Skip to main content

Optimal Parameter Identification of Fuzzy Controllers in Nonlinear Buildings Based on Seismic Hazard Analysis Using Tribe-Charged System Search

  • Chapter
  • First Online:
Advances in Structural Engineering—Optimization

Abstract

Tabriz is one of the ancient cities in the North-West of Iran that has experienced many severe earthquakes for a long time. Implementing control strategies for buildings encountering severe earthquakes can prevent damages in structural members. Smart control strategies are capable of reducing ground motion effects by utilizing efficient control algorithms. Fuzzy logic controller is one of the most effective control algorithms that is mostly formulated based on the human knowledge and expertise. In many cases, the expert knowledge does not yield optimal control responses for structures under strong ground motions so the optimization of these controllers is concerned. The main aim of this paper is to optimize a fuzzy controller implemented in a 20-story steel structure with nonlinear behavior. In most cases, this problem is formulated based on the linear behavior of the structure; however, in this paper, the objective function and the performance criteria are selected based on the nonlinear characteristics of the structure. The Tribe-Charged System Search algorithm is proposed and utilized for optimization of membership functions and rule base of fuzzy controller. The seismic inputs for nonlinear dynamic analysis is selected thorough the energy based ground motion selection and modification method by utilizing the probabilistic seismic hazard analysis for Tabriz. The performance of the proposed algorithm is compared with the standard Charged System Search Algorithm and eight different metaheuristic algorithms. The obtained results prove that the upgraded method is capable of providing competitive results in reducing building responses and damages due to the destructive earthquake records.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Milne, W.G., Davenport, A.G.: Distribution of earthquake risk in Canada. Bull. Seismol. Soc. Am. 59(2), 729–754 (1969)

    Google Scholar 

  2. McGuire, R.K., Veneziano, D., Van Dyck, J., Toro, G., O’Hara, T., Drake, L., Patwardhan A., Kulkarni R., Keeney R., Winkler R.: Seismic Hazard Methodology for the Central and Eastern United States: Volume 1: Part 2, Methodology (Revision 1), Electric Power Research Inst. (USA). (1988)

    Google Scholar 

  3. Cornell, C.A.: Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 58(5), 1583–1606 (1968)

    Google Scholar 

  4. Budnitz, R.J., Apostolakis, G., Boore, D.M.: Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. Nuclear Regulatory Commission, Washington, DC (United States) (1997)

    Book  Google Scholar 

  5. Mahsuli, M., Rahimi, H., Bakhshi, A.: Probabilistic seismic hazard analysis of Iran using reliability methods. Bull. Earthquake Eng., 1–27 (2018)

    Google Scholar 

  6. Kowsari, M., Eftekhari N., Kijko A., Dadras E.Y., Ghazi H., Shabani E., Quantifying seismicity parameter uncertainties and their effects on probabilistic seismic hazard analysis: a Case study of Iran. Pure Appl. Geophys., 1–6 (2018)

    Google Scholar 

  7. Keshavarz, A., Moghaddam, B.M.: Probabilistic seismic hazard analysis and determination of uniform hazard spectrum of Bushehr province assuming linear source model. J. Struct. Constr. Eng. 5(1), 127–142 (2018)

    Google Scholar 

  8. Yaghmaei-Sabegh, S., Ebrahimi-Aghabagher, M.: Near-field probabilistic seismic hazard analysis with characteristic earthquake effects. Nat. Hazards 87(3), 1607–1633 (2017)

    Article  Google Scholar 

  9. Yazdani, A., Nicknam, A., Dadras, E.Y., Eftekhari, S.N.: Near-field probabilistic seismic hazard analysis of metropolitan Tehran using region-specific directivity models. Pure Appl. Geophys. 174(1), 117–132 (2017)

    Article  Google Scholar 

  10. Baghbani, M., Gholami, E., Barani, H.R., Birjand, I.: Seismic hazard analysis of Dam Siyaho in South Khorasan province (Eastern Iran). J. Tethys: 4(3), 180–199 (2016)

    Google Scholar 

  11. Vafaie, J., Taghikhany, T., Tehranizade, M.: Near field uniform seismic hazard spectra of Tabriz zone. In: The 14th World Conference on Earthquake Engineering, Beijing, China, (2008)

    Google Scholar 

  12. Vafaie, J., Taghikhany, T., Tehranizadeh, M.: Near field effect on horizontal equal-hazard spectrum of Tabriz city in north-west of Iran. Int. J. Civil Eng. 9(1), 49–56 (2011)

    Google Scholar 

  13. Razeghi, H.R., Amiri, G.G., Amrei, S.R., Rahimi, M.A.: Probabilistic seismic hazard analyses and obtaining uniform hazard spectra of Tabriz, Iran. KSCE J. Civil Eng. 20(5), 1813–1823 (2016)

    Article  Google Scholar 

  14. Moghaddam, H., Fanaie, N., Hamzehloo, H.: Uniform hazard response spectra and ground motions for Tabriz. J. Scientia Iranica 16(3), 238–248 (2009)

    Google Scholar 

  15. Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbassi, M.R., Feghhi, K., Solaymani, S.: Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results. Ann. Geophys. (2003)

    Google Scholar 

  16. Al-Dawod, M., Samali, B., Kwok, K., Naghdy, F.: Fuzzy controller for seismically excited nonlinear buildings. J. Eng. Mech. 130(4), 407–415 (2004)

    Article  Google Scholar 

  17. Edrees, T.: Structural control and identification of civil engineering structures (Doctoral dissertation). Luleå tekniska universitet (2015)

    Google Scholar 

  18. Kaveh, A.: Advances in Metaheuristic Algorithms for Optimal Design of Structures. Springer, Switzerland (2014)

    Book  Google Scholar 

  19. Kaveh, A.: Applications of Metaheuristic Optimization Algorithms in Civil Engineering. Springer, Switzerland (2017)

    Book  Google Scholar 

  20. Kaveh, A., Ghazaan, M.I.: Meta-heuristic Algorithms for Optimal Design of Real-Size Structures. Springer International Publishing (2018)

    Google Scholar 

  21. Fu, J., Lai, J., Liao, G., Yu, M., Bai, J.: Genetic algorithm based nonlinear self-tuning fuzzy control for time-varying sinusoidal vibration of a magnetorheological elastomer vibration isolation system. Smart Mater. Struct. (2018)

    Google Scholar 

  22. Soltani, M., Chaouech, L., Chaari, A.: Fuzzy sliding mode controller design based on euclidean particle swarm optimization. In: Real-Time Modelling and Processing for Communication Systems, pp. 95–122. Springer, Cham (2018)

    Google Scholar 

  23. Chen, Z., Yuan, X., Yuan, Y., Lei, X., Zhang, B.: Parameter estimation of fuzzy sliding mode controller for hydraulic turbine regulating system based on HICA algorithm. Renew. Energy 133, 551–565 (2018)

    Article  Google Scholar 

  24. Olivas, F., Valdez, F., Castillo, O., Gonzalez, C.I., Martinez, G., Melin, P.: Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)

    Article  Google Scholar 

  25. Amador-Angulo, L., Castillo, O.: A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft. Comput. 22(2), 571–594 (2018)

    Article  Google Scholar 

  26. Chamorro, H.R., Riaño, I., Gerndt, R., Zelinka, I., Gonzalez-Longatt, F., Sood, V.K.: Synthetic inertia control based on fuzzy adaptive differential evolution. Int. J. Electr. Power Energy Syst. 105, 803–813 (2019)

    Article  Google Scholar 

  27. Ray, P.K., Paital, S.R., Mohanty, A., Eddy, F.Y., Krishnan, A., Gooi, H.B., Amaratunga, G.A.: Firefly algorithm scaled fractional order fuzzy PID based PSS for transient stability improvement. In: 2018 19th International Carpathian Control Conference (ICCC). IEEE (2018)

    Google Scholar 

  28. Chrouta, J., Chakchouk, W., Zaafouri, A., Jemli, M.: Modelling and control of an irrigation station process using heterogeneous cuckoo search algorithm and fuzzy logic controller. IEEE Trans. Ind. Appl. (2018)

    Google Scholar 

  29. Giri, S., Bera, P.: Design of fuzzy-PI controller for hybrid distributed generation system using grey wolf optimization algorithm. In: Methodologies and Application Issues of Contemporary Computing Framework. Springer, Singapore (2018)

    Google Scholar 

  30. Chao, F., Zhou, D., Lin, C.M., Zhou, C., Shi, M., Lin, D.: Fuzzy cerebellar model articulation controller network optimization via self-adaptive global best harmony search algorithm. Soft. Comput. 22(10), 3141–3153 (2018)

    Article  Google Scholar 

  31. Li, C., Mao, Y., Zhou, J., Zhang, N., An, X.: Design of a fuzzy-PID controller for a nonlinear hydraulic turbine governing system by using a novel gravitational search algorithm based on Cauchy mutation and mass weighting. Appl. Soft Comput. 52, 290–305 (2017)

    Article  Google Scholar 

  32. Azizi, M., Ejlali, R.G., Ghasemi, S.A., Talatahari, S.: Upgraded Whale Optimization Algorithm for fuzzy logic based vibration control of nonlinear steel structure. Eng. Struct. 192, 53–70 (2019)

    Article  Google Scholar 

  33. Azizi, M., Ghasemi, S.A., Ejlali, R.G., Talatahari, S.: Optimum design of fuzzy controller using hybrid ant lion optimizer and Jaya algorithm. Artif. Intell. Rev., 1–32 (2019)

    Google Scholar 

  34. Azizi M., Ghasemi S.A., Ejlali R.G., Talatahari S., Optimal tuning of fuzzy parameters for structural motion control using multiverse optimizer. Struct. Des. Tall Special Build., e1652 (2019)

    Google Scholar 

  35. Talatahari, S., Motamedi, P., Farahmand, A.B., Azizi, M.: Tribe-charged system search for parameter configuration of non-linear systems with large search domains. Eng. Optim. (2019). https://doi.org/10.1080/0305215X.2019.1696786

    Article  Google Scholar 

  36. Yildiz, A.R.: A comparative study of population-based optimization algorithms for turning operations. Inf. Sci. 210, 81–88 (2012)

    Article  Google Scholar 

  37. Kaveh, A., Pirgholizadeh, S., Khadem, H.O.: Semi-active tuned mass damper performance with optimized fuzzy controller using CSS algorithm. Asian J. Civil Eng. (BHRC) 16(5), 587–606 (2015)

    Google Scholar 

  38. Abubaker, S., Nagan, S., Nasar, T.: Particle swarm optimized fuzzy control of structure with tuned liquid column damper. Global J. Pure Appl. Math. 12(1), 875–886 (2016)

    Google Scholar 

  39. Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3–4), 267–289 (2010)

    Article  Google Scholar 

  40. Marasco, S., Cimellaro, G.P.: A new energy-based ground motion selection and modification method limiting the dynamic response dispersion and preserving the median demand. Bull. Earthquake Eng. 16(2), 561–581 (2018)

    Google Scholar 

  41. Karakhanian, A.S., Trifonov, V.G., Philip, H., Avagyan, A., Hessami, K., Jamali, F., Bayraktutan, M.S., Bagdassarian, H., Arakelian, S., Davtian, V., Adilkhanyan, A.: Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics 380(3–4), 189–219 (2004)

    Article  Google Scholar 

  42. Berberian, M., Yeats, R.S.: Patterns of historical earthquake rupture in the Iranian Plateau. Bull. Seismol. Soc. Am. 89(1), 120–139 (1999)

    Google Scholar 

  43. Masson, F., Djamour, Y., Van Gorp, S., Chéry, J., Tatar, M., Tavakoli, F., Nankali, H., Vernant, P.: Extension in NW Iran driven by the motion of the South Caspian Basin. Earth Planet. Sci. Lett. 252(1–2), 180–188 (2006)

    Article  Google Scholar 

  44. Cimellaro, G.P., Marasco, S.: OPENSIGNAL: a software framework for earthquake record processing and selection. In: Second European conference on earthquake engineering and seismology (2ECSEES), Istanbul, Turkey Google Scholar (2014)

    Google Scholar 

  45. Cimellaro, G.P., Marasco, S.: A computer-based environment for processing and selection of seismic ground motion records: OPENSIGNAL. Front. Built. Environ. 1, 17 (2015)

    Article  Google Scholar 

  46. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94 (1959)

    Google Scholar 

  47. Subbaraj, K., Dokainish, M.A.: A survey of direct time-integration methods in computational structural dynamics—II. Implicit Methods. Comput. Struct. 32(6), 1387–1401 (1989)

    Article  MathSciNet  Google Scholar 

  48. Ohtori, Y., Spencer, Jr, B.F.: A MATLAB-based tool for nonlinear structural analysis. In: Proceedings of the 13th Engineering Mechanics Conference (1999)

    Google Scholar 

  49. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  50. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Micro Machine and Human Science. IEEE (1995)

    Google Scholar 

  51. Atashpaz-Gargari E., Lucas C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: Evolutionary Computation. IEEE (2007)

    Google Scholar 

  52. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185(3), 1155–1173 (2008)

    Article  MathSciNet  Google Scholar 

  53. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  54. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)

    Article  MathSciNet  Google Scholar 

  55. Rao, R.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Talatahari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talatahari, S., Azizi, M. (2021). Optimal Parameter Identification of Fuzzy Controllers in Nonlinear Buildings Based on Seismic Hazard Analysis Using Tribe-Charged System Search. In: Nigdeli, S.M., Bekdaş, G., Kayabekir, A.E., Yucel, M. (eds) Advances in Structural Engineering—Optimization. Studies in Systems, Decision and Control, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-030-61848-3_4

Download citation

Publish with us

Policies and ethics