Skip to main content

Designing Fuzzy Controllers for Frame Structures Based on Ground Motion Prediction Using Grasshopper Optimization Algorithm: A Case Study of Tabriz, Iran

  • Chapter
  • First Online:
Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications

Abstract

Tabriz is an ancient city in the northwest of Iran that has experienced many severe earthquakes for a long time. Implementing control strategies in regular buildings can prevent damages in structural members during earthquakes. Fuzzy logic controller is an effective control algorithm that is mostly formulated regarding the human knowledge and expertise. This chapter concentrates on the optimum design of fuzzy logic controllers implemented in a 20-story steel structure with nonlinear behavior using grasshopper optimization algorithm. Regarding the absence of earthquake records for Tabriz, ground motion prediction is necessary for structural seismic analysis. The seismic inputs for nonlinear dynamic analysis are selected thorough the energy-based selection and modification procedure for ground motions by utilizing the probabilistic seismic hazard analysis for Tabriz and ground motion prediction model for Middle East. The results show that the optimization procedure was capable of reducing building responses and damages due to the destructive earthquake records.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Google Scholar 

  2. Budnitz RJ, Apostolakis G, Boore DM (1997) Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts. Nuclear Regulatory Commission, Washington, DC, USA

    Book  Google Scholar 

  3. Mahsuli M, Rahimi H, Bakhshi A (2018) Probabilistic seismic hazard analysis of Iran using reliability methods. Bull Earthq Eng 17:1117–1143

    Google Scholar 

  4. Keshavarz A, Moghaddam BM (2018) Probabilistic seismic hazard analysis and determination of uniform hazard spectrum of Bushehr province assuming linear source model. J Struct Constr Eng 5(1):127–142

    Google Scholar 

  5. Yaghmaei-Sabegh S, Ebrahimi-Aghabagher M (2017) Near-field probabilistic seismic hazard analysis with characteristic earthquake effects. Nat Hazards 87(3):1607–1633

    Article  Google Scholar 

  6. Yazdani A, Nicknam A, Dadras EY, Eftekhari SN (2017) Near-field probabilistic seismic hazard analysis of metropolitan Tehran using region-specific directivity models. Pure APPL Geophys 174(1):117–132

    Article  Google Scholar 

  7. Vafaie J, Taghikhany T, Tehranizade M (2008) Near field uniform seismic hazard spectra of Tabriz zone. In: The 14th world conference on earthquake engineering, Beijing, China, 2008

    Google Scholar 

  8. Vafaie J, Taghikhany T, Tehranizadeh M (2011) Near field effect on horizontal equal-hazard spectrum of Tabriz city in north-west of Iran. Int J Civ Eng 9(1):49–56

    Google Scholar 

  9. Razeghi HR, Amiri GG, Amrei SR, Rahimi MA (2016) Probabilistic seismic hazard analyses and obtaining uniform hazard spectra of Tabriz, Iran. KSCE J Civ Eng 20(5):1813–1823

    Article  Google Scholar 

  10. Moghaddam H, Fanaie N, Hamzehloo H (2009) Uniform hazard response spectra and ground motions for Tabriz. J Sci Iran 16(3):238–248

    Google Scholar 

  11. Hessami K, Pantosti D, Tabassi H, Shabanian E, Abbassi MR, Feghhi K, Solaymani S (2003) Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results. Ann Geophys 46

    Google Scholar 

  12. Douglas J (2018) Ground-motion prediction equations 1964–2018. Pacific Earthquake Engineering Research Center, Berkeley, CA

    Google Scholar 

  13. Javan‐emrooz H, Eskandari‐Ghadi M, Mirzaei N (2018) Prediction equations for horizontal and vertical PGA, PGV, and PGD in Northern Iran using prefix gene expression programming. Bull Seismol Soc Am 108

    Google Scholar 

  14. Sedaghati F, Pezeshk S (2017) Partially nonergodic empirical ground-motion models for predicting horizontal and vertical PGV, PGA, and 5% damped linear acceleration response spectra using data from the Iranian Plateau. Bull Seismol Soc Am 107(2):934–948

    Article  Google Scholar 

  15. Rajabi AM, Khamehchiyan M, Mahdavifar MR, Del Gaudio V (2010) Attenuation relation of Arias intensity for Zagros Mountains region (Iran). Soil Dyn Earthq Eng 30(3):110–118

    Article  Google Scholar 

  16. Sandıkkaya MA, Akkar S (2017) Cumulative absolute velocity, Arias intensity and significant duration predictive models from a pan-European strong-motion dataset. Bull Earthq Eng 15(5):1881–1898

    Article  Google Scholar 

  17. Gupta ID, Trifunac MD (2017) Scaling of Fourier spectra of strong earthquake ground motion in western Himalaya and northeastern India. Soil Dyn Earthq Eng 102:137–159

    Article  Google Scholar 

  18. Alıcı FS, Sucuoğlu H (2016) Prediction of input energy spectrum: attenuation models and velocity spectrum scaling. Earthq Eng Struct Dyn 45(13):2137–2161

    Article  Google Scholar 

  19. Hassani N, Amiri GG, Bararnia M, Sinaeian F (2017) Ground motion prediction equation for inelastic spectral displacement in Iran. Sci Iran Trans B Mech Eng 24(1):164

    Google Scholar 

  20. Oth A, Miyake H, Bindi D (2017) On the relation of earthquake stress drop and ground motion variability. J Geophys Res: Solid Earth 122(7):5474–5492

    Article  Google Scholar 

  21. Yaghmaei-Sabegh S (2018) Macroseismic intensity attenuation in Iran. Earthq Eng Eng Vibr 17(1):139–148

    Article  Google Scholar 

  22. Yaghmaei-Sabegh S (2015) New models for frequency content prediction of earthquake records based on Iranian ground-motion data. J Seismol 19(4):831–848

    Article  Google Scholar 

  23. Afshari K, Stewart JP (2016) Physically parameterized prediction equations for significant duration in active crustal regions. Earthq Spectra 32(4):2057–2081

    Article  Google Scholar 

  24. Haji-Soltani A, Pezeshk S, Malekmohammadi M, Zandieh A (2017) A study of vertical-to-horizontal ratio of earthquake components in the Gulf coast region. Bull Seismol Soc Am 107(5):2055–2066

    Article  Google Scholar 

  25. Al-Dawod M, Samali B, Kwok K, Naghdy F (2004) Fuzzy controller for seismically excited nonlinear buildings. J Eng Mech 130(4):407–415

    Article  Google Scholar 

  26. Fu J, Lai J, Liao G, Yu M, Bai J (2018) Genetic algorithm based nonlinear self-tuning fuzzy control for time-varying sinusoidal vibration of a magnetorheological elastomer vibration isolation system. Smart Mater Struct

    Google Scholar 

  27. Soltani M, Chaouech L, Chaari A (2018) Fuzzy sliding mode controller design based on Euclidean particle swarm optimization. In: Real-time modelling and processing for communication systems. Springer, Cham, pp 95–122

    Google Scholar 

  28. Chen Z, Yuan X, Yuan Y, Lei X, Zhang B (2018) Parameter estimation of fuzzy sliding mode controller for hydraulic turbine regulating system based on HICA algorithm. Renew Energy

    Google Scholar 

  29. Olivas F, Valdez F, Castillo O, Gonzalez CI, Martinez G, Melin P (2017) Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl Soft Comput 53:74–87

    Article  Google Scholar 

  30. Amador-Angulo L, Castillo O (2018) A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft Comput 22(2):571–594

    Article  Google Scholar 

  31. Chamorro HR, Riaño I, Gerndt R, Zelinka I, Gonzalez-Longatt F, Sood VK (2019) Synthetic inertia control based on fuzzy adaptive differential evolution. Int J Electr Power Energy Syst 105:803–813

    Article  Google Scholar 

  32. Ray PK, Paital SR, Mohanty A, Eddy FY, Krishnan A, Gooi HB, Amaratunga GA (2018) Firefly algorithm scaled fractional order fuzzy PID based PSS for transient stability improvement. In 2018 19th international Carpathian control conference (ICCC) 28 May 2018. IEEE, pp 428–433

    Google Scholar 

  33. Chrouta J, Chakchouk W, Zaafouri A, Jemli M (2018) Modelling and control of an irrigation station process using heterogeneous cuckoo search algorithm and fuzzy logic controller. IEEE Trans Ind Appl

    Google Scholar 

  34. Giri S, Bera P (2018) Design of fuzzy-PI controller for hybrid distributed generation system using grey wolf optimization algorithm. In: Methodologies and application issues of contemporary computing framework. Springer, Singapore, pp 109–122

    Google Scholar 

  35. Chao F, Zhou D, Lin CM, Zhou C, Shi M, Lin D (2018) Fuzzy cerebellar model articulation controller network optimization via self-adaptive global best harmony search algorithm. Soft Comput 22(10):3141–3153

    Article  Google Scholar 

  36. Li C, Mao Y, Zhou J, Zhang N, An X (2017) Design of a fuzzy-PID controller for a nonlinear hydraulic turbine governing system by using a novel gravitational search algorithm based on Cauchy mutation and mass weighting. Appl Soft Comput 52:290–305

    Article  Google Scholar 

  37. Talatahari S, Azizi M (2020) Chaos Game Optimization: a novel metaheuristic algorithm. Artif Intell Rev 22:1–88. https://doi.org/10.1007/s10462-020-09867-w

    Article  Google Scholar 

  38. Talatahari S, Azizi M (2020) Optimization of constrained mathematical and engineering design problems using chaos game optimization. Comput Ind Eng 20:106560. https://doi.org/10.1016/j.cie.2020.106560

    Article  Google Scholar 

  39. Talatahari S, Azizi M (2020) Optimal design of real-size building structures using quantum-behaved developed swarm optimizer. Struct Des Tall Spec Build 15:e1747. https://doi.org/10.1002/tal.1747

    Article  Google Scholar 

  40. Talatahari S, Motamedi P, Farahmand Azar B, Azizi M (2019) Tribe-charged system search for parameter configuration of non-linear systems with large search domains. Eng Optim. https://doi.org/10.1080/0305215X.2019.1696786

    Article  Google Scholar 

  41. Azizi M, Ejlali RG, Ghasemi SA, Talatahari S (2019) Upgraded Whale Optimization Algorithm for fuzzy logic based vibration control of nonlinear steel structure. Eng Struct 1(192):53–70. https://doi.org/10.1016/j.engstruct.2019.05.007

    Article  Google Scholar 

  42. Azizi M, Ghasemi SA, Ejlali RG, Talatahari S (2020) Optimum design of fuzzy controller using hybrid ant lion optimizer and Jaya algorithm. Artif Intell Rev 53(3):1553–1584. https://doi.org/10.1007/s10462-019-09713-8

    Article  Google Scholar 

  43. Azizi M, Ghasemi SA, Ejlali RG, Talatahari S (2019) Optimal tuning of fuzzy parameters for structural motion control using multiverse optimizer. Struct Des Tall Spec Build 28(13). https://doi.org/10.1002/tal.1652

  44. Talatahari S, Azizi M (2020) Optimum design of building structures using tribe-interior search algorithm. Structures

    Google Scholar 

  45. Azizi M, Ghasemi SA, Ejlali RG, Talatahari S (2021) Optimization of fuzzy controller for nonlinear buildings with improved charged system search. Struct Eng Mech

    Google Scholar 

  46. Kaveh A, Pirgholizadeh S, Khadem HO (2015) Semi-active tuned mass damper performance with optimized fuzzy controller using CSS algorithm. Asian J Civ Eng (BHRC) 16(5):587–606

    Google Scholar 

  47. Abubaker S, Nagan S, Nasar T (2016) Particle swarm optimized fuzzy control of structure with tuned liquid column damper. Global J Pure Appl Math 12(1):875–886

    Google Scholar 

  48. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  49. Ambraseys NN, Simpson KU, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dynam 25(4):371–400

    Article  Google Scholar 

  50. Marasco S, Cimellaro GP (2018) A new energy-based ground motion selection and modification method limiting the dynamic response dispersion and preserving the median demand. Bull Earthq Eng 16(2):561–581

    Article  Google Scholar 

  51. Karakhanian AS, Trifonov VG, Philip H, Avagyan A, Hessami K, Jamali F, Bayraktutan MS, Bagdassarian H, Arakelian S, Davtian V, Adilkhanyan A (2004) Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics 380(3–4):189–219

    Article  Google Scholar 

  52. Berberian M, Yeats RS (1999) Patterns of historical earthquake rupture in the Iranian Plateau. Bull Seismol Soc Am 89(1):120–139

    Google Scholar 

  53. Masson F, Djamour Y, Van Gorp S, Chéry J, Tatar M, Tavakoli F, Nankali H, Vernant P (2006) Extension in NW Iran driven by the motion of the South Caspian Basin. Earth Planet Sci Lett 252(1–2):180–188

    Article  Google Scholar 

  54. Cimellaro GP, Marasco S (2014) OPENSIGNAL: a software framework for earthquake record processing and selection. In: Second European conference on earthquake engineering and seismology (2ECSEES), Istanbul, Turkey Google Scholar

    Google Scholar 

  55. Cimellaro GP, Marasco S (2015) A computer-based environment for processing and selection of seismic ground motion records: OPENSIGNAL. Front Built Environ 1:17

    Article  Google Scholar 

  56. Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805–820

    Article  Google Scholar 

  57. Ullah I, Khitab Z, Khan MN, Hussain S (2019) An efficient energy management in office using bio-inspired energy optimization algorithms. Processes 7(3):142

    Article  Google Scholar 

  58. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94

    Article  Google Scholar 

  59. Subbaraj K, Dokainish MA (1989) A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Comput Struct 32(6):1387–1401

    Article  MathSciNet  Google Scholar 

  60. Ohtori Y, Spencer Jr BF (1999) A MATLAB-based tool for nonlinear structural analysis. In: Proceedings of the 13th engineering mechanics conference, pp 13–16

    Google Scholar 

  61. MATLAB, the MathWorks Inc., MA, United States

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Azizi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azizi, M. (2021). Designing Fuzzy Controllers for Frame Structures Based on Ground Motion Prediction Using Grasshopper Optimization Algorithm: A Case Study of Tabriz, Iran. In: Carbas, S., Toktas, A., Ustun, D. (eds) Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-33-6773-9_8

Download citation

Publish with us

Policies and ethics