Skip to main content

Genome-Wide Association Study Statistical Models: A Review

  • Protocol
  • First Online:
Genome-Wide Association Studies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2481))

Abstract

Statistical models are at the core of the genome-wide association study (GWAS). In this chapter, we provide an overview of single- and multilocus statistical models, Bayesian, and machine learning approaches for association studies in plants. These models are discussed based on their basic methodology, cofactors adjustment accounted for, statistical power and computational efficiency. New statistical models and machine learning algorithms are both showing improved performance in detecting missed signals, rare mutations and prioritizing causal genetic variants; nevertheless, further optimization and validation studies are required to maximize the power of GWAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: Genomics-assisted crop improvement. Springer, New York, pp 97–119

    Chapter  Google Scholar 

  2. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small G, Roses A, Haines J, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  3. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  4. Torkamaneh D, Chalifour F-P, Beauchamp CJ, Agrama H, Boahen S, Maaroufi H, Rajcan I, Belzile F (2020) Genome-wide association analyses reveal the genetic basis of biomass accumulation under symbiotic nitrogen fixation in African soybean. Theor Appl Genet 133:665–676

    Article  CAS  PubMed  Google Scholar 

  5. Barbinta-Patrascu ME, Badea N, Ungureanu C, Iordache SM, Constantin M, Purcar V, Rau I, Pirvu C (2017) Ecobiophysical aspects on nanosilver biogenerated from Citrus reticulata peels, as potential biopesticide for controlling pathogens and wetland plants in aquatic media. J Nanomater 2017:4214017. https://doi.org/10.1155/2017/4214017

    Article  CAS  Google Scholar 

  6. Bruce RW, Torkamaneh D, Grainger CM, Belzile F, Eskandari M, Rajcan I (2020) Haplotype diversity underlying quantitative traits in Canadian soybean breeding germplasm. Theor Appl Genet 133:1967

    Article  CAS  PubMed  Google Scholar 

  7. Xiao Y, Liu H, Wu L, Warburton M, Yan J (2017) Genome-wide association studies in maize: praise and stargaze. Mol Plant 10:359–374

    Article  CAS  PubMed  Google Scholar 

  8. Tian D, Wang P, Tang B, Teng X, Li C, Liu X, Zou D, Song S, Zhang Z (2020) GWAS atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Res 48:D927–D932

    Article  CAS  PubMed  Google Scholar 

  9. Chen F, Dong W, Zhang J, Guo X, Chen J, Wang Z, Lin Z, Tang H, Zhang L (2018) The sequenced angiosperm genomes and genome databases. Front Plant Sci 9:418

    Article  PubMed  PubMed Central  Google Scholar 

  10. Torkamaneh D, Boyle B, Belzile F (2018) Efficient genome-wide genotyping strategies and data integration in crop plants. Theor Appl Genet 131:499–511

    Article  CAS  PubMed  Google Scholar 

  11. Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:1–9

    Article  Google Scholar 

  12. Tibbs Cortes L, Zhang Z, Yu J (2021) Status and prospects of genome-wide association studies in plants. Plant Genome 14:e20077

    Article  CAS  PubMed  Google Scholar 

  13. Kumar J, Pratap A, Solanki R, Gupta D, Goyal A, Chaturvedi S, Nadarajan N, Kumar S (2012) Genomic resources for improving food legume crops. J Agric Sci 150:289–318

    Article  CAS  Google Scholar 

  14. Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471

    Article  Google Scholar 

  15. Mulford AJ, Wing C, Dolan ME, Wheeler HE (2021) Genetically regulated expression underlies cellular sensitivity to chemotherapy in diverse populations. Human molecular genetics, 30(3–4), 305–317. https://doi.org/10.1093/hmg/ddab029

  16. Sun L, Dimitromanolakis A (2012) Identifying cryptic relationships. In: Statistical human genetics. Springer, New York, pp 47–57

    Chapter  Google Scholar 

  17. Ke X, Hunt S, Tapper W, Lawrence R, Stavrides G, Ghori J, Whittaker P, Collins A, Morris AP, Bentley D (2004) The impact of SNP density on fine-scale patterns of linkage disequilibrium. Hum Mol Genet 13:577–588

    Article  CAS  PubMed  Google Scholar 

  18. Joiret MM, John JM, Gusareva ES, Van Steen K (2019) Confounding of linkage disequilibrium patterns in large scale DNA based gene-gene interaction studies. BioData Min 12:199–197

    Article  Google Scholar 

  19. Gao Y, Liu Z, Faris JD, Richards J, Brueggeman RS, Li X, Oliver RP, McDonald BA, Friesen TL (2016) Validation of genome-wide association studies as a tool to identify virulence factors in Parastagonospora nodorum. Phytopathology 106:1177–1185

    Article  CAS  PubMed  Google Scholar 

  20. Soto-Cerda BJ, Cloutier S (2012) Association mapping in plant genomes. In: Genetic diversity in plants. InTech Open, London, pp 29–54

    Google Scholar 

  21. Maurer A, Draba V, Pillen K (2016) Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. J Exp Bot 67:2507–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen Z, Boehnke M, Wen X, Mukherjee B (2021) Revisiting the genome-wide significance threshold for common variant GWAS. G3 11:jkaa056

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bush WS, Moore JH (2012) Chapter 11: genome-wide association studies. PLoS Comput Biol 8:e1002822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ding R, Yang M, Quan J, Li S, Zhuang Z, Zhou S, Zheng E, Hong L, Li Z, Cai G (2019) Single-locus and multi-locus genome-wide association studies for intramuscular fat in Duroc pigs. Front Genet 10:619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun S, Dong B, Zou Q (2021) Revisiting genome-wide association studies from statistical modelling to machine learning. Brief Bioinform 22:bbaa263

    Article  PubMed  Google Scholar 

  26. Nakaoka H, Inoue I (2009) Meta-analysis of genetic association studies: methodologies, between-study heterogeneity and winner’s curse. J Hum Genet 54:615–623

    Article  PubMed  Google Scholar 

  27. Emily M (2018) Power comparison of Cochran-Armitage trend test against allelic and genotypic tests in large-scale case-control genetic association studies. Stat Methods Med Res 27:2657–2673

    Article  PubMed  Google Scholar 

  28. Bush WS, Moore JH (2012) Genome-wide association studies. PLoS Comput Biol 8:e1002822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manolio TA (2013) Bringing genome-wide association findings into clinical use. Nat Rev Genet 14:549–558

    Article  CAS  PubMed  Google Scholar 

  30. Armitage P (1955) Tests for linear trends in proportions and frequencies. Biometrics 11:375–386

    Article  Google Scholar 

  31. Roeder K, Bacanu SA, Sonpar V, Zhang X, Devlin B (2005) Analysis of single-locus tests to detect gene/disease associations. Genet Epidemiol 28:207–219

    Article  PubMed  Google Scholar 

  32. Kaler AS, Gillman JD, Beissinger T, Purcell LC (2020) Comparing different statistical models and multiple testing corrections for association mapping in soybean and maize. Front Plant Sci 10:1794

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li C, Fu Y, Sun R, Wang Y, Wang Q (2018) Single-locus and multi-locus genome-wide association studies in the genetic dissection of fiber quality traits in upland cotton (Gossypium hirsutum L). Front Plant Sci 9:1083

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoffman GE, Logsdon BA, Mezey JG (2013) PUMA: a unified framework for penalized multiple regression analysis of GWAS data. PLoS Comput Biol 9:e1003101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  39. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wen Y-J, Zhang H, Ni Y-L, Huang B, Zhang J, Feng J-Y, Wang S-B, Dunwell JM, Zhang Y-M, Wu R (2018) Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform 19:700–712

    Article  PubMed  Google Scholar 

  41. Li M, Liu X, Bradbury P, Yu J, Zhang Y-M, Todhunter RJ, Buckler ES, Zhang Z (2014) Enrichment of statistical power for genome-wide association studies. BMC Biol 12:1–10

    Article  Google Scholar 

  42. Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-Y, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Q, Tian F, Pan Y, Buckler ES, Zhang Z (2014) A SUPER powerful method for genome wide association study. PLoS One 9:e107684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gupta PK, Kulwal PL, Jaiswal V (2019) Association mapping in plants in the post-GWAS genomics era. Adv Genet 104:75–154

    Article  PubMed  Google Scholar 

  46. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wen Y-J, Zhang H, Zhang J, Feng J-Y, Huang B, Dunwell JM, Zhang Y-M, Wu R (2016) A fast multi-locus random-SNP-effect EMMA for genome-wide association studies. bioRxiv 077404

    Google Scholar 

  48. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spindel J, Begum H, Akdemir D, Collard B, Redoña E, Jannink J, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116:395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D (2011) FaST linear mixed models for genome-wide association studies. Nat Methods 8:833–835

    Article  CAS  PubMed  Google Scholar 

  51. Tucker G, Price AL, Berger B (2014) Improving the power of GWAS and avoiding confounding from population stratification with PC-select. Genetics 197:1045–1049

    Article  PubMed  PubMed Central  Google Scholar 

  52. Listgarten J, Lippert C, Kadie CM, Davidson RI, Eskin E, Heckerman D (2012) Improved linear mixed models for genome-wide association studies. Nat Methods 9:525–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cui Y, Zhang F, Zhou Y (2018) The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Front Plant Sci 9:1464

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yang J, Ferreira T, Morris AP, Medland SE, Madden PA, Heath AC, Martin NG, Montgomery GW, Weedon MN, Loos RJ (2012) Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 44:369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giglio C, Brown SD (2018) Using elastic net regression to perform spectrally relevant variable selection. J Chemom 32:e3034

    Article  CAS  Google Scholar 

  56. Sun S, Wang C, Ding H, Zou Q (2020) Machine learning and its applications in plant molecular studies. Brief Funct Genomics 19:40–48

    Article  CAS  PubMed  Google Scholar 

  57. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, Strawbridge RJ, Khan H, Grallert H, Mahajan A (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ding K, Kullo IJ (2007) Methods for the selection of tagging SNPs: a comparison of tagging efficiency and performance. Eur J Hum Genet 15:228–236

    Article  CAS  PubMed  Google Scholar 

  59. Harrell FE Jr (2015) Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer

    Book  Google Scholar 

  60. Cherlin S, Howey R, Cordell HJ (2018) Using penalized regression to predict phenotype from SNP data. BMC proceedings 12(Suppl 9):38.https://doi.org/10.1186/s12919-018-0149-2

  61. Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ (2008) Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet 4:e1000130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ayers KL, Cordell HJ (2010) SNP selection in genome-wide and candidate gene studies via penalized logistic regression. Genet Epidemiol 34:879–891

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mihalyov PD, Nichols VA, Bulli P, Rouse MN, Pumphrey MO (2017) Multi-locus mixed model analysis of stem rust resistance in winter wheat. Plant Genome 10. https://doi.org/10.3835/plantgenome2017.01.0001

  64. Wen Y-J, Zhang Y-W, Zhang J, Feng J-Y, Dunwell JM, Zhang Y-M (2019) An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Brief Bioinform 20:1913–1924

    Article  CAS  PubMed  Google Scholar 

  65. Wen Y, Zhang Y, Zhang J, Feng J, Zhang Y (2020) The improved FASTmrEMMA and GCIM algorithms for genome-wide association and linkage studies in large mapping populations. Crop J 8:723–732

    Article  Google Scholar 

  66. Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12:e1005767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Huang M, Liu X, Zhou Y, Summers RM, Zhang Z (2019) BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience 8:giy154

    Article  Google Scholar 

  68. Zhong H, Liu S, Meng X, Sun T, Deng Y, Kong W, Peng Z, Li Y (2021) Uncovering the genetic mechanisms regulating panicle architecture in rice with GPWAS and GWAS. BMC Genomics 22:1–13

    Google Scholar 

  69. Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem RM, Chasman DI, Ridker PM, Neale BM, Berger B et al (2015) Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet 47:284–290. https://doi.org/10.1038/ng.3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Loh P-R, Kichaev G, Gazal S, Schoech AP, Price AL (2018) Mixed-model association for biobank-scale datasets. Nat Genet 50:906–908. https://doi.org/10.1038/s41588-018-0144-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao Y, Zhu H, Lu Z, Knickmeyer RC, Zou F (2019) Structured genome-wide association studies with Bayesian hierarchical variable selection. Genetics 212:397–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Armero C, Cabras S, Castellanos ME, Quirós A (2019) Two-stage Bayesian approach for GWAS with known genealogy. J Comput Graph Stat 28:197–204. https://doi.org/10.1080/10618600.2018.1483828

    Article  Google Scholar 

  73. Banerjee S, Zeng L, Schunkert H, Söding J (2018) Bayesian multiple logistic regression for case-control GWAS. PLoS Genet 14:e1007856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Banerjee S, Zeng L, Schunkert H, Söding J (2019) Bayesian multiple logistic regression for case-control GWAS. PLoS Genet 14:e1007856. https://doi.org/10.1371/journal.pgen.1007856

    Article  CAS  Google Scholar 

  75. Stephens M, Balding DJ (2009) Bayesian statistical methods for genetic association studies. Nat Rev Genet 10:681–690

    Article  CAS  PubMed  Google Scholar 

  76. Fernando RL, Garrick D (2013) Bayesian methods applied to GWAS. In: Gondro C, van der Werf J, Hayes B (eds) Genome-wide association studies and genomic prediction. Humana Press, Totowa, pp 237–274. https://doi.org/10.1007/978-1-62703-447-0_10

    Chapter  Google Scholar 

  77. E Silva FF, Viana JMS, Faria VR, de Resende MDV (2013) Bayesian inference of mixed models in quantitative genetics of crop species. Theor Appl Genet 126:1749–1761. https://doi.org/10.1007/s00122-013-2089-6

    Article  PubMed  Google Scholar 

  78. Sorensen D, Gianola D (2007) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer, New York

    Google Scholar 

  79. Papachristou C, Ober C, Abney M A LASSO penalized regression approach for genome-wide association analyses using related individuals: application to the Genetic Analysis Workshop 19 simulated data. In Proceedings of BMC proceedings; pp. 221–226

    Google Scholar 

  80. Wang Y, Sha N, Fang Y (2009) Analysis of genome-wide association data by large-scale Bayesian logistic regression. BMC Proc 3:S16. https://doi.org/10.1186/1753-6561-3-S7-S16

  81. Park MY, Hastie T (2008) Penalized logistic regression for detecting gene interactions. Biostatistics 9:30–50

    Article  PubMed  Google Scholar 

  82. Wu TT, Chen YF, Hastie T, Sobel E, Lange K (2009) Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25:714–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fort G, Lambert-Lacroix S (2005) Classification using partial least squares with penalized logistic regression. Bioinformatics 21:1104–1111

    Article  CAS  PubMed  Google Scholar 

  84. Hoerl AE, Kannard RW, Baldwin KF (1975) Ridge regression: some simulations. Commun Stat Theory Methods 4:105–123

    Google Scholar 

  85. Hans C (2009) Bayesian lasso regression. Biometrika 96:835–845

    Article  Google Scholar 

  86. Hans C (2011) Elastic net regression modeling with the orthant normal prior. J Am Stat Assoc 106:1383–1393

    Article  CAS  Google Scholar 

  87. Li J, Das K, Fu G, Li R, Wu R (2011) The Bayesian lasso for genome-wide association studies. Bioinformatics 27:516–523

    Article  CAS  PubMed  Google Scholar 

  88. Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101:1418–1429

    Article  CAS  Google Scholar 

  89. Zhang HH, Lu W (2007) Adaptive Lasso for Cox’s proportional hazards model. Biometrika 94:691–703

    Article  Google Scholar 

  90. Wang D, Eskridge KM, Crossa J (2011) Identifying QTLs and epistasis in structured plant populations using adaptive mixed LASSO. J Agric Biol Environ Stat 16:170–184

    Article  Google Scholar 

  91. Cho S, Kim K, Kim YJ, Lee JK, Cho YS, Lee JY, Han BG, Kim H, Ott J, Park T (2010) Joint identification of multiple genetic variants via elastic-net variable selection in a genome-wide association analysis. Ann Hum Genet 74:416–428

    Article  PubMed  Google Scholar 

  92. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc B 67:301–320

    Article  Google Scholar 

  93. Garrick DJ, Fernando RL (2013) Implementing a QTL detection study (GWAS) using genomic prediction methodology. In: Genome-wide association studies and genomic prediction. Springer, New York, pp 275–298

    Chapter  Google Scholar 

  94. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen C, Steibel JP, Tempelman RJ (2017) Genome-wide association analyses based on broadly different specifications for prior distributions, genomic windows, and estimation methods. Genetics 206:1791–1806

    Article  PubMed  PubMed Central  Google Scholar 

  96. Vallejo RL, Cheng H, Fragomeni BO, Shewbridge KL, Gao G, MacMillan JR, Towner R, Palti Y (2019) Genome-wide association analysis and accuracy of genome-enabled breeding value predictions for resistance to infectious hematopoietic necrosis virus in a commercial rainbow trout breeding population. Genet Sel Evol 51:1–14

    Article  CAS  Google Scholar 

  97. Wolc A, Arango J, Settar P, Fulton JE, O’Sullivan NP, Dekkers JC, Fernando R, Garrick DJ (2016) Mixture models detect large effect QTL better than GBLUP and result in more accurate and persistent predictions. J Anim Sci Biotechnol 7:1–6

    Article  CAS  Google Scholar 

  98. Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12:1–12

    Article  Google Scholar 

  99. Cai X, Huang A, Xu S (2011) Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping. BMC Bioinformatics 12:1–13

    Article  Google Scholar 

  100. Robert C, Casella G (2013) Monte Carlo statistical methods. Springer, New York

    Google Scholar 

  101. Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63:513–521

    Article  CAS  PubMed  Google Scholar 

  102. Xu S (2010) An expectation–maximization algorithm for the Lasso estimation of quantitative trait locus effects. Heredity 105:483–494

    Article  CAS  PubMed  Google Scholar 

  103. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  104. Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D (2018) Machine learning in agriculture: a review. Sensors 18:2674

    Article  PubMed Central  Google Scholar 

  105. McQueen RJ, Garner SR, Nevill-Manning CG, Witten IH (1995) Applying machine learning to agricultural data. Comput Electron Agric 12:275–293

    Article  Google Scholar 

  106. Sharma R, Kamble SS, Gunasekaran A, Kumar V, Kumar A (2020) A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput Oper Res 119:104926

    Article  Google Scholar 

  107. Yoosefzadeh-Najafabadi M, Tulpan D, Eskandari M (2021) Using hybrid artificial intelligence and evolutionary optimization algorithms for estimating soybean yield and fresh biomass using hyperspectral vegetation indices. Remote Sens 13:2555

    Article  Google Scholar 

  108. Chetnik K, Petrick L, Pandey G (2020) MetaClean: a machine learning-based classifier for reduced false positive peak detection in untargeted LC–MS metabolomics data. Metabolomics 16:1–13

    Article  CAS  Google Scholar 

  109. Hesami M, Yoosefzadeh Najafabadi M, Adamek K, Torkamaneh D, Jones AMP (2021) Synergizing off-target predictions for in silico insights of CENH3 knockout in cannabis through CRISPR/Cas. Molecules 26:2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wen B, Zeng WF, Liao Y, Shi Z, Savage SR, Jiang W, Zhang B (2020) Deep learning in proteomics. Proteomics 20:1900335

    Article  CAS  PubMed Central  Google Scholar 

  111. Peng GC, Alber M, Tepole AB, Cannon WR, De S, Dura-Bernal S, Garikipati K, Karniadakis G, Lytton WW, Perdikaris P (2021) Multiscale modeling meets machine learning: what can we learn? Arch Comput Methods Eng 28:1017–1037

    Article  PubMed  Google Scholar 

  112. Leal LG, David A, Jarvelin M-R, Sebert S, Männikkö M, Karhunen V, Seaby E, Hoggart C, Sternberg MJ (2019) Identification of disease-associated loci using machine learning for genotype and network data integration. Bioinformatics 35:5182–5190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Reitermanová, Z (2010) Data splitting. WDS’10 Proceedings of Contributed Papers, Part I, 31–36

    Google Scholar 

  115. Quiñonero-Candela, J.; Sugiyama, M.; Lawrence, N.D.; Schwaighofer, A. Dataset shift in machine learning; Mit Press: Cambridge 2009

    Google Scholar 

  116. Schaffer C (1993) Selecting a classification method by cross-validation. Mach Learn 13:135–143

    Article  Google Scholar 

  117. Piette ER, Moore JH (2018) Improving machine learning reproducibility in genetic association studies with proportional instance cross validation (PICV). BioData Mining 11:1–11

    Article  Google Scholar 

  118. Schrider DR, Kern AD (2018) Supervised machine learning for population genetics: a new paradigm. Trends Genet 34:301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Williams AM, Liu Y, Regner KR, Jotterand F, Liu P, Liang M (2018) Artificial intelligence, physiological genomics, and precision medicine. Physiol Genomics 50:237–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wuest T, Weimer D, Irgens C, Thoben K-D (2016) Machine learning in manufacturing: advantages, challenges, and applications. Prod Manuf Res 4:23–45

    Google Scholar 

  121. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W (2018) Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 15:41–51

    CAS  PubMed  Google Scholar 

  122. Najafabadi MY, Torabi S, Torkamaneh D, Tulpan D, Rajcan I, Eskandari M (2021) Machine learning based genome-wide association studies for uncovering QTL underlying soybean yield and its components. bioRxiv

    Google Scholar 

  123. Yu G-X, Ostrouchov G, Geist A, Samatova NF (2003) An SVM-based algorithm for identification of photosynthesis-specific genome features. In: Proceedings of the 2003 IEEE bioinformatics conference. CSB2003, pp 235–243

    Google Scholar 

  124. Sonnenburg S, Rätsch G, Schölkopf B (2005) Large scale genomic sequence SVM classifiers. Proceedings of the 22nd international conference on machine learning 848–855. https://doi.org/10.1145/1102351.1102458

  125. Yoosefzadeh-Najafabadi M, Tulpan D, Eskandari M (2021) Application of machine learning and genetic optimization algorithms for modeling and optimizing soybean yield using its component traits. PLoS One 16:e0250665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hesami M, Condori-Apfata JA, Valderrama Valencia M, Mohammadi M (2020) Application of artificial neural network for modeling and studying in vitro genotype-independent shoot regeneration in wheat. Appl Sci 10:5370

    Article  CAS  Google Scholar 

  127. Hesami M, Jones AMP (2020) Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl Microbiol Biotechnol 104:1–37

    Article  CAS  Google Scholar 

  128. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26

    Article  Google Scholar 

  129. Calle ML, Urrea V, Boulesteix A-L, Malats N (2011) AUC-RF: a new strategy for genomic profiling with random forest. Hum Hered 72:121–132

    Article  CAS  PubMed  Google Scholar 

  130. Winham SJ, Colby CL, Freimuth RR, Wang X, de Andrade M, Huebner M, Biernacka JM (2012) SNP interaction detection with random forests in high-dimensional genetic data. BMC Bioinformatics 13:1–13

    Article  Google Scholar 

  131. Zhang L, Pan Q, Wang Y, Wu X, Shi X (2017) Bayesian network construction and genotype-phenotype inference using GWAS statistics. IEEE/ACM Trans Comput Biol Bioinform 16:475–489

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jiang X, Neapolitan RE (2015) Evaluation of a two-stage framework for prediction using big genomic data. Brief Bioinform 16:912–921

    Article  PubMed  PubMed Central  Google Scholar 

  133. Pahikkala T, Okser S, Airola A, Salakoski T, Aittokallio T (2012) Wrapper-based selection of genetic features in genome-wide association studies through fast matrix operations. Algorithms Mol Biol 7:1–15

    Article  Google Scholar 

  134. Yoosefzadeh-Najafabadi M, Earl HJ, Tulpan D, Sulik J, Eskandari M (2021) Application of machine learning algorithms in plant breeding: predicting yield from hyperspectral reflectance in soybean. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.624273

  135. Chong I-G, Jun C-H (2005) Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab Syst 78:103–112

    Article  CAS  Google Scholar 

  136. Han B, Park M, Chen XW (2010) A Markov blanket-based method for detecting causal SNPs in GWAS. BMC Bioinformatics 11(Suppl 3):S5. https://doi.org/10.1186/1471-2105-11-S3-S5. PMID: 20438652; PMCID: PMC2863064

  137. Guo H, Yu Z, An J, Han G, Ma Y, Tang R (2020) A two-stage mutual information based Bayesian Lasso algorithm for multi-locus genome-wide association studies. Entropy 22:329

    Article  PubMed Central  Google Scholar 

  138. Alzubi R, Ramzan N, Alzoubi H (2017) Hybrid feature selection method for autism spectrum disorder SNPs. In: Proceedings of 2017 IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB), pp 1–7

    Google Scholar 

  139. Yuan H-Y, Chiou J-J, Tseng W-H, Liu C-H, Liu C-K, Lin Y-J, Wang H-H, Yao A, Chen Y-T, Hsu C-N (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 34:W635–W641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8:1–21

    Article  CAS  Google Scholar 

  141. Szymczak S, Holzinger E, Dasgupta A, Malley JD, Molloy AM, Mills JL, Brody LC, Stambolian D, Bailey-Wilson JE (2016) r2VIM: a new variable selection method for random forests in genome-wide association studies. BioData Mining 9:1–15

    Article  CAS  Google Scholar 

  142. Vitsios D, Petrovski S (2019) Stochastic semi-supervised learning to prioritise genes from high-throughput genomic screens. bioRxiv 655449

    Google Scholar 

  143. Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, Benner C, O’Dushlaine C, Barber M, Boutkov B et al (2021) Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet. https://doi.org/10.1038/s41588-021-00870-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Torkamaneh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yoosefzadeh-Najafabadi, M., Eskandari, M., Belzile, F., Torkamaneh, D. (2022). Genome-Wide Association Study Statistical Models: A Review. In: Torkamaneh, D., Belzile, F. (eds) Genome-Wide Association Studies. Methods in Molecular Biology, vol 2481. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2237-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2237-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2236-0

  • Online ISBN: 978-1-0716-2237-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics