoblast-like cells in short-term cultures, Bone 11:81–86 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. T.A. Linkhart and M.J. Keffer, Differential regulation of insulin-like growth factor-I (IGF-I) and IGF-II release from cultured neonatal mouse calvaria by parathyroid hormone, transforming growth factor-ß, and 1,25 dihydroxyvitamin D3, Endocrinology 128:1511–1518 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. H. Kurose, K. Yamaoka, S. Okada, S. Nakajima, and Y. Seino, 1,25-Dihydroxyvitamin D3 [l,25(OH)2D3] increases insulin-like growth factor I (IGF-I) receptors in clonal osteoblastic cells. Study on interaction of IGFI and 1,25(OH)2D3, Endocrinology 126:2088–2094 (1990).

    Article  PubMed  CAS  Google Scholar 

  23. M. Ernst and G.A. Rodan, Estradiol regulation of insulin-like growth factor-I expression in osteoblastic cells: evidence for transcriptional control, Mol. Endocrinol. 5:1081–1089 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. T.L. McCarthy, M. Centrella, and E. Canalis, Cortisol inhibits the synthesis of insulin-like growth factor-I in skeletal cells, Endocrinology 126:1569–1575 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. B.E. Kream, D.N. Petersen, and L.G. Raisz, Cortisol enhances the anabolic effects of insulin-like growth factor I on collagen synthesis and procollagen messenger ribonucleic acid levels in cultured 21-day fetal rat calvariae, Endocrinology 126:1576–1583 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. M. Centrella, T.L. McCarthy, and E. Canalis, ß2-Microglobulin enhances insulin-like growth factor I receptor levels and synthesis in bone cell cultures, J. Biol. Chem. 264:18268–18271 (1989).

    PubMed  CAS  Google Scholar 

  27. T.L. McCarthy, M. Centrella, and E. Canalis, Regulation of insulin-like growth factor (IGF) binding protein (IGF-BP) expression in primary rat osteoblast (Ob) enriched cultures, J. Bone Min. Res. 6:abstract 480 (1991).

    Google Scholar 

  28. C. Hassager, L.A. Fitzpatrick, E.M. Spencer, B.L. Riggs, and G.A. Conover, Basal and regulated secretion of insulin-like growth factor binding proteins in osteoblast-like cells is cell line specific, J. Clin. Endo. Metab. 75:228–233 (1992).

    Article  CAS  Google Scholar 

  29. T.L. Chen, L.Y. Chang, R.L. Bates and A.J. Perlman, Dexamethasone and 1,25-dihydroxyvitamin D3 modulation of insulin-like growth factor-binding proteins in rat osteoblast-like cell cultures, Endocrinology 128:73–80 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. T.L. Chen, F. Liu, R.L. Bates and R.L. Hintz, Further characterization of insulin-like-growth factor binding proteins in rat osteoblast-like cell cultures: modulation by 17ß-estradiol and human growth hormone, Endocrinology 128:2489–2496 (1991).

    Article  PubMed  CAS  Google Scholar 

  31. C. Schmid, I. Schläpfer, M. Waldvogel, J. Zapf, E. R. Froesch, Prostaglandin E2 stimulates synthesis of insulin-like growth factor binding protein-3 in rat bone cells in vitro, /. Bone Mineral Res. 7:1157–1163 (1992)

    Article  CAS  Google Scholar 

  32. D. LaTour, S. Mohan, T. A. Linkhart, D. J. Baylink, D. D. Strong, Inhibitory insulin-like growth factorsbinding protein: cloning, complete sequence, and physiological regulation, Mol. Endocrinol 4:1806–1814 (1990)

    Article  Google Scholar 

  33. M. Ernst and G.A. Rodan, Increased activity of insulin-like growth factor (IGF) in osteoblastic cells in the presence of growth hormone (GH); positive correlation with the presence of the GH-induced IGF-binding protein BP-3, Endocrinology 127:807–814 (1990).

    Article  PubMed  CAS  Google Scholar 

  34. T. Moriwake, H. Tanaka, S. Kanzaki, J. Higuchi, and Y. Seino, 1,25-Dihydroxyvitamin D3 stimulates the secretion of insulin-like growth factor binding protein 3 (IGFBP-3) by cultured human osteosarcoma cells, Endocrinology 130:1071–1073 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. S.H. Scharia, D.D. Strong, S. Mohan, D.J. Baylink, and T.A. Linkhart, 1,25-Dihydroxyvitamin D3 differentially regulates the production of insulin-like growth factor I (IGF-I) and IGF-binding protein-4 in mouse osteoblasts, Endocrinology 129:3139–3146 (1991)

    Article  Google Scholar 

  36. M. Centrella, T.L. McCarthy, and E. Canalis, Receptors for insulin-like growth factors I and II in osteoblast-enriched cultures from fetal rat bone, Endocrinology 126:39–44 (1990).

    Article  PubMed  CAS  Google Scholar 

  37. M.P. Czech, Signal transmission by the insulin-like growth factors, Cell 59:235–238 (1989).

    Article  PubMed  CAS  Google Scholar 

  38. T.L. McCarthy, E. Canalis, and M. Centrella, Prostaglandin E2 (PGE2) enhances IGF binding in primary osteoblast-enriched (Ob) cell cultures, J. Bone Min. Res. 6:abstract 242 (1991).

    Google Scholar 

  39. T.L. McCarthy, M. Centrella, and E. Canalis, Alternate second signals mediate differential changes in insulin-like growth (IGF) binding in primary cultures of fetal rat bone cells, J. Bone Min. Res. 7:abstract 498 (1992).

    Google Scholar 

  40. T.L. McCarthy, E. Canalis, and M. Centrella, Cortisol differentially modulates insulin-like growth factor I and II binding on osteoblast-enriched fetal rat bone cells, J. Bone Min. Res. 5:abstract 258 (1990).

    Google Scholar 

  41. A. Bennett, T. Chen, D. Feldman, R.L. Hintz, and R.G. Rosenfeld, Characterization of insulin-like growth factor I receptors on cultured rat bone cells: regulation of receptor concentration by glucocorticoids, Endocrinology 115:1577–1583 (1984).

    Article  PubMed  CAS  Google Scholar 

  42. D. Edwall, R.T. Prisell, A. Levinovitz, E. Jennische, and G. Norstedt, Expression of insulin-like growth factor I messenger ribonucleic acid in regenerating bone after fracture: influence of indomethacin, J. Bone Min. Res. 7:207–213 (1992).

    Article  CAS  Google Scholar 

  43. T.J. Wronski, C.-F. Yen, H. Qi, and L.M. Dann, Parathyroid hormone is more effective than estrogen or bisphosphonates for restoration of lost bone mass in ovariectomized rats, Endocrinology 132:823–831 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCarthy, T.L., Centrella, M. (1994). Regulation of IGF Activity in Bone. In: Le Roith, D., Raizada, M.K. (eds) Current Directions in Insulin-Like Growth Factor Research. Advances in Experimental Medicine and Biology, vol 343. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2988-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2988-0_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6301-9

  • Online ISBN: 978-1-4615-2988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics