Skip to main content

Chloroplast to Leaf

  • Chapter
Photosynthetic Adaptation

Part of the book series: Ecological Studies ((ECOLSTUD,volume 178))

Abstract

The central reactions of carbon processing in photosynthesis in plants occur in chloroplasts. Chloroplasts are one member of the plastid family of organelles, which are responsible for much of the biochemical flexibility of plants. All plant cells have plastids but the plastids of a cell can develop into a variety of organelles including amyloplasts, which store starch, and chromoplasts, which store pigments. Sugars are quantitatively the most significant result of carbon processing in chloroplasts but by no means are they the only essential products. Plastids are the site of production of the amino acids essential in animal diets, all of the fatty acids in the plants, carotenoids and other isoprenoids, and phenylpropanoids. Plastids also produce vitamins A (or its precursors), C, and E, as well as some of the B vitamins. The biochemical flexibility of carbon processing in plastids is a critical part of the success of plants. Some of the major products of carbon processing in the chloroplast and interactions with the rest of the cell are shown in Figure 7.1. In addition to carbon processing, plastids are the site where nitrogen and sulfur are reduced. Plants require large amounts of nitrogen for chlorophyll and proteins needed for carbon processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andrews, T. J., and Kane, H. J. 1991. Pyruvate is a by-product of catalysis by ribulosebisphosphate carboxylase/oxygenase. J. Biol. Chem. 266:9447–9452.

    CAS  PubMed  Google Scholar 

  • Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., and León, P. 2000. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14:2085–2096.

    CAS  PubMed  Google Scholar 

  • Badger, M. R., and Lorimer, G. H. 1976. Activation of ribulose-1,5-bisphosphate oxygenase. The role of Mg2+, CO2 and pH. Arch. Biochem. Biophys. 175:723–729.

    Article  CAS  PubMed  Google Scholar 

  • Badger, M. R., and Spalding, M. H. 2000. CO2 acquisition, concentration and fixation in cyanobacteria and algae. In: Advances in Photosynthesis, Vol. 9. Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 369–397. Dordrecht, The Netherlands: Kluwer Academic Publishing.

    Google Scholar 

  • Balachandran, S., Hull, R. J., Vaadia, Y., Wolf. S., and Lucas, W. J. 1995. Alteration in carbon partitioning induced by the movement protein of tobacco mosaic virus originates in the mesophyll and is independent of change in the plasmodesmal size exclusion limit. Plant Cell Environ. 18:1301–1310.

    Article  CAS  Google Scholar 

  • Ball, S. G., and Morrell, M. K. 2003. From bacterial glycogen to starch: Understanding the Biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 54:207–233.

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R., Jr., and Long, S. P. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24:253–259.

    Article  CAS  Google Scholar 

  • Bernacchi, C. J., Portis, A. R., Nakano, H., von Caemmerer, S., and Long, S. P. 2002. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130:1992–1998.

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi, C. J., Pimentel, C., and Long, S. P. 2003. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ. 26:1419–1430.

    Article  CAS  Google Scholar 

  • Blackman, F. F. 1905. Optima and limiting factors. Ann. Bot. 19:281–295.

    Google Scholar 

  • Boos, W., and Shuman, H. 1998. Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation. Microbiol. Molec. Biol. Rev. 62:204–229.

    CAS  Google Scholar 

  • Brugnoli, E., and Farquhar, G. D. 2000. Photosynthetic fractionation of carbon isotopes. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 399–434. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Burton, R. A., Jenner, H., Carrangis, L., Fahy, B., Fincher, G. B., Hylton, C., Laurie, D. A., Parker, M., Waite, D., Van Wegen, S., Verhoeven, T., and Denyer. K. 2002. Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant J. 31:97–112.

    Article  CAS  PubMed  Google Scholar 

  • Camp, P. J., and Randall, D. D. 1985. Purification and characterization of the pea chloroplast pyruvate dehydrogenase complex. Plant Physiol. 77:571–577.

    Article  CAS  PubMed  Google Scholar 

  • Caspar, T., Lin, T.-P., Kakefuda, G., Benbow, L., Preiss, J., and Somerville, C. 1991. Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol. 95:1181–1188.

    Article  CAS  PubMed  Google Scholar 

  • Chatterton, N. J., Harrison, P. A., Bennet, J. H., and Thornley, W. R. 1987. Fructan, starch and sucrose concentrations in crested wheatgrass and redtop as affected by temperature. Plant Physiol. Biochem. 25:617–623.

    CAS  Google Scholar 

  • Cheng, S. H., Willmann, M. R., Chen, H. C., and Sheen, J. 2002. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129:469–485.

    Article  CAS  PubMed  Google Scholar 

  • Chia, T., Thorneycraft, D., Chapple, A., Messerli, G., Chen, J., Zeeman, S., Smith, S. M., and Smith, A. M. 2004. A cytosolic glycosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant Biol. 37:853–863.

    CAS  Google Scholar 

  • Colleoni, C., Dauvillee, D., Mouille, G., Buleon, A., Gallant, D., Bouchet, B., Morell, M., Samuel, M., Delrue, B., D’Hulst, C., Bliard, C., Nuzillard, J. M., and Ball, S. 1999a. Genetic and biochemical evidence for the involvement of alpha-1,4 glucanotransferases in amylopectin synthesis. Plant Physiol. 120:993–1004.

    Article  CAS  PubMed  Google Scholar 

  • Colleoni, C., Dauvillee, D., Mouille, G., Morell, M., Samuel, M., Slomiany, M. C., Lienard, L., Wattebled, F., D’Hulst, C., and Ball, S. 1999b. Biochemical characterization of the chlamydomonas reinhardtii alpha-1,4 glucanotransferase supports a direct function in amylopectin biosynthesis. Plant Physiol. 120:1005–1014.

    Article  CAS  PubMed  Google Scholar 

  • Critchley, J. H., Zeeman, S. C., Takaha, T., Smith, A. M., and Smith, S. M. 2001. A critical role for disproportionating enzyme in starch breakdown is revealed by a knockout mutation in Arabidopsis. Plant J. 26:89–100.

    Article  CAS  PubMed  Google Scholar 

  • Dai, N., Schaffer, A., Petreikov, M., Shahak, Y., Giller, Y., Ratner, K., Levine, A., and Granot, D. 1999. Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266.

    Article  CAS  PubMed  Google Scholar 

  • Deng, M. D., Moureaux, T., Cherel, I., Boutin, J. P., and Caboche, M. 1991. Effects of nitrogen metabolites on the regulation and circadian expression of tobacco nitrate reductase. Plant Physiol. Biochem. 29:239–247.

    CAS  Google Scholar 

  • Dietz, K. J. 1985. A possible rate limiting function of chloroplast hexosemonophosphate isomerase in starch synthesis of leaves. Biochim. Biophys. Acta 839:240–248.

    CAS  Google Scholar 

  • Edmondson, D. L., Kane, H. J., and Andrews, T. J. 1990. Substrate isomerization inhibits ribulosebisphosphate carboxylase-oxygenase during catalysis. FEBS Lett. 260:62–66.

    Article  CAS  Google Scholar 

  • Evans, J. R., and Loreto, F. 2000. Acquisition and diffusion of CO2 in higher plant leaves. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 321–351. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Everard, J. D., Franceschi, V. R., and Loescher, W. H. 1993. Mannose-6-phosphate reductase, a key enzyme in photoassimilate partitioning, is abundant and located in the cytosol of photosynthetically active cells of celery (Apium graveolens L.) source leaves. Plant Physiol. 102:345–356.

    CAS  PubMed  Google Scholar 

  • Farquhar, G. D. and Sharkey, T. D. 1994. Photosynthesis and carbon assimilation. In: Physiology and Determination of Crop Yield. K. J. Boote et al. (eds.), pp. 187–210. Madison: ASA, CSSA, SSSA.

    Google Scholar 

  • Farquhar, G. D. and von Caemmerer, S. 1982. Modelling of photosynthetic response to environmental conditions. In: Encyclopedia of Plant Physiology, New Series, Vol. 12B. Physiological Plant Ecology II. Water Relations and Carbon Assimilation. O. L. Lange et al. (eds.), pp. 549–587. Berlin: Springer-Verlag.

    Google Scholar 

  • Farquhar, G. D., Firth, P. M., Wetselaar, R., and Weir, B. 1980a. On the gaseous exchange of ammonia between leaves and the environment: Determination of the ammoinia compensation point. Plant Physiol. 66:710–714.

    Article  CAS  PubMed  Google Scholar 

  • Farquhar, G. D., von Caemmerer, S., and Berry, J. A. 1980b. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.

    Article  CAS  Google Scholar 

  • Fischer, K., Kammerer, B., Gutensohn, M., Arbinger, B., Weber, A., Häusler, R. E., and Flügge, U.-I. 1997. A new class of plastidic phosphate translocators: A putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell 9:453–462.

    Article  CAS  PubMed  Google Scholar 

  • Flügge, U.-I. 1999. Phosphate translocators in plastids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:27–45.

    Article  PubMed  Google Scholar 

  • Flügge, U.-I., and Heldt, H. W. 1991. Metabolite translocators of the chloroplast envelope. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:129–144.

    Article  Google Scholar 

  • Foyer, C., Galtier, N., and Quick, P. 1994. Modifications in carbon assimilation, carbon partitioning and total biomass as a result of over-expression of sucrose phosphate synthase in transgenic potato plants. Plant Physiol. 105(Suppl.):23.

    Google Scholar 

  • Foyer, C. H., Ferrario-Mery, S., and Huber, S. C. 2000. Regulation of carbon fluxes in the cytosol: Coordination of sucrose synthesis, nitrate reduction and organic and amino acid biosynthesis. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 177–203. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Furbank, R. T., Hatch, M. D., and Jenkens, C. L. D. 2000. C4 photosynthesis: Mechanism and regulation. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 435–457. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Gerhardt, R., Stitt, M., and Heldt, H. W. 1987. Subcellular metabolite levels in spinach leaves. Regulation of sucrose synthesis during diurnal alterations in photosynthetic partitioning. Plant Physiol. 83:399–407.

    Article  CAS  PubMed  Google Scholar 

  • Grace, J., Berninger, F., and Nagy, L. 2002. Impacts of climate change on the tree line. Ann. Bot. 90:537–544.

    Article  CAS  PubMed  Google Scholar 

  • Hajirezaei, M. R., Takahata, Y., Trethewey, R. N., Willmitzer, L., and Sonnewald, U. 2000. Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development. J. Exp. Bot. 51:439–445.

    Article  CAS  PubMed  Google Scholar 

  • Haritatos, E., Ayre, B. G., and Turgeon, R. 2000. Identification of phloem involved in assimilate loading in leaves by the activity of the galactinol synthase promoter. Plant Physiol. 123:929–938.

    Article  CAS  PubMed  Google Scholar 

  • Harley, P. C. and Sharkey, T. D. 1991. An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynth. Res. 27:169–178.

    CAS  Google Scholar 

  • Harwood, J. L. 1996. Recent advances in the biosynthesis of plant fatty acids. Biochim. Biophys. Acta (BBA)-Lipids and Lipid Metabolism 1301:7–56.

    Article  Google Scholar 

  • Hattenbach, A., Müller-Röber, B., Nast, G., and Heineke, D. 1997. Antisense repression of both ADP-glucose pyrophosphorylase and triose phosphate translocator modifies carbohydrate partitioning in leaves. Plant Physiol. 115:471–475.

    CAS  PubMed  Google Scholar 

  • Häusler, R. E., Schlieben, N. H., Schulz, B., and Flügge, U.-I. 1998. Compensation of decreased triose phosphate-phosphate translocator activity by accelerated starch turnover and glucose transport in transgenic tobacco. Planta 204:366–376.

    Article  PubMed  Google Scholar 

  • Häusler, R. E., Schlieben, N. H., and Flügge, U.-I. 2000a. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum). II. Assessment of control coefficients of the triose phosphate/phosphate translocator. Planta 210:383–390.

    Article  PubMed  Google Scholar 

  • Häusler, R. E., Schlieben, N. H., Nicolay, P., Fischer, K., Fischer, K. L., and Flügge, U.-I. 2000b. Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.). I. Comparative physiological analysis of tobacco plants with antisense repression and overexpression of the triose phosphate/phosphate translocator. Planta 210:371–382.

    Article  PubMed  Google Scholar 

  • Heineke, D., Sonnewald, U., Büssis, D., Günter, G., Leidreiter, K., Wilke, I., Raschke, K., Willmitzer, L., and Heldt, H. W. 1992. Apoplastic expression of yeast-derived invertase in potato. Effects on photosynthesis, leaf solute composition, water relations, and tuber composition. Plant Physiol. 100:301–308.

    Article  CAS  PubMed  Google Scholar 

  • Heineke, D., Kruse, A., Flügge, U.-I., Frommer, W. B., Riesmeier, J. W., Willmitzer, L., and Heldt, H. W. 1994. Effect of antisense repression of the chloroplast triose phosphate translocator on photosynthetic metabolism in transgenic potato plants. Planta 193:174–180.

    Article  CAS  Google Scholar 

  • Herbers, K., Tacke, E., Hazirezaei, M., Krause, K. P., Melzer, M., Rohde, W., and Sonnewald, U. 1997. Expression of a luteoviral movement protein in transgenic plants leads to carbohydrate accumulation and reduced photosynthetic capacity in source leaves. Plant J. 12:1045–1056.

    Article  CAS  PubMed  Google Scholar 

  • Hoch, G., Popp, M., and Korner, C. 2002. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98:361–374.

    Article  CAS  Google Scholar 

  • Huber, J. L. A., and Huber, S. C. 1992. Site-specific serine phosphorylation of spinach leaf sucrose-phosphate synthase. Biochem. J. 283:877–882.

    CAS  PubMed  Google Scholar 

  • Huber, S. C., and Hanson, K. R. 1992. Carbon partitioning and growth of a starchless mutant of Nicotiana sylvestris. Plant Physiol. 99:1449–1454.

    Article  CAS  PubMed  Google Scholar 

  • Husic, D. W., Husic, H. D., and Tolbert, N. E. 1987. The oxidative photosynthetic carbon cycle or C2 cycle. CRC Crit. Rev. Plant Sci. 5:45–100.

    Article  CAS  Google Scholar 

  • James, M. G., Robertson, D. S., and Myers, A. M. 1995. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser, W. M., and Huber, S. C. 2001. Post-translational regulation of nitrate reductase: Mechanism, physiological relevance and environmental triggers. J. Exp. Bot. 52:1981–1989.

    Article  CAS  PubMed  Google Scholar 

  • Kakefuda, G., and Duke, S. H. 1989. Characterization of pea chloroplast D-enzyme (4-a-D-glucanotransferase). Plant Physiol. 91:136–143.

    Article  CAS  PubMed  Google Scholar 

  • Kammerer, B., Fischer, K., Hilpert, B., Schubert, S., Gutensohn, M., Weber, A., and Flügge, U.-I. 1998. Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: The glucose 6-phosphate/phosphate antiporter. Plant Cell 10:105–117.

    Article  CAS  PubMed  Google Scholar 

  • Kleinig, H. 1989. The role of plastids in isoprenoid synthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:39–59.

    Article  CAS  Google Scholar 

  • Kobza, J., and Seemann, J. R. 1988. Mechanisms for the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase activity and photosynthesis in leaves. Proc. Natl. Acad. Sci. USA 85:3815–3819.

    Article  CAS  PubMed  Google Scholar 

  • Koch, K. E., Ying, Z., Wu, Y., and Avigne, W. T. 2000. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. J. Exp. Bot. 51:417–427.

    Article  CAS  PubMed  Google Scholar 

  • Koshland, D. E. 1987. Switches, thresholds and ultrasensitivity. Trends Biochem. Sci. 12:225–229.

    Article  CAS  Google Scholar 

  • Kossmann, J., and Lloyd, J. 2000. Understanding and influencing starch biochemistry. Crit. Rev. Plant Sci. 19:171–226.

    Article  CAS  Google Scholar 

  • Kruger, N. J., and Scott, P. 1995. Integration of cytosolic and plastidic carbon metabolism by fructose 2,6-bisphosphate. J. Exp. Bot. 46:1325–1333.

    CAS  Google Scholar 

  • Lao, N. T., Schoneveld, O., Mould, R. M., Hibberd, J. M., Gray, J. C., and Kavanaugh, T. A. 1999. An Arabidopsis gene encoding a chloroplast-targeted b-amylase. Plant J 20:519–527.

    Article  CAS  PubMed  Google Scholar 

  • Laporte, M. M., Galagan, J. A., Prasch, A. L., Vanderveer, P. J., Hanson, D. T., Shewmaker, C. K., and Sharkey, T. D. 2001. Promoter strength and tissue specificity effects on growth of tomato plants transformed with maize sucrose-phosphate synthase. Planta 212:817–822.

    Article  CAS  PubMed  Google Scholar 

  • Lea, P. J., and Miflin, B. J. 1974. An alternative route for nitrogen assimilation in plants. Nature 251:614–616.

    Article  CAS  PubMed  Google Scholar 

  • Leegood, R. C. 1997. The regulation of C4 photosynthesis. Adv. Bot. Res. 26:251–316.

    Article  CAS  Google Scholar 

  • Leegood, R. C. 2000. Transport during C4 photosynthesis. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 459–469. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Leegood, R. C., Kobayashi, Y., Neimanis, S., Walker, D. A., and Heber, U. 1982. Cooperative activation of chloroplast fructose-1,6-bisphosphatase by reductant, pH, and substrate. Biochim. Biophys. Acta 682:168–178.

    Article  CAS  Google Scholar 

  • Leidreiter, K., Heineke, D., Heldt, H. W., Müller-Röber, B., Sonnewald, U., and Willmitzer, L. 1995. Leaf-specific antisense inhibition of starch biosynthesis in transgenic potato plants leads to an increase in photoassimilate export from source leaves during the light period. Plant Cell Physiol. 36:615–624.

    CAS  Google Scholar 

  • Lemoine, R., Kühn, C., Thiele, N., Delrot, S., and Frommer, W. B. 1996. Antisense inhibition of the sucrose transporter in potato: Effects on amount and activity. Plant Cell Environ. 19:1124–1131.

    Article  CAS  Google Scholar 

  • Levi, C., and Gibbs, M. 1976. Starch degradation in isolated chloroplasts. Plant Physiol. 57:933–935.

    Article  CAS  PubMed  Google Scholar 

  • Li, B., Geiger, D. R., and Shieh, W.-J. 1992. Evidence for circadian regulation of starch and sucrose synthesis in sugar beet leaves. Plant Physiol. 99:1393–1399.

    Article  CAS  PubMed  Google Scholar 

  • Libessart, N., Maddelein, M. L., Van den Koornhuyse, N., Decq, A., Delrue, B., Mouille, G., D’Hulst, C., and Ball, S. 1995. Storage, photosynthesis, and growth: The conditional nature of mutations affecting starch synthesis and structure in Chlamydomonas. Plant Cell 7:1117–1127.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H. K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:47–65.

    Article  CAS  PubMed  Google Scholar 

  • Loescher, W. H., and Everard, J. D. 2000. Regulation of sugar alcohol biosynthesis. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 275–299. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Lohaus, G., and Heldt, H. W. 1997. Assimilation of gaseous ammonia and the transport of its products in barley and spinach leaves. J. Exp. Bot. 48:1779–1786.

    CAS  Google Scholar 

  • Lorberth, R., Ritte, G., Willmitzer, L., and Kossmann, J. 1998. Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nat. Biotechnol. 16:473–477.

    Article  CAS  PubMed  Google Scholar 

  • Loreto, F., Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M., Fabozzi, C., and Tricoli, D. 1996. Evidence of the photosynthetic origin of monoterpenes emitted by Quercus ilex L leaves by 13C labeling. Plant Physiol. 110:1317–1322.

    CAS  PubMed  Google Scholar 

  • Loreto, F., Förster, A., Dürr, M., Csiky, O., and Seufert, G. 1998. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ. 21:101–107.

    Article  CAS  Google Scholar 

  • Lu, Y., and Sharkey, T. D. 2003. The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218:466–473.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, W. J. 1995. Plasmodesmata: Intercellular channels for macromolecular transport in plants. Curr. Opin. Cell Biol. 7:673–680.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, W. J., Olesinski, A., Hull, R. J., Haudenshield, J. S., Deom, C. M., Beachy, R. N., and Wolf, S. 1993. Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants. Planta 190:88–96.

    Article  CAS  Google Scholar 

  • Lucas, W. J., Bouché-Pillon, S., Jackson, D. P., Nguyen, L., Baker, L., Ding, B., and Hake, S. 1995. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983.

    Article  CAS  PubMed  Google Scholar 

  • Ludewig, F., Sonnewald, U., Kauder, F., Heineke, D., Geiger, M., Stitt, M., Müller-Röber, B. T., Gillissen, B., Kühn, C., and Frommer, W. B. 1998. The role of transient starch in acclimation to elevated atmospheric CO2. FEBS Lett. 429:147–151.

    Article  CAS  PubMed  Google Scholar 

  • Lytovchenko, A., Bieberich, K., Willmitzer, L., and Fernie, A. R. 2002. Carbon assimilation and metabolism in potato leaves deficient in plastidial phosphoglucomutase. Planta 215:802–811.

    Article  CAS  PubMed  Google Scholar 

  • Madore, M., and Grodzinski, B. 1984. Effect of oxygen concentration on 14C-photoassimilate transport from leaves of Salvia splendens L. Plant Physiol. 76:782–786.

    Article  CAS  PubMed  Google Scholar 

  • Margulis, L. (1981) Symbiosis in Cell Evolution, pp. 1–419. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Martin, W., Scheibe, R., and Schnarrenberger, C. 2000. The Calvin cycle and its regulation. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 16–31. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Mate, C. J., Hudson, G. S., Von Caemmerer, S., Evans, J. R., and Andrews, T. J. 1993. Reduction of ribulose bisphosphate carboxylase activase levels in tobacco (Nicotiana tabacum) by antisense RNA reduces ribulose bisphosphate carboxylase carbamylation and impairs photosynthesis. Plant Physiol. 102:1119–1128.

    Article  CAS  PubMed  Google Scholar 

  • Mate, C. J., von Caemmerer, S., Evans, J. R., Hudson, G. S., and Andrews, T. J. 1996. The relationship between CO2-assimilation rate, Rubisco carbamylation and Rubisco activase content in activase-deficient transgenic tobacco suggests a simple model of activase action. Planta 198:604–613.

    Article  CAS  Google Scholar 

  • McGarvey, D. J., and Croteau, R. 1995. Terpenoid metabolism. Plant Cell 7:1015–1026.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W. H., Liu, Y. X., Hwang, I., Jones, T., and Sheen, J. 2003. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336.

    Article  CAS  PubMed  Google Scholar 

  • Mott, K. A., Jensen, R. G., O’Leary, J. W., and Berry, J. A. 1984. Photosynthesis and ribulose 1,5-bisphosphate concentrations in intact leaves of Xanthium strumarium L. Plant Physiol. 76:968–971.

    Article  CAS  PubMed  Google Scholar 

  • Mukerjea, R., Yu, L. L., and Robyt, J. F. 2002. Starch biosynthesis: Mechanism for the elongation of starch chains. Carbohydr. Res. 337:1015–1022.

    Article  CAS  PubMed  Google Scholar 

  • Neales, T. F., and Incoll, L. D. 1968. The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: a review of the hypothesis. Bot. Rev. 34:107–125.

    Article  Google Scholar 

  • Neuhaus, H. E., and Schulte, N. 1996. Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L. Biochem. J. 318:945–953.

    CAS  PubMed  Google Scholar 

  • Nittylä, T., Messerli, G., Trevisan, M., Chen, J., Smith, A. M., and Zeeman, S. C. 2004. “A Previously Unknown Maltose Transporter Essential for Starch Degradation in Leaves.” Science 303:87–89

    Article  CAS  Google Scholar 

  • Oparka, K. J., and Turgeon, R. 1999. Sieve elements and companion cells: Traffic control centers of the phloem. Plant Cell 11:739–750.

    Article  CAS  PubMed  Google Scholar 

  • Patron, N. J., Smith, A. M., Fahy, B. F., Hylton, C. M., Naldrett, M. J., Rossnagel, B. G., and Denyer, K. 2002. The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5′-non-coding region. Plant Physiol. 130:190–198.

    Article  CAS  PubMed  Google Scholar 

  • Pego, J. V., Kortstee, A. J., Huijser, G., and Smeekens, S. G. M. 2000. Photosynthesis, sugars and the regulation of gene expression. J. Exp. Bot. 51:407–416.

    Article  CAS  PubMed  Google Scholar 

  • Pollock, C., Farrar, J., Tomos, D., Gallagher, J., Lu, C. G., and Koroleva, O. 2003. Balancing supply and demand: the spatial regulation of carbon metabolism in grass and cereal leaves. J. Exp. Bot. 54:489–494.

    Article  CAS  PubMed  Google Scholar 

  • Portis, A. R., Jr., Salvucci, M. E., and Ogren, W. L. 1986. Activation of ribulose bisphophate carboxylase/oxygenase at physiological CO2 and ribulose bisphosphate concentrations by rubisco activase. Plant Physiol. 82:967–971.

    Article  CAS  PubMed  Google Scholar 

  • Provencher, L. M., Miao, L., Sinha, N., and Lucas, W. J. 2001. Sucrose export defective 1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell 13:1127–1141.

    Article  CAS  PubMed  Google Scholar 

  • Redinbaugh, M. G., and Campbell, W. H. 1993. Glutamine synthetase and ferredoxin-dependent glutamate synthase expression in the maize (Zea mays) root primary response to nitrate (evidence for an organ-specific response). Plant Physiol. 101:1249–1255.

    CAS  PubMed  Google Scholar 

  • Reimann, R., Ritte, G., Steup, M., and Appenroth, K. J. 2002. Association of a-amylase and the R1 protein with starch granules precedes the initiation of net starch degradation in turions of Spirodela polyrhiza. Physiol. Plant. 114:2–12.

    Article  CAS  PubMed  Google Scholar 

  • Riesmeier, J. W., Flügge, U.-I., Schulz, B., Heineke, D., Heldt, H. W., Willmitzer, L., and Frommer, W. B. 1993. Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants. Proc. Natl. Acad. Sci. USA 90:6160–6164.

    Article  CAS  PubMed  Google Scholar 

  • Ritte, G., Lorberth, R., and Steup, M. 2000. Reversible binding of the starch-related R1 protein to the surface of transitory starch granules. Plant J. 21:387–391.

    Article  CAS  PubMed  Google Scholar 

  • Ritte, G., Lloyd, J. R., Eckermann, N., Rottmann, A., Kossmann, J., and Steup, M. 2002. The starch-related R1 protein is an a-glucan, water dikinase. Proc. Natl. Acad. Sci. USA 99:7166–7171.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, S. P., and Walker, D. A. 1981. Photosynthetic carbon reduction cycle. In: The Biochemistry of Plants. A Comprehensive Treatise. M. D. Hatch and N. K. Boardman (eds.), pp. 193–236. New York: Academic Press.

    Google Scholar 

  • Rodermel, S. 2001. Pathways of plastid-to-nucleus signaling. Trends Plant Sci. 6:471–478.

    Article  CAS  PubMed  Google Scholar 

  • Rolland, F., Moore, B., and Sheen, J. 2002. Sugar sensing and signaling in plants. Plant Cell 14(Suppl.):185–205.

    Google Scholar 

  • Rost, S., Frank, C., and Beck, E. 1996. The chloroplast envelope is permeable for maltose but not for maltodextrins. Biochim. Biophys. Acta 1291:221–227.

    CAS  PubMed  Google Scholar 

  • Roy, H., and Andrews, T. J. 2000. Rubisco: Assembly and mechanism. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 53–83. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Russin, W. A., Evert, R. F., Vanderveer, P. J., Sharkey, T. D., and Briggs, S. P. 1996. Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective 1 maize mutant. Plant Cell 8:645–658.

    Article  CAS  PubMed  Google Scholar 

  • Sage, R. F. 1990. A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants. Plant Physiol. 94:1728–1734.

    Article  CAS  PubMed  Google Scholar 

  • Sage, R. F. 2001. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol. 3:202–213.

    Article  CAS  Google Scholar 

  • Sage, R. F., and Cowling, S. A. 1999. Implications of stress in low CO2 atmospheres of the past: Are today’s plants too conservative for a high CO2 world? In: Carbon Dioxide and Environmental Stress, pp. 289–308. San Diego: Academic Press.

    Chapter  Google Scholar 

  • Sage, R. F., and Pearcy, R. W. 2000. The physiological ecology of C4 photosynthesis. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 497–532. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Scheible, W. R., Lauerer, M., Schulze, E. D., Caboche, M., and Stitt, M. 1997. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J. 11:671–691.

    Article  CAS  Google Scholar 

  • Scheidig, A., Fröhlich, A., Schulze, S., Lloyd, J. R., and Kossmann, J. 2002. Downregulation of a chloroplast-targeted b-amylase leads to a starch-excess phenotype in leaves. Plant J. 30:581–591.

    Article  CAS  PubMed  Google Scholar 

  • Schleucher, J., Vanderveer, P., Markley, J. L., and Sharkey, T. D. 1999. Intramolecular deuterium distributions reveal disequilibrium of chloroplast phosphoglucose isomerase. Plant Cell Environ. 22:525–533.

    Article  CAS  Google Scholar 

  • Schleucher, J., Vanderveer, P. J., and Sharkey, T. D. 1998. Export of carbon from chloroplasts at night. Plant Physiol. 118:1439–1445.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, A., Häusler, R. E., Kolukisaoglu, ü., Kunze, R., van der Graaf, E., Schwacke, R., Catoni, E., Desimone, M., and Flügge, U.-I. 2002. An Arabidopsis thaliana knockout mutant of the chloroplast triosephosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. Plant J 32:1–15.

    Article  Google Scholar 

  • Schobert, C., Lucas, W. J., Franceschi, V. R., and Frommer, W. B. 2000. Intercellular transport and phloem loading of sucrose, oligosaccharides and amino acids. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 249–274. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Scott, P., and Kruger, N. J. 1995. Influence of elevated fructose-2,6-bisphosphate levels on starch mobilization in transgenic tobacco leaves in the dark. Plant Physiol. 108:1569–1577.

    CAS  PubMed  Google Scholar 

  • Sehnke, P. C., DeLille, J. M., and Ferl, R. J. 2002. Consummating signal transduction: The role of 14-3-3 protyeins in the signal-induced transitions in protein activity. Plant Cell 14(Suppl.):339–354.

    Google Scholar 

  • Servaites, J. C., and Geiger, D. R. 2002. Kinetic characteristics of chloroplast glucose transport. J. Exp. Bot. 53:1581–1591.

    Article  CAS  PubMed  Google Scholar 

  • Servaites, J. C., Fondy, B. R., Li, B., and Geiger, D. R. 1989. Sources of carbon for export from spinach leaves throughout the day. Plant Physiol. 90:1168–1174.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T. D. 1985. Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. Bot. Rev. 51:53–105.

    Article  Google Scholar 

  • Sharkey, T. D. 1988. Estimating the rate of photorespiration in leaves. Physiol. Plant. 73:147–152.

    Article  CAS  Google Scholar 

  • Sharkey, T. D. 1989. Evaluating the role of rubisco regulation in C3 photosynthesis. Philos. Trans. R. Soc. Lond. [Biol.] 323:435–448.

    Article  CAS  Google Scholar 

  • Sharkey, T. D. 1990. Feedback limitation of photosynthesis and the physiological role of ribulose bisphosphate carboxylase carbamylation. Bot. Mag. Tokyo (special issue) 2:87–105.

    Google Scholar 

  • Sharkey, T. D., and Vanderveer, P. J. 1989. Stromal phosphate concentration is low during feedback limited photosynthesis. Plant Physiol. 91:679–684.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T. D., and Yeh, S. S. 2001. Isoprene emission from plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:407–436.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T. D., Berry, J. A., and Raschke, K. 1985. Starch and sucrose synthesis in Phaseolus vulgaris as affected by light, CO2, and abscisic acid. Plant Physiol. 77:617–620.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T. D., Stitt, M., Heineke, D., Gerhardt, R., Raschke, K., and Heldt, H. W. 1986. Limitation of photosynthesis by carbon metabolism. II O2 insensitive CO2 uptake results from limitation of triose phosphate utilization. Plant Physiol. 81:1123–1129.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T. D., Savitch, L. V., Vanderveer, P. J., and Micallef, B. J. 1992. Carbon partitioning in a Flaveria linearis mutant with reduced cytosolic fructose bisphosphatase. Plant Physiol. 100:210–215.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T. D., Chen, X. Y., and Yeh, S. 2001. Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol. 125:2001–2006.

    Article  CAS  PubMed  Google Scholar 

  • Sheen, J., Yanagisawa, S., Yoo, S.-D., and Sheen. 2003. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525.

    Article  PubMed  CAS  Google Scholar 

  • Sicher, R.C., Kremer, D. F., and Harris, W. G. 1986. Control of photosynthetic sucrose synthesis in barley primary leaves role of fructose 2,6-bisphosphate. Plant Physiol. 82:15–18.

    Article  CAS  PubMed  Google Scholar 

  • Somerville, C. R. 1984. The analysis of photosynthetic carbon dioxide fixation and photorespiration by mutant selection. Ox. Sur. Plant Mol. Cell Biol. 1:103–131.

    CAS  Google Scholar 

  • Somerville, C., and Browse, J. 1991. Plant lipids: metabolism, mutants, and membranes. Science 252:80–87.

    Article  CAS  PubMed  Google Scholar 

  • Steup, M., and Latzko, E. 1979. Intracellular location of phosphorylases in spinach and pea leaves. Planta 145:69–75.

    Article  CAS  Google Scholar 

  • Steup, M., and Schächtele, C. 1981. Mode of glucan degradation by purified phosphorylase forms from spinach leaves. Planta 153:351–361.

    Article  CAS  Google Scholar 

  • Stitt, M. 1985. Fine control of sucrose synthesis by fructose-2,6-bisphosphate. In: Regulation of Carbon Partitioning in Photosynthetic Tissue. R. L. Heath and J. Preiss (eds.), pp. 109–126. Rockville: American Society of Plant Physiologists.

    Google Scholar 

  • Stitt, M. 1990a. Fructose-2,6-bisphosphate as a regulatory molecule in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:153–185.

    Article  CAS  Google Scholar 

  • Stitt, M. 1990b. The flux of carbon betweeen the chloroplast and cytosol. In: Plant Physiology, Biochemistry and Moleculr Biology. D. T. Dennis and D. H. Turpin (eds.), pp. 309–326. Essex: Longman Scientific and Technical.

    Google Scholar 

  • Stitt, M., and ApRees, T. 1979. Capacities of pea chloroplasts to catalyse the oxidative pentose phosphate pathway and glycolysis. Phytochemistry 18:1905–1911.

    Article  CAS  Google Scholar 

  • Stitt, M., and ApRees, T. 1980. Estimation of the activity of the oxidative pentose phosphate pathway in pea chloroplasts. Phytochemistry 19:1583–1585.

    Article  CAS  Google Scholar 

  • Stitt, M., and Heldt, H. W. 1981. Physiological rates of starch breakdown in isolated intact spinach chloroplasts. Plant Physiol. 68:755–761.

    Article  CAS  PubMed  Google Scholar 

  • Stitt, M., Herzog, B., and Heldt, H. W. 1984. Control of photosynthetic sucrose synthesis by fructose-2,6-bisphosphate. I. Coordination of CO2 fixation and sucrose synthesis. Plant Physiol. 75:548–553.

    Article  CAS  PubMed  Google Scholar 

  • Stitt, M., and Steup, M. 1985. Starch and sucrose degradation. In: Encyclopedia of Plant Physiology, Vol. 18. R. Douce and D. A. Day (eds.), pp. 347–390. Berlin: Springer-Verlag.

    Google Scholar 

  • Stitt, M., and Krapp, A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. Plant Cell Environ. 22:583–621.

    Article  CAS  Google Scholar 

  • Stitt, M., Müller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., Scheible, W. R., and Krapp, A. 2002. Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot. 53:959–970.

    Article  CAS  PubMed  Google Scholar 

  • Streusand, V. J., and Portis, A.R. J.r. 1987. Rubisco activase mediates ATP-dependent RuBPCase activation. Plant Physiol. 85:152–154.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z., Duke, S. H., and Henson, C. A. 1995. The role of pea chloroplast a-glucosidase in transitory starch degradation. Plant Physiol. 108:211–217.

    CAS  PubMed  Google Scholar 

  • Sun, J. D., Gibson, K. M., Kiirats, O., Okita, T. W., and Edwards, G. E. 2002. Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and rubisco in Arabidopsis starch mutants. Significance of starch and hexose. Plant Physiol. 130:1573–1583.

    Article  CAS  PubMed  Google Scholar 

  • Takei, K., Takahashi, T., Sugiyama, T., Yamaya, T., and Sakakibara, H. 2002. Multiple routes communicating nitrogen availability from roots to shoots: A signal transduction pathway mediated by cytokinin. J. Exp. Bot. 53:971–977.

    Article  CAS  PubMed  Google Scholar 

  • Tiessen, A., Prescha, K., Branscheid, A., Palacios, N., McKibbin, R., Halford, N. G., and Geigenberger, P. 2003. Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. Plant J. 35:490–500.

    Article  CAS  PubMed  Google Scholar 

  • Tobin, A. K., and Yamaya, T. 2001. Cellular compartmentation of ammonium assimilation in rice and barley. J. Exp. Bot. 52:591–604.

    Article  CAS  PubMed  Google Scholar 

  • Treede, H.-J., and Heise, K.-P. 1986. Purification of the chloroplast pyruvate dehydrogenase complex from spinach and maize mesophyll. Z. Naturforsch. 41c:1011–1017.

    Google Scholar 

  • Trethewey, R. N., and Smith, A. M. 2000. Starch metabolism in leaves. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 205–231. Doedrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Trevanion, S. J. 2002. Regulation of sucrose and starch synthesis in wheat (Triticum aestivum L.) leaves: Role of fructose 2,6-bisphosphate. Planta 215:653–665.

    Article  CAS  PubMed  Google Scholar 

  • Turgeon, R. 1996. Phloem loading and plasmodesmata. Trends Plant Sci. 1:403–411.

    Article  Google Scholar 

  • Turgeon, R., and Medville, R. 1998. The absence of phloem loading in willow leaves. Proc. Natl. Acad. Sci. USA 95:12055–12060.

    Article  CAS  PubMed  Google Scholar 

  • Usuda, H., Kalt-Torres, W., Kerr, P. S., and Huber, S. C. 1987. Diurnal changes in maize leaf photosynthesis. 2. Levels of metabolic intermediates of sucrose synthesis and the regulatory metabolite fructose 2,6-bisphosphate. Plant Physiol. 83:289–293.

    Article  CAS  PubMed  Google Scholar 

  • Veramendi, J., Roessner, U., Renz, A., Willmitzer, L., and Trethewey, R. N. 1999. Antisense repression of hexokinase 1 leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significant changes in tuber carbohydrate metabolism. Plant Physiol. 121:123–133.

    Article  CAS  PubMed  Google Scholar 

  • Von Schaewen, A., Stitt, M., Schmidt, R., Sonnewald, U., and Willmitzer, L. 1990. Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J. 9:3033–3044.

    Google Scholar 

  • Walker, D. A., and Herold, A. 1977. Can the chloroplast support photosynthesis unaided? Plant Cell Physiol. 51:295–310.

    Google Scholar 

  • Wang, Z. Y., and Portis, A. R., Jr. 1992. Dissociation of ribulose-1,5-bisphosphate bound to ribulose-1,5-bisphosphate carboxylase/oxygenase and its enhancement by ribulose-1,5-bisphosphate carboxylase/oxygenase activase-mediated hydrolysis of ATP. Plant Physiol. 99:1348–1353.

    Article  CAS  PubMed  Google Scholar 

  • Weise, S. E., Weber, A., and Sharkey, T. D. 2003. Maltose is the major form of carbon exported from the chloroplast at night. Planta 218:474–482.

    Article  PubMed  CAS  Google Scholar 

  • Whitney, S. M., and Andrews, T. J. 2001a. Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proc. Natl. Acad. Sci. USA 98:14738–14743.

    Article  CAS  PubMed  Google Scholar 

  • Whitney, S. M., and Andrews, T. J. 2001b. The gene for the ribulose-1,5-bisphosphate car-boxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco. Plant Cell 13:193–205.

    Article  CAS  PubMed  Google Scholar 

  • Whitney, S. M., Baldett, P., Hudson, G. S., and Andrews, T. J. 2001. Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J. 26:535–547.

    Article  CAS  PubMed  Google Scholar 

  • Wiese, A., Gröner, F., Sonnewald, U., Deppner, H., Lerchl, J., Hebbeker, U., Flügge, U.-I., and Weber, A. 1999. Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett. 461:13–18.

    Article  CAS  PubMed  Google Scholar 

  • Williams, M. and Randall, D. D. 1979. Pyruvate dehydrogenase complex from chloroplasts of Pisum sativum L. Plant Physiol. 64:1099–1103.

    Article  CAS  PubMed  Google Scholar 

  • Winter, H., and Huber, S. C. 2000. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Crit. Rev. Plant Sci. 19:31–67.

    Article  CAS  Google Scholar 

  • Wise, R. R., Olson, A. J., Schrader, S. M., and Sharkey, T. D. 2004. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ. (in press).

    Google Scholar 

  • Witt, W., and Sauter, J. J. 1995. In-vitro degradation of starch grains by phosphorylases and amylases from poplar wood. J. Plant Physiol. 146:35–40.

    CAS  Google Scholar 

  • Woodrow, I. E., and Berry, J. A. 1988. Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu. Rev. Plant Physiol. 39:533–594.

    CAS  Google Scholar 

  • Xiao, W. Y., Sheen, J., and Jang, J. C. 2000. The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol. Biol. 44:451–461.

    Article  CAS  PubMed  Google Scholar 

  • Yamaya, T., Obara, M., Nakajima, H., Sasaki, S., Hayakawa, T., and Sato, T. 2002. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J. Exp. Bot. 53:917–925.

    Article  CAS  PubMed  Google Scholar 

  • Yu, T. S., Kofler, H., Häusler, R. E., Hille, D., Flügge, U.-I., Zeeman, S. C., Smith, A. M., Kossmann, J., Lloyd, J., Ritte, G., Steup, M., Lue, W. L., Chen, J. C., and Weber, A. 2001. The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13:1907–1918.

    Article  CAS  PubMed  Google Scholar 

  • Zeeman, S. C., and ApRees, T. 1999. Changes in carbohydrate metabolism and assimilate export in starch-excess mutants of Arabidopsis. Plant Cell Environ. 22:1445–1453.

    Article  CAS  Google Scholar 

  • Zeeman, S. C., Northrop, F., Smith, A. M., and ApRees, T. 1998a. A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolyzing enzyme. Plant J 15:357–385.

    Article  CAS  PubMed  Google Scholar 

  • Zeeman, S. C., Umemoto, T., Lue, W. L., Au-Yeung, P., Martin, C., Smith, A. M., and Chen, J. 1998b. A mutant of arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10:1699–1712.

    Article  CAS  PubMed  Google Scholar 

  • Zeeman, S. C., Tiessen, A., Pilling, E., Kato, K. L., Donald, A. M., and Smith, A. M. 2002. Starch synthesis in arabidopsis. Granule synthesis, composition, and structure. Plant Physiol. 129:516–529.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, N., Kallis, R. P., Ewy, R. G., and Portis, A. R., Jr. 2002. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc. Natl. Acad. Sci. USA 99:3330–3334.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, N., and Portis, A. R., Jr. 1999. Mechanism of light regulation of Rubisco: A specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc. Natl. Acad. Sci. USA 96:9438–9443.

    Article  CAS  PubMed  Google Scholar 

  • Zrenner, R., Krause, K. P., Apel, P., and Sonnewald, U. 1996. Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J. 9:671–681.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Sharkey, T.D., Weise, S.E., Standish, A.J., Terashima, I. (2004). Chloroplast to Leaf. In: Smith, W.K., Vogelmann, T.C., Critchley, C. (eds) Photosynthetic Adaptation. Ecological Studies, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-27267-4_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-27267-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22079-6

  • Online ISBN: 978-0-387-27267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics