Skip to main content

Digestion

  • Chapter
Cyprinid Fishes

Part of the book series: Fish & Fisheries Series ((FIFI,volume 3))

Abstract

In temperate and tropical Eurasian fresh waters, cyprinid species are the most abundant fish, inhabiting several niches and eating a variety of foods, including plants. Despite the diversity of cyprinid feeding habits, from piscivory to herbivory, their intestinal tract varies only in length and is comparatively simple. The first one-third of the intestine, the intestinal bulb, is the main site of digestion and absorption, which can be divided into two main steps. (1) After being mechanically processed by pharyngeal teeth, the components of the diet are hydrolysed into smaller molecules. The enzymes for this phase of gross digestion are secreted by the pancreatic tissue into the lumen of the intestinal bulb. (2) The hydrolysis of fragments of proteins, carbohydrates and lipids is continued on the mucosal surface and, after absorption, in the mucosal cells (peptides, saccharides) or in hepatocytes (monoglycerides).

This chapter does not cover the whole field of digestion but concentrates on ecological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abd-Elgawad, A. M. (1983) Morphometric changes which are induced in the exocrine pancreas of Rutilus rutilus L. by different feeding habits, thesis, Univ. Innsbruck (Austria). (134 pp.)

    Google Scholar 

  • Al-Hussaini, A. H. (1949) On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits. I. Anatomy and histology. Q. J. microsc. Sci., 90, 109–139.

    PubMed  Google Scholar 

  • Alpers, D.H. (1987) Digestion and absorption of carbohydrates and proteins, in: Physiology of the Gastrointestinal Tract, 2nd edn (ed. L. R. Johnson ), Raven Press, NY, pp. 1469–1487.

    Google Scholar 

  • Ash, R. (1985) Protein digestion and absorption, in Nutrition and Feeding in Fish (eds C. B. Cowey, A. M. Mackie and J. G. Bell ), Academic Press, London, pp. 69–93.

    Google Scholar 

  • Bergot, P. (1976) Determination par 1e rouge de ruthenium d’invaginations profondes de la membrane plasmique apicale des enterocytes dans l’intestine posterieur chez la truite arc-enciel. Annls Biol. anim. Biochim. Biophys., 16, 37–42.

    Article  Google Scholar 

  • Beynon, R. and Kay, I. (1976) Enteropancreatic circulation of digestive enzymes. Nature, Lond., 260, 78–79.

    Article  CAS  Google Scholar 

  • Bitterlich, G. (1985a) Digestive enzyme pattern of two stomachless filter feeders, silver carp, Hypophthalmychthys molitrix Val., and bighead carp, Aristichthys nobilis Rich, J. Fish Biol, 27, 103–112.

    Article  CAS  Google Scholar 

  • Bitterlich, G. (1985b) The nutrition of stomachless phytoplanktivorous fish in comparison with Tilapia. Hydrobiologia, 121, 173–179.

    Article  Google Scholar 

  • Bitterlich, G. and Schaber, E. (1986) Bacteria — food or food competitors of silver carp, Hypophthalmichthys molitrix Val.? J. Fish Biol., 29, 605–612.

    Article  Google Scholar 

  • Block, R. J. and Mitchell, H. H. (1946) The effect of heat on protein quality and on its correlation with protein structure. Nutr. Abstr. Rev., 16, 268–269.

    Google Scholar 

  • Bowen, S. H. (1976) Mechanism for digestion of detrital bacteria by the cichlid fish Sarotherodon mossambicus (Peters). Nature, Lond., 260, 137–138.

    Article  CAS  Google Scholar 

  • Bowen, S. H. (1979) A nutritional constraint in detrivory by fishes: the stunted population of Sarotherodon mossambicus in Lake Sibaya, South Africa. Fcol. Monogr. 49, 17–31.

    Article  Google Scholar 

  • Bryant, P. L. and Matty, A. J. (1980) Optimisation of Artemia feeding rate for carp larvae (Cyprinus carpio L.). Aquaculture, 21, 203–212.

    Article  Google Scholar 

  • Buddington, R. K. (1979) Digestion of an aquatic macrophyte by Tilapia zilii (Gervais). J. Fish Biol., 15, 449–455.

    Article  Google Scholar 

  • Buddington, R. K. and Diamond, J. M. (1987) Pyloric ceca of fish: a “new” absorptive organ. Am. J. Physiol 252 (Gastrointest. Liver Physiol 15), G65 - G76.

    PubMed  CAS  Google Scholar 

  • Dabrowski, K. (1984) The feeding of fish larvae: “present state of the art” and perspectives. Reprod. Nutr. Develop., 24, 807–833.

    Article  Google Scholar 

  • Diamond, J. M. (1978) Reabsorption of digestive enzymes: playing with poison. Nature Lond., 271, 111–112.

    Article  Google Scholar 

  • Di Costanzo, G., Florentz, A., Leray, C. and Nonnotte, L. (1983) Structural and functional organization of the brush border membrane in the rainbow trout intestine. Mol. Physiol. 4, 111–123.

    Google Scholar 

  • Fischer, Z. and Lyakhnovich, V. P. (1973) Biology and bioenergetics of grass carp (Ctenopharyngodon idella Val.). Pol Arch. Hydrobiol., 20, 521–557.

    Google Scholar 

  • Fish, G. R. (1960) The comparative activity of some digestive enzymes in the alimentary canal of Tilapia and perch. Hydrobiology, 15, 161–179.

    Article  CAS  Google Scholar 

  • Fishelson, L., Montgomery, W. L. and Myrberg, A. A. (1985) A unique symbiosis in the gut of a tropical herbivorous surgeon-fish (Acanthuridae: Teleostei) from the Red Sea. Science, 229 (4708), 49–51.

    Article  Google Scholar 

  • Forstner, H., Hinterleitner, S., Mähr, K. and Wieser, W. (1983) Towards a better definition of “metamorphosis” in Coregonus sp.: biochemical, histological, and physiological data. Can. J. Fish, aquat. Sci., 40, 1224–1232.

    Article  Google Scholar 

  • Gardner, M. G. (1984) Intestinal assimilation of intact peptides and proteins from the diet — a neglected field? Biol. Rev., 59, 289–331.

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, G. F. and Landis, S. (1972) The relationship of ultrastructural and cytochemical features of absorptive activity in the goldfish intestine. Anat. Rec., 172, 675–702.

    Article  PubMed  CAS  Google Scholar 

  • Girgis, S. (1952) On the anatomy and histology of the alimentary tract of a herbivorous bottom feeding cyprinoid fish, Labeo horie (Curvier). J. Morph., 90, 317–362.

    Article  Google Scholar 

  • Govoni, J. J. Boehlert, G. M. and Watanabe, Y. (1986) The physiology of digestion in fish larvae. Environ. Biol. Fishes, 16, 57–77.

    Article  Google Scholar 

  • Grabner, M. and Hofer, R. (1985) The digestibility of the proteins of broad bean (Vicia faba) and soya bean (Glycine max) under in-vitro conditions simulating the alimentary tract of rainbow trout (Salmo gairdneri) and carp (Cyprinus carpio). Aquaculture, 48, 111–122.

    Article  CAS  Google Scholar 

  • Grabner, M. and Hofer, R. (1989) Stomach digestion and its effect upon protein hydrolysis in the intestine of rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol., 92A, 81–83.

    Article  Google Scholar 

  • Gyurko, S. and Nagy, Z. (1965) Ernährungsdynamik des Döbels (leuciscus cephalus L.) im Fluβ Muresch. Arch. Hydrobiol. (Supp.), 32, 47–64.

    Google Scholar 

  • Hammer, C. (1985) Feeding behaviour of roach (Rutilus rutilus) larvae and the fry of perch (Perca fluviatilis) in Lake Lankai. Arch. Hydrobiol., 103, 61–74.

    Google Scholar 

  • Hofer, R. (1982) Protein digestion and proteolytic activity in the digestive tract of an omnivorous cyprinid. Comp. Biochem. Physiol., 72A, 55–63.

    Article  CAS  Google Scholar 

  • Hofer, R. (1987) Verdauungsstrategien bei Fischen. Biol. Unserer Zeit, 17, 84–89.

    Article  Google Scholar 

  • Hofer, R. (1988) Morphological adaptations of the digestive tract of tropical cyprinids and cichlids to diet. J. Fish. Biol., 33, 399–408.

    Article  Google Scholar 

  • Hofer, R. and Nasir Uddin, A. (1985) Digestive processes during the development of the roach (Rutilus rutilus L.). J. Fish Biol., 26, 53–59.

    Article  Google Scholar 

  • Hofer, R. and Newrkla, P. (1983) Determination of gut passage time in Tilapia-fry (Oreochromis mossambicus) under laboratory and field conditions. Proc. Int. Symp. Tilapia in Aquaculture, Israel, 8–13 May 1983, Tel Aviv Univ., pp. 323–327.

    Google Scholar 

  • Hofer, R. and Schiemer, F. (1981) Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia, 48, 342–345.

    Article  Google Scholar 

  • Hofer, R. and Schiemer, F. (1983) Feeding ecology, assimilation efficiencies and energetics of two herbivorous fish: Sarotherodon (Tilapia) mossambicus (Peters) and Puntius filamentosus (Cuv. et Val.), in Limnology of Parakrama Samudra — Sri Lanka: A Case Study of an Anicient Man-made Lake in the Tropics. Developments in Hydrobiology (ed. F. Schiemer) Dr W. Junk. The Hague, pp. 155–164.

    Google Scholar 

  • Hofer, R. and Sturmbauer, C. (1985) Inhibition of trout and carp α-amylase by wheat. Aquaculture, 48, 277–283.

    Article  CAS  Google Scholar 

  • Hofer, R., Dall Via, G., Troppmair, J. and Giussani, G. (1982a) Differences in digestive enzymes between cyprinids and non-cyprinid fish. Memorie Ist. ital. Idrobiol., 40, 201–208.

    CAS  Google Scholar 

  • Hofer, R., Forster, H. and Rettenwander, R. (1982b) Duration of gut passage and its dependence on temperature and food consumption in roach (Rutilus rutilus). Laboratory and field experiments. J. Fish Biol., 20, 289–299.

    Article  Google Scholar 

  • Hofer, R., Krewedel, G. and Koch, F. (1985) An energy budget for an omnivorous cyprinid: Rutilus rutilus (L). Hydrobiologia, 122, 53–59.

    Article  Google Scholar 

  • Hofer, R., Ladurner, H., Gattringer, A. and Wieser, W. (1975) Relationship between the temperature preferenda of fishes, amphibians and reptiles, and the substrate affinities of their trypsins. J. comp. Physiol., 99, 345–355.

    CAS  Google Scholar 

  • Jany, K. D. (1976) Studies on the digestive enzymes of the stomachless bonefish Carassius auratus gibelio (Bloch): endopeptidases. Comp. Biochem. Physiol., 53B, 31–38.

    Article  CAS  Google Scholar 

  • Kawai, S. and Ikeda, S. (19 72) Studies on digestive enzymes of fishes — II. Effect of dietary changes on the activities of digestive enzymes in carp intestine. Bull. Jap. Soc. scient. Fish., 38, 265–270.

    Article  CAS  Google Scholar 

  • Köck, G. and Hofer, R. (1989) The effect of natural and artificial diets upon tryptic activities in roach and whitefish larvae. Pol. Arch. Hydrobiol., 36, 443–453.

    Google Scholar 

  • Lassuy, D. R. (1984) Diet, intestinal morphology, and nitrogen assimilation efficiency in the damselfish, Stegastes lividus in Guam. Environ. Biol Fishes, 10, 183–193.

    Article  Google Scholar 

  • Lauff, M. and Hofer, R. (1984) Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture, 37, 335–346.

    Article  CAS  Google Scholar 

  • Lesel, R., Fromageot, C. and Lesel, M. (1986) Cellulose digestibility in grass carp, Ctenopharyngodon idella and in goldfish, Carassius auratus. Aquaculture, 54, 11–17.

    CAS  Google Scholar 

  • Mähr, K., Grabner, M., Hofer, R. and Moser, H. (1983) Histological and physiological development of the stomach in Coregonus sp. Arch. Hydrobiol, 98, 344–353.

    Google Scholar 

  • Maltzahn, S. cited by Barrington, E. J. W. (1957) The alimentary canal and digestion, in The Physiology of Fishes. Vol.1 (ed. M. E. Brown) Academic Press, NY, pp. 109–61.

    Google Scholar 

  • Mark, W., Hofer, R. and Wieser, W. (19 8 7) Diet spectra and resource partitioning in the larvae and juveniles of three species and six cohorts of cyprinids from a subalpine lake. Oecologia. 71, 388–396.

    Google Scholar 

  • Matthes, H. (1963) A comparative study on the feeding mechanisms of some African cyprinids. Bijdr. Dierk., 33, 3–35.

    Google Scholar 

  • Matthews, D. M. (1975) Intestinal absorption of peptides. Physiol Rev., 55, 537–608.

    PubMed  CAS  Google Scholar 

  • Mironova, N.N. (1974) cited by Fischer, Z. (1979) Selected problems of fish bioenergetics. Proc. World Symp. Finflsh Nutr. Fishfeed Technol. Hamb., 20–23 June 1978: 1, 17–44.

    Google Scholar 

  • Moriarty, D. J. W. (1973). The physiology of digestion of blue green algae in the cichlid fish, Tilapia nilotica. J. Zool., Lond., 171, 25–39.

    Article  CAS  Google Scholar 

  • Moriarty, D. J. W. and Moriarty, C. M. (1973) The assimilation of carbon from phytoplankton by two herbivorous fishes: Tilapia nilotica and Haplochromis nigripinnis. J. Zool, Lond., 171, 41–55.

    Google Scholar 

  • Mukhopadhyay, P. K. (1977) Studies on the enzymatic activities related to varied pattern of diets in the airbreathing catfish, Clarias batrachus, L. Hydrobiologia, 52, 235–237.

    Article  CAS  Google Scholar 

  • Nagase, G. (1964) Contribution to the physiology of digestion in Tilapia mossambica Peters: digestive enzymes and the effects of diet on their activity. Z. vergl. Physiol, 49, 270–284.

    Article  Google Scholar 

  • Niederholzer, R. and Hofer, R. (1979) The adaptation of digestive enzymes to temperature, season and diet in roach Rutilus rutilus L. and rudd Scardinius erythrophthalmus L.: cellulase. J. Fish Biol., 15, 411–116.

    Article  CAS  Google Scholar 

  • Nilsson, A. and Fänge, R. (1969) Digestive proteases in the holocephalian fish Chimaera monstrosa L. Comp. Biochem. Physiol., 31, 147–165.

    Article  CAS  Google Scholar 

  • Noaillac-Depeyre, J. and Gas, N. (1973) Absorption of protein macromolecules by the enterocytes of the carp (Cyprinus carpio L.). Z. Zeilforsch., 146, 525–541.

    Article  CAS  Google Scholar 

  • Noaillac-Depeyre, J. and Gas, N. (1976) Electron microscopic study on gut epithelium of the tench (Tinca tinca L.) with respect to its absorptive functions. Tissue Cell, 8, 511–530.

    Article  PubMed  CAS  Google Scholar 

  • Noaillac-Depeyre, J. and Gas, N. (1979) Structure and function of the intestinal epithelial cells in the perch (Perca fluviatilis). Anat. Rec., 195, 621–640.

    Article  PubMed  CAS  Google Scholar 

  • Peres, G. (1979) Les proteases — l’amylase, les enzymes chitinolytiques — les lam-inarinases, in Nutrition des Poissons (ed. M. Fontaine) Editions du Centre National de la Recherches Scientifique, Actes du Colloque CNERNA, Paris, pp. 55–67.

    Google Scholar 

  • Piavaux, A. (1977) Distribution and localization of the digestive laminarinases in animals. Biochem. Syst. Ecol., 5, 231–239.

    Article  CAS  Google Scholar 

  • Prejs, A. and Blaszczyk, M. (1977) Relationship between food and cellulase activity in freshwater fishes. J. Fish. Biol, 11, 447–452.

    Article  CAS  Google Scholar 

  • Rimmer, D. W. and Wiebe, W. J. (1987) Fermentative microbial digestion in herbivorous fish. J. Fish. Biol, 31, 229–236.

    Article  Google Scholar 

  • Rombout, J. H. W. M., Lamers, C. H. J., Helfrich, M. H., Dekker, A. and Taverne-Thiele, J.J. (1985) Uptake and transport of intact macromolecules in the intestinal epithelium of carp (Cyprinus carpio L.) and the possible immunological implications. Cell. Tissue Res., 239, 519–530.

    Article  PubMed  CAS  Google Scholar 

  • Sibbing, F. A. (1982) Pharyngeal mastication and food transport in Cyprinus carpio (L): a cineradiographic and electromyographic study. J. Morph., 172, 223–258.

    Article  Google Scholar 

  • Sinha, G. M. (1983) Scanning electron microscopic study of the intestinal mucosa of an Indian freshwater adult major carp, Labeo rohita (Hamilton). Z. mikrosk.-anat. Forsch., 97, 979–992.

    PubMed  CAS  Google Scholar 

  • Stroband, H.W.J. and Dabrowski, K. R. (1979) Morphological and physiological aspects of the digestive system and feeding in fresh-water fish larvae, in Nutrition des Poissons (ed. M. Fontaine) Editions du Centre National de la Recherches Scientifique, Actes du Colloque CNERNA, Paris, pp. 355–374.

    Google Scholar 

  • Stroband, H. W. J. and Kroon, A. G. (1981) The development of the stomach in Clarias lazera and the intestinal absorption of protein macromolecules. Cell Tissue Res., 215, 397–415.

    Article  PubMed  CAS  Google Scholar 

  • Stroband, H.W.J. and van der Veen, F. H. (1981) The localization of protein absorption during the transport of food along the intestine of the grasscarp, Ctenopharyngodon idella (Val.). J. exp. Zool., 218, 149–156.

    Article  CAS  Google Scholar 

  • Stroband, H. W. J., van der Meer, H. and Timmermans, C. P. M. (1979) Regional functional differentiation in the gut of the grasscarp, Ctenopharyngodon idella (Val.) Histochemistry, 64, 235–249.

    Article  PubMed  CAS  Google Scholar 

  • Sturmbauer, C. and Hofer, R. (1986) Compensation for amylase inhibitors in the intestine of the carp (Cyprinus carpio). Aquaculture, 52, 31–33.

    Article  CAS  Google Scholar 

  • Tanaka, M. (1971) Studies on the structure and function of the digestive system in teleost larvae. III: Development of the digestive system during postlarvae stage. Jap. J. Ichthyol., 18, 164–174.

    Google Scholar 

  • Trust, T. J., Bull, L. M., Currie, B. R. and Buckle, J. T. (1979) Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp (Ctenopharyngodon idella), goldfish (Carassius auratus) and rainbow trout (Salmo gairdneri). J. Fish. Res. Bd Can., 36, 1174–1179.

    Article  Google Scholar 

  • Vonk, H. J. (1927) Die Verdauung bei Fischen. Z. vergl. Physiol, 5, 445–546.

    Article  Google Scholar 

  • Vonk, H. J. (1941) Die Verdauung bei den niederen Vertebraten. Adv. Enzymol., 1, 371–417.

    CAS  Google Scholar 

  • Watanabe, Y. (1981) Ingestion of horseradish peroxidase by the intestinal cells in larve or juveniles of some teleosts. Bull. Jap. Soc. Scient. Fish., 47, 1299–1307.

    Article  Google Scholar 

  • Watanabe, Y. (1982) Intracellular digestion of horseradish peroxidase by the intestinal cells of teleost larvae and juveniles. Bull. Jap. Soc. Scient. Fish., 48, 37–42.

    Article  CAS  Google Scholar 

  • Watanabe, Y. and Sawada, N. (1985) Larval development of digestive organs and intestinal absorptive functions in the freshwater goby Chaenogobius annularis. Bull Tohoku Reg. Fish. Res. Lab., 47, 1–10.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Ian J. Winfield and Joseph S. Nelson

About this chapter

Cite this chapter

Hofer, R. (1991). Digestion. In: Winfield, I.J., Nelson, J.S. (eds) Cyprinid Fishes. Fish & Fisheries Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3092-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3092-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5369-3

  • Online ISBN: 978-94-011-3092-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics