Skip to main content

The Central Auditory System of Reptiles and Birds

  • Chapter
Comparative Hearing: Birds and Reptiles

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 13))

Abstract

The central auditory systems of both birds and reptiles (jointly known as sauropsids) are organized along a common plan. The similarities among the sauropsids are presumably due to the conserved nature of the auditory sense and to the close phylogenetic relationships within the group. The common organization of the auditory system has allowed us to organize this chapter by auditory nucleus from hindbrain to forebrain. The embryology, anatomy, and physiology of the auditory nuclei of the turtles, snakes and lizards, crocodiles, and birds will be described, with attention paid to both conserved and derived features. A more extensive list of the older literature may be found in Carr (1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aboitiz F (1996) Does bigger mean better? Evolutionary determinants of brain size and structure. Brain Behav Evol 47:225–245.

    Article  PubMed  CAS  Google Scholar 

  • Adams JC, Mroz EA, Sewell WF (1987) A possible neurotransmitter role for CGRP in a hair-cell sensory organ. Brain Res 419:347–351.

    Article  PubMed  CAS  Google Scholar 

  • Adolphs R (1993) Acetylcholinesterase staining differentiates functionally distinct auditory pathways in the barn owl. J Comp Neurol 329:365–377.

    Article  PubMed  CAS  Google Scholar 

  • Altschuler RA, Fex J (1986) Efferent neurotransmitters. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 383–396.

    Google Scholar 

  • Arends JJA (1981) Sensory and motor aspects of the trigeminal system in the mallard (Anas platyrhonchos L.) State Univ Leiden Netherlands.

    Google Scholar 

  • Arends JJA, Zeigler HP (1986) Anatomical identification of an auditory pathway from a nucleus of the lateral lemniscal system to the frontal telencephalon (nucleus basalis) of the pigeon. Brain Res 398:375–381.

    Article  PubMed  CAS  Google Scholar 

  • Balaban CD, Ulinski PS (1981) Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. I. Projections of thalamic nuclei. J Comp Neurol 200:95–129.

    Article  PubMed  CAS  Google Scholar 

  • Barbas-Henry HA, Lohman AHM (1988) Primary projections and efferent cells of the VIIIth cranial nerve in the monitor lizard, Varanus exanthematicus. J Comp Neurol 277:234–249.

    Article  PubMed  CAS  Google Scholar 

  • Belekhova MG, Zharskaja VD, Khachunys AS, Gaidaenko GV, Tumanova NL (1985) Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audiosomatic interrelations. J Hirnforsch 26:127–152.

    PubMed  CAS  Google Scholar 

  • Biederman-Thorson M (1970) Auditory responses of units in the ovoid nucleus and cerebrum (field L) of the ring dove. Brain Res 24:247–256.

    Article  PubMed  CAS  Google Scholar 

  • Bigalke-Kunz B, Rubsamen R, Dorrscheidt GJ (1987) Tonotopic organization and functional characterization of the auditory thalamus in a songbird, the European starling. J Comp Physiol 161:255–265.

    Article  CAS  Google Scholar 

  • Bonke BA, Bonke D, Scheich H (1979) Connectivity of the auditory forebrain nuclei in the guinea fowl (Numida meleagris). Cell Tissue Res 200:101–121.

    Article  PubMed  CAS  Google Scholar 

  • Boord RL (1961) The efferent cochlear bundle in the caiman and pigeon. Exp Neurol 3:225–239.

    Article  Google Scholar 

  • Boord RL (1968) Ascending projections of the primary cochlear nuclei and nucleus laminaris in the pigeon. J Comp Neurol 133:523–542.

    Article  PubMed  CAS  Google Scholar 

  • Boord RL, Rasmussen GL (1963) Projection of the cochlear and lagenar nerves on the cochlear nuclei of the pigeon. J Comp Neurol 120:462–475.

    Article  Google Scholar 

  • Bottjer SW, Arnold AP (1982) Afferent neurons in the hypoglossal nerve of the zebra finch (Poephila guttata): localization with horseradish peroxidase. J Comp Neurol 210:190–197.

    Article  PubMed  CAS  Google Scholar 

  • Bottjer SW, Miesner EA, Arnold AP (1984) Forebrain lesions disrupt development but not maintainance of song in passerine birds. Science 224:901–903.

    Article  PubMed  CAS  Google Scholar 

  • Brauth SE (1990) Investigation of central auditory nuclei in the budgerigar with cytochrome oxidase histochemistry. Brain Res 508:142–146.

    Article  PubMed  CAS  Google Scholar 

  • Brauth SE, McHale CM, Brasher CA, Dooling RJ (1987) Auditory pathways in the budgerigar. Brain Behav Evol 30:174–199.

    Article  PubMed  CAS  Google Scholar 

  • Brown JL (1971) An exploratory study of vocalization areas in the brain of the red-winged blackbird (Agelaius phoeniceus). Behavior 24:91–127.

    Article  Google Scholar 

  • Browner RH, Kennedy MC, Facelle T (1981) The cytoarchitecture of the torus semicircularis in the red-eared turtle. J Morphol 169:207–223.

    Article  Google Scholar 

  • Browner RH, Marbey D (1988) Nucleus magnocellularis in the red-eared turtle, Chrysemys scripta elegans: eighth nerve endings and neuronal types. Hearing Res 33:257–272.

    Article  CAS  Google Scholar 

  • Bruce LL, Butler AB (1984) Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge. J Comp Neurol 229:602–615.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE (1992) Evolution of the central auditory system in reptiles and birds. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing New York: Springer-Verlag, pp. 511–543.

    Google Scholar 

  • Carr CE, Boudreau RE (1991) The central projections of auditory nerve fibers in the barn owl. J Comp Neurol 314:306–318.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Boudreau RE (1993) Organization of nucleus magnocellularis and nucleus laminaris in the barn owl: encoding and measuring interaural time differences. J Comp Neurol 334:337–355.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10:3227–3246.

    PubMed  CAS  Google Scholar 

  • Carr CE, Fujita I, Konishi M (1989) Distribution of GABAergic neurons and ter-minals in the auditory system of the barn owl. J Comp Neurol 286:190–207.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Amagai S, Kubke MF, Massoglia DP (1996) Evolution of time coding systems. In: Elsner N, Schnitzler U (eds) The Proceeding of the Goettingen Neurobiology Conference. Thieme, Stuttgart, Germany.

    Google Scholar 

  • Chandler J (1984) Light and electron microscopic studies of the basilar papilla in the duck, Anas platyrhyncos. I. The hatchling. J Comp Neurol 222:506–522.

    Article  PubMed  CAS  Google Scholar 

  • Code RA (1995) Efferent neurons to the macula lagena in the embryonic chick. Hear Res 82:26–30.

    Article  PubMed  CAS  Google Scholar 

  • Code RA (1996) Chick auditory terminals contain dynorphin-like immunoreactivity. Neuroreport 7:2917–2920.

    Article  PubMed  CAS  Google Scholar 

  • Code RA (1997) The avian cochlear efferent system. Poultry Avian Biol Rev 8:1–8.

    Google Scholar 

  • Code RA, Carr CE (1994) Choline acetyltransferase-immunoreactive cochlear efferent neurons in the chick auditory brainstem. J Comp Neurol 340:161–173.

    Article  PubMed  CAS  Google Scholar 

  • Code RA, Carr CE (1995) Enkephalin-like immunoreactivity in the chick brain-stem: possible relation to the cochlear efferent system. Hear Res 87:69–83.

    Article  PubMed  CAS  Google Scholar 

  • Code RA, Burd GD, Rubel EW (1989) Development of GABA immunoreactivity in brainstem auditory nuclei of the chick: ontogeny of gradients in terminal staining. J Comp Neurol 284:504–518.

    Article  PubMed  CAS  Google Scholar 

  • Code RA, Darr MS, Carr CE (1996) Chick cochlear efferent neurons are not immunoreactive for calcitonin gene-related peptide. Hear Res 97:127–135.

    PubMed  CAS  Google Scholar 

  • Cohen YE, Knudsen EI (1994) Binaural tuning of auditory units in the forebrain archistriatal gaze fields of the barn owl basal ganglia. J Neurophysiol 72:285–298.

    PubMed  CAS  Google Scholar 

  • Cohen YE, Knudsen EI (1995) Auditory tuning for spatial cues in the barn owl: local organization but no space map. J Neurosci 15:5152–5168.

    PubMed  CAS  Google Scholar 

  • Cole KS, Gummer AW (1990) A double-label study of efferent projections to the cochlea of the chicken, Gallus domesticus. Exp Brain Res 82:585–588.

    Article  PubMed  CAS  Google Scholar 

  • Coles RB, Aitkin LM (1979) The response properties of auditory neurones in the midbrain of the domestic fowl (Gallus gallus) to monaural and binaural stimuli. J Comp Physiol 134:241–251.

    Article  Google Scholar 

  • Coles RB, Guppy A (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol 163:117–133.

    Article  CAS  Google Scholar 

  • Conlee JW, Parks TN (1986) Origin of ascending auditory projections to the nucleus mesencephalicus lateralis pars dorsalis in the chicken. Brain Res 367:96–113.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Lee KH, Stone JS, Picard DA (1994) Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage. Anat Embryol (Berl) 189:1–18.

    Article  CAS  Google Scholar 

  • Cotanche DA, Hennig AK, Riedl AE, Messana EP (1997) Hair cell regeneration in the chick cochlea—where we stand after 10 years of work. In: Palmer AR, Rees A, Summerfield AQ, Meddis A (eds) Psychophysical and Physiological Advances in Hearing: Proceedings of the 11th International Symposium on Hearing. London: Whurr, pp. 109–115.

    Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibers and hair cells in the cochlea of the turtle. J Physiol 306:79–125.

    PubMed  CAS  Google Scholar 

  • Desmedt JE, Delwaide PJ (1963) Neural inhibition in a bird: effect of strychnine and picrotoxin. Nature 200:583–585.

    Article  PubMed  CAS  Google Scholar 

  • Derso A, Schwarz DWF, Schwarz IE (1993) A survey of the auditory midbrain, thalamus and forebrain in the chicken (Gallus domesticus) with cytochrome oxidase histochemistry. J Otolaryngol 22:391–396.

    Google Scholar 

  • Diekamp B, Margoliash D (1991) Auditory responses in the nucleus ovoidalis are not so simple. Soc Neurosci Abstr 17:446.

    Google Scholar 

  • Dooling RJ, Brown SD, Park TJ, Okanoya K (1990) Natural perceptual categories for vocal signals in budgerigars (Melopsittacus undulatus). In: Stebbins WC, Berkley MA (eds) Comparative Perception. Vol. II: Complex Signals. New York: John Wiley & Sons, pp. 345–374.

    Google Scholar 

  • Doupe AJ (1997) Song-and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. J Neurosci 17:1147–1167.

    PubMed  CAS  Google Scholar 

  • Duckert LG, Rubel EW (1990) Ultrastructural observations on regenerating hair cells in the chick basilar papilla. Hear Res 48:161–182.

    Article  PubMed  CAS  Google Scholar 

  • Duckert LG, Rubel EW (1993) Morphological correlates of functional recovery in the chicken inner ear after gentamycin treatment. J Comp Neurol 331:7596.

    Article  Google Scholar 

  • Du Lac S, Knudsen EI (1990) Neural maps of head movement vector and speed in the optic tectum of the barn owl. J Neurophysiol 63:131–146.

    PubMed  Google Scholar 

  • Durand S, Tepper J, Cheng MF (1992) The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus. J Comp Neurol 323:495–518.

    Article  PubMed  CAS  Google Scholar 

  • Durand SE, Zuo MX, Zhou SL, Cheng MF (1993) Avian auditory pathways show metenkephalin-like immunoreactivity Neuroreport 4:727–730.

    CAS  Google Scholar 

  • Durand SE, Heaton JT, Amateau SK, Brauth SE (1997) Vocal control pathways through the anterior forebrain of a parrot (Melopsittacus undulatus). J Comp Neurol 877:179–206.

    Article  Google Scholar 

  • Ebbesson SO (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212.

    PubMed  CAS  Google Scholar 

  • Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373.

    PubMed  CAS  Google Scholar 

  • Farabaugh SM, Wild JM (1997) Reciprocal connections between primary and secondary auditory pathways in the telencephalon of the budgerigar (Melopsittacus undulatus). Brain Res 747:18–25.

    Article  PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Firbas W, Muller G (1983) The efferent innervation of the avian cochlea. Hear Res 10:109–116.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1992) Quantitative analysis of the innervation of the chicken basilar papilla. Hear Res 61:167–178.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1994) Quantitative TEM analysis of the barn owl basilar papilla. Hear Res 73:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP, Köppl C, Manley GA (1988) The basilar papilla of the barn owl Tyto alba: a quantitative morphological SEM analysis. Hear Res 34:87–101.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP, Eisensamer B, Manley GA (1994) Cochlear and lagenar ganglia of the chicken. J Morphol 220:71–83.

    Article  PubMed  CAS  Google Scholar 

  • Fortune ES, Margoliash D (1992) Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taenopygia guttata). J Comp Neurol 325:388–404.

    Article  PubMed  CAS  Google Scholar 

  • Foster RJ, Hall WJ (1978) The organization of central auditory pathways in a reptile, Iguana iguana. J Comp Neurol 178:783–832.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B (1981) Efferent neurons to the labyrinth of Salamandra salamandra as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett 26: 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Narins PM (1988) The phase response of primary auditory afferents in a songbird (Sturnus vulgaris L.). Hear Res 32:81–92.

    Article  PubMed  CAS  Google Scholar 

  • Gurney M (1981) Hormonal control of cell form and number in the zebra finch song system. J Neurosci 1:658–673.

    PubMed  CAS  Google Scholar 

  • Hall WC, Ebner FF (1970) Thalamotelencephalic projections in the turtle (Pseudemys scripta). J Comp Neurol 140:101–127.

    Article  PubMed  CAS  Google Scholar 

  • Hall WS, Cohen PL, Brauth SE (1993) Auditory projections to the anterior telencephalon in the budgerigar (Melopsittacus undulatus). Brain Behav Evol 41: 97–116.

    Article  PubMed  CAS  Google Scholar 

  • Hartline PH, Campbell HW (1969) Auditory and vibratory responses in the mid-brains of snakes. Science 163:1221–1223.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto S, Kimura RS, Takasaka T (1990) Computer-aided three-dimensional reconstruction of the inner hair cells and their nerve endings in the guinea pig cochlea. Acta Otolaryngol (Stockh) 109:228–234.

    Article  CAS  Google Scholar 

  • Hausler U (1983) Histologische and elektrophysiologische Untersuchungen an einzelnen Neuronen des Nucleus ovoidalis im Zwischenhirn des Staren (Sturnus vulgaris L.) Diplomthesis, Faculty of Biology, Ruhr Universitaet Bochum, Germany.

    Google Scholar 

  • Hausler U (1984) Neurophysiological and anatomical studies of nucleus ovoidalis neurons in the starling, Sturnus vulgaris. Verh Dtsch Zool Ges 77:291.

    Google Scholar 

  • Hausler U (1988) Topography of the thalamotelencephalic projections in the auditory system of a songbird. In: Syka J, Masterton RB (eds) Auditory Pathway: Structure and Function. New York: Plenum Press, pp. 197–202.

    Chapter  Google Scholar 

  • Hausler U (1989) Die strukturelle and funktionelle Organisation der Hoerbahn im caudalen Vorderhirn des Staren (Sturnus vulgaris, L.) Ph.D. Thesis, Faculty of Biology, Technische Universitaet Muenchen, Germany.

    Google Scholar 

  • Hausler UHL, Sullivan WE, Soares D, Carr CE (1999) A morphological study of the cochlear nuclei of the pigeon (Columba Livia). Brain Behav Evol 54:290–302.

    Article  PubMed  CAS  Google Scholar 

  • Heil P, Scheich H (1986) Effects of unilateral and bilateral cochlear removal on 2-deoxyglucose patterns in the chick auditory system. J Comp Neurol 252:279–301.

    Article  PubMed  CAS  Google Scholar 

  • Hennig AK, Cotanche DA (1998) Regeneration of cochlear efferent nerve termi-nals after gentamycin damage. J Neurosci 18:3282–3296.

    PubMed  CAS  Google Scholar 

  • Hill KG, Stange G, Mo J (1989) Temporal synchronization in the primary auditory response in the pigeon. Hear Res 39:63–74.

    Article  PubMed  CAS  Google Scholar 

  • Hotta T (1971) Unit responses from the nucleus angularis in the pigeon’s medulla. Comp Biochem Physiol 40A:415–424.

    Article  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    Article  PubMed  CAS  Google Scholar 

  • Jhaveri S, Morest DK (1982) Neuronal architecture in nucleus magnocellularis of the chicken auditory system with observations on nucleus laminaris: a light and electron microscope study. Neuroscience 7:809–836.

    Article  PubMed  CAS  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in re-sponses of auditory nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  • Joseph AW, Hyson RL (1993) Coincidence detection by binaural neurons in the chick brain stem. J Neurophysiol 69:1197–1211.

    PubMed  CAS  Google Scholar 

  • Kaiser A, Manley GA (1994) Physiology of single putative cochlear efferents in the chicken. J Neurophysiol 72:2966–2979.

    PubMed  CAS  Google Scholar 

  • Karten HJ (1967) The organization of the ascending auditory pathway in the pigeon (Columba livia) 1. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res 6:409–427.

    Article  PubMed  CAS  Google Scholar 

  • Karten HJ (1968) The ascending auditory pathway in the pigeon (Columba livia) I1. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11: 134–153.

    Article  PubMed  CAS  Google Scholar 

  • Karten HJ (1991) Homology and evolutionary origins of the ¡®neocortex.¡¯ Brain Behav Evol 38:264–272.

    Article  PubMed  CAS  Google Scholar 

  • Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Karten HJ, Shimizu T (1989) The origins of neocortex: connections and lamination as distinct events in evolution. J Cogn Neurosci 1:291–301.

    Article  Google Scholar 

  • Katz LC, Gurney ME (1981) Auditory responses in the zebra finch’s motor system for song. Brain Res 211:192–197.

    Article  Google Scholar 

  • Kelley DB, Nottebohm F (1979) Projections of a telencephalic auditory nucleus field L—in the canary. J Comp Neurol 183:455–470.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MC (1974) Auditory multiple-unit activity in the midbrain of the Tokay gecko (Gekko gekko, L.). Brain Behav Evol 10:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MC (1975) Vocalization elicited in a lizard by electrical stimulation of the midbrain. Brain Res 91:321–325.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MC, Browner RH (1981) The torus semicircularis in a gekkonid lizard. J Morphol 169:259–274.

    Article  Google Scholar 

  • Keppler C, Schermuly L, Klinke R (1994) The course and morphology of efferent nerve fibers in the papilla basilaris of the pigeon (Columba livia). Hear Res 74:259–264.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch M, Coles RB, Leppelsack H-J (1980) Unit recordings from a new auditory area in the frontal neostriatum of the awake starling (Sturnus vulgaris). Exp Brain Res 38:375–380.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978) A Neural map of auditory space in the owl. Science 200:795–797.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1980) Sound localization in birds. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. Berlin: Springer Verlag, pp. 287–322.

    Google Scholar 

  • Knudsen EI (1983) Subdivisions of the inferior colliculus in the barn owl (Tyto alba). J Comp Neurol 218:174–186.

    Article  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1983) Space-mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba). J Comp Neurol 218:187–196.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M, Pettigrew JD (1977) Receptive fields of auditory neurons in the owl. Science 198:1278–1280.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF, Masino T (1993) Parallel pathways mediating both sound localization and gaze control in the forebrain and midbrain of the barn owl. J Neurosci 13:2837–2852.

    PubMed  CAS  Google Scholar 

  • Konishi M (1970) Comparative neurophysiological studies of hearing and vocalization in songbirds. J Comp Physiol 66:257–272.

    Google Scholar 

  • Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424.

    Google Scholar 

  • Konishi M (1985) Birdsong: from behavior to neuron. Ann Rev Neurosci 8:125–170.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1986) Centrally synthesized maps of sensory space. Trends Neurosci 9:163–168.

    Article  Google Scholar 

  • Konishi M (1994) Pattern generation in birdsong. Current Opinion Neurobiol 4:827–831.

    Article  CAS  Google Scholar 

  • Konishi M, Sullivan WE, Takahashi T (1985) The owl’s cochlear nuclei process different sound localization cues. J Acoust Soc Am 78:360–364.

    Article  PubMed  CAS  Google Scholar 

  • Köppl C (1994) Auditory nerve terminals in the cochlear nucleus magnocellularis: differences between low and high frequencies. J Comp Neurol 339:438–446.

    Article  PubMed  Google Scholar 

  • Köppl C (1997) Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J Neurophysiol 77:364–377.

    PubMed  Google Scholar 

  • Köppl C, Manley GA (1990a) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa II. Tonotopic organization and innervation pattern of the basilar papilla. J Comp Physiol A 167:101–112.

    Article  Google Scholar 

  • Köppl C, Manley GA (1990b) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa III. Patterns of spontaneous and tone-evoked nerve-fibre activity. J Comp Physiol A 167:113–127.

    Article  Google Scholar 

  • Köppl C, Manley GA (1992) Functional consequences of morphological trends in the evolution of lizard hearing organs. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer Verlag, pp. 489–510.

    Chapter  Google Scholar 

  • Köppl C, Carr CE (1997) A low-frequency pathway in the barn owl’s auditory brain-stem. J Comp Neurol 378:265–282.

    Article  PubMed  Google Scholar 

  • Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol A 171:695–704.

    Article  Google Scholar 

  • Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: a behavioral audiogram. J Comp Physiol 129:1–4.

    Article  Google Scholar 

  • Kubke MF, Wild M, Carr CE (1998) Nucleus basalis of the barn owl contains both tonotopic and somatotopic maps. Int Soc Neuroethol Abstr.

    Google Scholar 

  • Kunzle H (1986) Projections from the cochlear nuclear complex to rhombencephalic auditory centers and torus semicircularis in the turtle. Brain Res 379:307–319.

    Article  PubMed  CAS  Google Scholar 

  • Lachica EA, Rubsamen R, Rubel EW (1994) GABAergic terminals in nucleus magnocellularis and laminaris originate from the superior olivary nucleus. J Comp Neurol 348:403–418.

    Article  PubMed  CAS  Google Scholar 

  • Leake PA (1974) Central projections of the statoacoustic nerve in Caiman crocodilus. Brain Behav Evol 10:170–196.

    Article  PubMed  CAS  Google Scholar 

  • Leibler LM (1975) Monaural and binaural pathways in the ascending auditory system of the pigeon. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Leppelsack HJ (1979) The increase of response selectivity within the avian auditory pathway. Exp Brain Res (suppl II):116–121.

    Article  Google Scholar 

  • Leppelsack H-J, Schwartzkopff J (1972) Eigenschaften von Aukutishen Neuronen im Kaudalen Neostriatum von Vogeln. J Comp Physiol 80:137–140.

    Article  Google Scholar 

  • Levin MD, Schneider M, Kubke M, Wenthold R, Carr CE (1997) Localization of glutamate receptors in the auditory brainstem of the barn owl. J Comp Neurol 378:239–253.

    Article  PubMed  CAS  Google Scholar 

  • McCormick CA (1999) Anatomy of the central auditory pathways of fish and amphibians. In: Comparative Hearing: Fish and amphibians Fay RR, Popper AN (eds). New York: Springer-Verlag.

    Google Scholar 

  • Maekawa M (1987) Auditory responses in the nucleus basalis of the pigeon. Hear Res 27:231–237.

    Article  PubMed  CAS  Google Scholar 

  • Manley JA (1970a) Frequency sensitivity of auditory neurons in the Caiman cochlear nucleus. Z Vgl Physiol 66:251–256.

    Article  Google Scholar 

  • Manley GA (1970b) Comparative studies of auditory physiology in reptiles. Z Vgl Physiol 67:363–381.

    Article  Google Scholar 

  • Manley JA (1971) Single unit studies in the midbrain auditory area of Caiman. Z Vgl Physiol 71:255–261.

    Article  Google Scholar 

  • Manley GA (1974) Activity patterns of neurons in the peripheral auditory system of some reptiles. Brain Behav Evol 10:244–256.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1977) Response patterns and peripheral origin of auditory nerve fibres in the monitor lizard, Varanus bengalensis. J Comp Physiol 118:249–260.

    Article  Google Scholar 

  • Manley GA (1981) A review of the auditory physiology of reptiles. In: Autrum HE, Perl E, Schmidt RF (eds) Progress in Sensory Physiology. Berlin: Springer Verlag, pp. 49–134.

    Chapter  Google Scholar 

  • Manley GA, Köppl C, Konishi M (1988) A neural map of interaural intensity difference in the brainstem of the barn owl. J Neurosci 8:2665–2677.

    PubMed  CAS  Google Scholar 

  • Manley GA, Gleich O, Kaiser A, Brix J (1989) Functional differentiation of sensory cells in the avian auditory periphery. J Comp Physiol A 164:289–296.

    Article  Google Scholar 

  • Manley GA, Yates GK, Köppl C, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa IV. Phase locking of auditory-nerve fibres. J Comp Physiol A 167:129–138.

    Article  Google Scholar 

  • Marcellini DL (1978) The acoustic behavior of lizards. In: Greenberg N, MacLean PD (eds) Behavior and Neurology of Lizards. Rockville, MD: US Dept of Health, Education and Welfare, pp. 287–300.

    Google Scholar 

  • Margoliash D (1983) Acoustic parameters underlying the responses of song specific in the white-crowned sparrow. J Neurosci 3:1039–1057.

    PubMed  CAS  Google Scholar 

  • Marin F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738.

    Article  PubMed  CAS  Google Scholar 

  • Masino T, Knudsen El (1990) Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl. Nature 345: 434–437.

    Article  PubMed  CAS  Google Scholar 

  • Mazer JA (1995) Integration of Parallel Processing Streams in the Inferior Collicu-lus of the Barn Owl. Ph.D. Thesis, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  • Mazer JA (1998) How the owl resolves auditory coding ambiguity. Proc Natl Acad Sci U S A 95:10932–10937.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1975) The cochlear nuclei of lizards. J Comp Neurol 159:375–406.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1980) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. Berlin: Springer Verlag, pp. 169–204.

    Chapter  Google Scholar 

  • Miller MR, Beck J (1988) Auditory hair cell innervational patterns in lizards. J Comp Neurol 271:604–628.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Kasahara M (1979) The cochlear nuclei of some turtles. J Comp Neurol 185:221–236.

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Knudsen EI (1994a) Site of auditory plasticity in the brain stem (VLVp) of the owl revealed by early monaural occlusion. J Neurophysiol 72:2875–2891.

    CAS  Google Scholar 

  • Mogdans J, Knudsen EI (1994b) Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl’s auditory system. Hear Res 74:148–164.

    Article  CAS  Google Scholar 

  • Moiseff A (1989a) Bicoordinate sound localization by the barn owl. J Comp Physiol 164:637–644.

    Article  CAS  Google Scholar 

  • Moiseff A (1989b) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol 164:629–636.

    Article  CAS  Google Scholar 

  • Moiseff A, Konishi M (1983) Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. J Neurosci 2:2553–2562.

    Google Scholar 

  • Muller CM (1987) Gamma-aminobutyric acid immunoreactivity in brainstem auditory nuclei of the chicken. Neurosci Lett 77:272–276.

    Article  PubMed  CAS  Google Scholar 

  • Nadol JB (1990) Synaptic morphology of inner and outer hair cells of the human organ of Corti. J Electron Microsc Tech 15:187–196.

    Article  PubMed  Google Scholar 

  • Norberg RA (1978) Skull asymmetry, ear structure and function, and auditory localization in Tengmalm’s owl, Aegolius funerus (Linne). Philos Trans R Soc Lond B Biol Sci 282:325–410.

    Article  Google Scholar 

  • Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318.

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm F (1980) Brain pathways for vocal learning in birds: a review of the first 10 years. Prog Pyschobiol Physiol Psychol 9:85–124.

    Google Scholar 

  • Ofsie MS, Hennig AK, Messana EP, Cotanche DA (1997) Sound damage and gentamicin treatment produce different patterns of damage to the efferent innervation of the chick cochlea. Hear Res 113:207–223.

    Article  PubMed  CAS  Google Scholar 

  • Oertel D (1997) Encoding of timing in the brain stem auditory nuclei of vertebrates. Neuron 19:959–962.

    Article  PubMed  CAS  Google Scholar 

  • Olsen JF, Knudsen EI, Esterly SD (1989) Neural maps of interaural time and inten-sity differences in the optic tectum of the barn owl. J Neurosci 9:2591–2605.

    PubMed  CAS  Google Scholar 

  • Overholt EM, Rubel EW, Hyson RL (1992) A circuit for coding interaural time dif-ferences in the chick brainstem. J Neurosci 12:1696–1706.

    Google Scholar 

  • Parent A (1976) Striatal afferent connections in the turtle (Chrysemys picta) as revealed by retrograde axonal transport of horseradish peroxidase. Brain Res 108:25–36.

    Article  PubMed  CAS  Google Scholar 

  • Parks TN, Rubel EW (1975) Organization and development of brain stem auditory nucleus of the chicken: organization of projections from N. magnocellularis to N. laminaris. J Comp Neurol 164:435–448.

    CAS  Google Scholar 

  • Parks TN, Code RA, Taylor DA, Solum DA, Strauss KI, Jacobowitz DM, Winsky L (1997) Calretinin expression in the chick brainstem auditory nuclei develops and is maintained independently of cochlear nerve input. J Comp Neurol 383:112–121.

    Article  PubMed  CAS  Google Scholar 

  • Peña JL, Viete S, Albeck Y, Konishi M (1996) Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. J Neurosci 16:7046–7054.

    PubMed  Google Scholar 

  • Paton JA, Manogue KR, Nottebohm F (1981) Bilateral organization of the vocal control pathway in the budgerigar, M. undulatus. J Neurosci 1:1279–1288.

    PubMed  CAS  Google Scholar 

  • Potash LM (1970) Neuroanatomical regions relevant to production and analysis of vocalization within the avian torus semicircularis. Experientia 26:257–264.

    Article  Google Scholar 

  • Pritz MB (1974a) Ascending connections of a thalamic auditory area in a crocodile, Caiman crocodilus. J Comp Neurol 153:199–214.

    Article  CAS  Google Scholar 

  • Pritz MB (1974b) Ascending connections of a midbrain auditory area in a crocodile, Caiman crocodilus. J Comp Neurol 153:179–198.

    Article  CAS  Google Scholar 

  • Pritz MB, Stritzel ME (1992) A second auditory area in the non-cortical telencephalon of a reptile. Brain Res 569:146–151.

    Article  PubMed  CAS  Google Scholar 

  • Proctor L (1997) The auditory thalamus of the barn owl: anatomy and physiological responses to sound localization cues. Ph.D. Thesis, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  • Proctor L, Konishi M (1997) Representation of sound localization cues in the auditory thalamus of the barn owl. Proc Natl Acad Sci U S A 94:10421–10425.

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Robles C, Martinez-de-la-Torre M, Martinez S (1994) New subdivision schema for the avian torus semicircularis: neurochemical maps in the chick. J Comp Neurol 340:98–125.

    Article  PubMed  CAS  Google Scholar 

  • Raman I, Trussell LO (1992) The kinetics of the responses to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9:173–186.

    Article  PubMed  CAS  Google Scholar 

  • Raman I, Zhang S, Trussell LO (1994) Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. J Neurosci 14:4998–5010.

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1908) Les ganglions terminaux du nerf acoustique des oiseaux. Trab Inst Cajal Invest Biol 6:195–225.

    Google Scholar 

  • Reyes AD, Rubel EW, Spain WJ (1994) Membrane properties underlying the firing of neurons in the avian cochlear nucleus. J Neurosci 14:5352–5364.

    PubMed  CAS  Google Scholar 

  • Rieppel O, deBraga M (1996) Turtles as diapsid reptiles. Nature 384:453–455.

    Article  CAS  Google Scholar 

  • Roberts BL, Meredith GE (1992) The efferent innervation of the ear: variations on an enigma. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 185–210.

    Chapter  Google Scholar 

  • Roberts BL, Maslam S, Los I, Van Der Jagt B (1994) Coexistence of calcitonin gene-related peptide and choline acetyltransferase in eel efferent neurons. Hear Res 74:231–237.

    Article  PubMed  CAS  Google Scholar 

  • Rogers J (1989) Two calcium binding proteins mark many chick sensory neurons. Neuroscience 31:697–709.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Parks TN (1975) Organization and development of brainstem auditory nuclei of the chicken: Tonotopic organization of N. Magnocellularis and N. Laminaris. J Comp Neurol 164:411–434.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Parks TN (1988) Organization and development of the avian brainstem auditory system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley & Sons, pp. 3–92.

    Google Scholar 

  • Rubsamen R, Dorrscheidt GJ (1986) Tonotopic organization of the auditory forebrain in a songbird, the European starling. J Comp Physiol 158:639–646.

    Article  Google Scholar 

  • Sachs MB, Sinnott JM (1978) Responses to tones of single cells in nucleus magnocellularis and nucleus angularis of the redwing blackbird (Agelaius phoeniceus). J Comp Physiol 126:347–361.

    Article  Google Scholar 

  • Sahley TL, Nodar RH, Musiek FE (1997) Efferent Auditory System Structure and Function. San Diego, CA: Singular Publishing Group, Inc.

    Google Scholar 

  • Sams-Dodd F, Capranica RR (1994) Representation of acoustic signals in the eighth nerve of the Tokay gecko: I. Pure tones. Hear Res 76:16–30.

    Article  PubMed  CAS  Google Scholar 

  • Sams-Dodd F, Capranica RR (1996) Representation of acoustic signals in the eighth nerve of the Tokay gecko: II. Masking of pure tones with noise. Hear Res 100:131–134.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Adler HJ, Pugliano FA (1992) The structural and functional aspects of hair cell regeneration in the chick as a result of exposure to intense sound. Exp Neurol 115:13–17.

    Article  PubMed  CAS  Google Scholar 

  • Scheich H, Langer G, Bonke D (1979) Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species specific calls and synthetic stimuli: II. Discrimination of iambus-like calls. J Comp Physiol 32:257–276.

    Article  Google Scholar 

  • Schermuly L, Klinke R (1990) Infrasound sensitive neurons in the pigeon cochlear ganglion. J Comp Physiol 166:355–363.

    Article  CAS  Google Scholar 

  • Schwarz DWF, Schwarz IE, Tomlinson RD (1978) Avian efferent vestibular neurons identified by axonal transport of [3Hladenosine and horseradish peroxidase. Brain Res 155:103–107.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DWF, Schwarz IE, Frederickson JM, Landolt JP (1981) Efferent vestibular neurons: a study employing retrograde tracer methods in the pigeon (Columba livia). J Comp Neurol 196:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DWF, Schwarz IE, Derso A (1992) Cochlear efferent neurons projecting to both ears in the chicken, Gallus domesticus. Hear Res 60:110–114.

    Article  PubMed  CAS  Google Scholar 

  • Smeets WZ, Gonzalez A (1994) Sensorimotor integration in the brain of reptiles. Eur J Morphol 32:307–310.

    PubMed  Google Scholar 

  • Smith CA (1985) Inner ear. In: King AS, McLelland J (eds) Form and Function in Birds, Vol 3. London: Academic Press, pp. 273–310.

    Google Scholar 

  • Smith ZDJ, Rubel EW (1979) Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J Comp Neurol 186:213–239.

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT, Klinke R (1986) Synchronized responses of primary auditory fibre-populations in Caiman crocodilus (L) to single tones and clicks. Hear Res 24: 89–103.

    Article  PubMed  CAS  Google Scholar 

  • Soares D, Simon J, Carr C (1999) The cochlear nuclei of the caiman. Soc Neurosci Abstr (in press).

    Google Scholar 

  • Striedter GF (1994) The vocal control pathways in budgerigars differ from those in songbirds. J Comp Neurol 343:35–56.

    Article  PubMed  CAS  Google Scholar 

  • Striedter GF (1997) The telencephalon of tetrapods in evolution. Brain Behav Evol 49:179–213.

    Article  PubMed  CAS  Google Scholar 

  • Striedter GF, Marchant TA, Beydler S (1998) The “neostriatum” develops as part of the lateral pallium in birds. J Neurosci 18:5839–5849.

    PubMed  CAS  Google Scholar 

  • Strutz J (1981) The origin of centrifugal fibers to the inner ear in Caiman crocodilus: a horseradish peroxidase study. Neurosci Lett 27:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Strutz J (1982) The origin of efferent fibers to the inner ear in a turtle (Terrapene ornata). A horseradish peroxidase study. Brain Res 244:165–168.

    Article  PubMed  CAS  Google Scholar 

  • Strutz J, Schmidt C (1982) Acoustic and vestibular efferent neurons in the chicken (Gallus domesticus). Acta Otolaryngol 94:45–51.

    Article  PubMed  CAS  Google Scholar 

  • Strutz J, Schmidt CL, Sturmer C (1980) Origin of efferent fibers of the vestibular apparatus in goldfish. A horseradish peroxidase study. Neurosci Lett 18: 5–9.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan WE (1985) Classification of response patterns in cochlear nucleus of barn owl: correlation with functional response properties. J Neurophysiol 53:201–216.

    PubMed  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799.

    PubMed  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1986) Neural map of interaural phase difference in the owl’s brainstem. Proc Natl Acad Sci U S A 83:8400–8404.

    Article  PubMed  CAS  Google Scholar 

  • Szpir MR, Sento S, Ryugo DK (1990) The central projections of the cochlear nerve fibers in the alligator lizard. J Comp Neurol 295:530–547.

    Article  PubMed  CAS  Google Scholar 

  • Szpir MR, Wright DD, Ryugo DK (1995) Neuronal organization of the cochlear nuclei in alligator lizards: a light and electron microscopic investigation. J Comp Neurol 357:217–241.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Konishi M (1986) Selectivity for interaural time difference in the owl’s midbrain. J Neurosci 6:3413–3422.

    PubMed  CAS  Google Scholar 

  • Takahashi T, Konishi M (1988a) The projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl. J Comp Neurol 274:190–211

    Article  CAS  Google Scholar 

  • Takahashi T, Konishi M (1988b) Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J Comp Neurol 274:212–238.

    Article  CAS  Google Scholar 

  • Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786.

    PubMed  CAS  Google Scholar 

  • Takahashi T, Carr CE, Brecha N, Konishi M (1987) Calcium binding protein-like immunoreactivity labels the terminal field of nucleus laminaris of the barn owl. J Neurosci 7:1843–1856.

    PubMed  CAS  Google Scholar 

  • Takahashi T, Wagner H, Konishi M (1988) The role of commissural projections in the representation of bilateral space in the barn owl’s inferior colliculus. J Comp Neurol 281:545–554.

    Article  Google Scholar 

  • Takasaka T, Smith CA (1971) The structure and innervation of the pigeon’s basilar papilla. J Ultrastruct Res 35:20–65.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Smith CA (1978) Structure of the chicken’s inner ear. SEM and TEM study. Am J Anat 153:251–272.

    Article  PubMed  CAS  Google Scholar 

  • ten Donkelaar HJ, Bangma GC, Barbas-Henry HA, de Boer-van Huizen R, Wolters JG (1987) The brain stem in a lizard, Varanos exanthenzaticus. Adv Anat Embryol Cell Biol 103:56–60.

    Article  Google Scholar 

  • Theurich M, Langer G, Scheich H (1984) Infrasound responses in the midbrain of the guinea fowl. Neurosci Lett 49:81–86.

    Article  PubMed  CAS  Google Scholar 

  • Trussell LO (1997) Cellular mechanisms for preservation of timing in central auditory pathways. Curr Opin Neurobiol 7:487–492.

    Article  PubMed  CAS  Google Scholar 

  • Tucci DL, Rubel EW (1990) Physiological status of regenerated hair cells in the avian inner ear following aminoglycoside ototoxicity. Otolaryngol Head Neck Surg 103:443–450.

    PubMed  CAS  Google Scholar 

  • Vates GE, Broome BM, Mello CV, Nottebohm F (1996) Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J Comp Neurol 366:613–642.

    Article  PubMed  CAS  Google Scholar 

  • Vicario DS (1994) Motor mechanisms relevant to auditory-vocal interactions in songbirds. Brain Behav Evol 44:265–278.

    Article  PubMed  CAS  Google Scholar 

  • Vicario DS, Nottebohm F (1987) Organization of the zebra finch song control system: I. Representation of syringeal muscles in the hypoglossal nucleus. J Comp Neurol 271:346–354.

    Article  Google Scholar 

  • Volman SF (1996) Quantitative assessment of song-selectivity in the zebra finch higher vocal center. J Comp Physiol 178:849–862.

    Article  CAS  Google Scholar 

  • Volman SF, Konishi M (1990) Comparative physiology of sound localization in four species of owls. Brain Behav Evol 36:196–215.

    Article  PubMed  CAS  Google Scholar 

  • von Bartheld CS, Code RA, Rubel EW (1989) GABAergic neurons in brainstem auditory nuclei of the chick: distribution, morphology, and connectivity. J Comp Neurol 287:470–483.

    Article  Google Scholar 

  • Wagner H (1993) Sound-localization deficits induced by lesions in the barn owl’s auditory space map. J Neurosci 13:371–386.

    PubMed  CAS  Google Scholar 

  • Wagner H, Takahashi T, Konishi M (1987) Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. J Neurosci 7:3105–3116.

    PubMed  CAS  Google Scholar 

  • Wang Y, Raphael Y (1996) Re-innervation patterns of chick auditory sensory epithelium after acoustic overstimulation. Hear Res 97:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Warchol ME, Dallos P (1989) Neural response to very low-frequency sound in the avian cochlear nucleus. J Comp Physiol 166:83–95.

    Article  CAS  Google Scholar 

  • Warchol ME, Dallos P (1990) Neural coding in the chick cochlear nucleus. J Comp Physiol 166:721–734.

    Article  CAS  Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 410–448.

    Chapter  Google Scholar 

  • Weiss TF, Mulroy MJ, Turner RG, Pike CL (1976) Tuning of single fibers in the cochlear nerve of the alligator lizard: relation to receptor organ morphology. Brain Res 115:71–90.

    Article  PubMed  CAS  Google Scholar 

  • Westerberg BD, Schwarz DWF (1995) Connections of the superior olive in the chicken. J Otolaryngol 24:20–30.

    PubMed  CAS  Google Scholar 

  • Weyer EG (1978) The Reptile Ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Whitehead MC, Morest DK (1978) Morphogenesis of synaptic endings of cochlear fibers in the chick basilar papilla. Soc Neurosci Abstr 4:397.

    Google Scholar 

  • Whitehead MC, Morest DK (1981) Dual populations of efferent and afferent cochlear axons in the chicken. Neuroscience 6:2351–2365.

    Article  PubMed  CAS  Google Scholar 

  • Wilczynski W (1984) Central neural systems subserving a homoplasous periphery. Am Zool 24:755–763.

    Google Scholar 

  • Wild JM (1987) Nuclei of the lateral lemniscus project directly to the thalamic auditory nuclei in the pigeon. Brain Res 408:303–307.

    Article  PubMed  CAS  Google Scholar 

  • Wild JM, Karten HJ, Frost BJ (1993) Connections of the auditory forebrain in the pigeon (Columba livia). J Comp Neurol 337:32–62.

    Article  PubMed  CAS  Google Scholar 

  • Winter P, Schwartzkopf J (1961) Form and zellzahl der akustischen nervenzentren in der medulla oblongata von eulen (Striges). Experientia 17:515–516.

    Article  PubMed  CAS  Google Scholar 

  • Woolf NK, Sachs MB (1977) Phase-locking to tones in avian auditory nerve fibers. J Acoust Soc Am 62:46.

    Article  Google Scholar 

  • Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 7:1373–1378.

    Google Scholar 

  • Young SR, Rubel EW (1986) Embryogenesis of arborization pattern and topography of individual axons in n. laminaris of the chicken brain stem. J Comp Neurol 254:425–459.

    Article  PubMed  CAS  Google Scholar 

  • Zardoya R, Meyer A (1998) Complete mitochondrial genome suggests diapsid affinities of turtles. Proc Natl Acad Sci U S A 95:14226–14231.

    Article  PubMed  CAS  Google Scholar 

  • Zaretsky MD, Konishi M (1976) Tonotopic organization in the avian telencephalon. Brain Res 111:167–171.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Trussell LO (1994) A characterization of excitatory postsynaptic poten-tials in the avian nucleus magnocellularis. J Neurophysiol 72:705–718.

    PubMed  CAS  Google Scholar 

  • Zidanic M, Fuchs PA (1995) Efferent innervation of the chick cochlea revealed by antibodies to choline acetyltransferase (ChAT) and synapsin. Assn Res Oto-laryngol Abstr 18:193.

    Google Scholar 

  • Zidanic M, Fuchs PA (1996) Synapsin-like immunoreactivity in the chick cochlea: specific labeling of efferent nerve terminals. Aud Neurosci 2:347–362.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carr, C.E., Code, R.A. (2000). The Central Auditory System of Reptiles and Birds. In: Dooling, R.J., Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Birds and Reptiles. Springer Handbook of Auditory Research, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1182-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1182-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7036-2

  • Online ISBN: 978-1-4612-1182-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics