Skip to main content

Translation in Xenopus oocytes of mRNAs transcribed in vitro

  • Chapter
Plant Molecular Biology Manual
  • 674 Accesses

Abstract

The development of several in vitro transcription systems based on phage-specific RNA polymerases has made it possible to synthesize large quantities of RNAs from cloned DNA sequences. These transcripts can be translated by in vitro translation systems or introduced into Xenopus laevis oocytes to study post-transcriptional, translational, or post-translation al processes. Here we describe one of the in vitro transcription systems that utilizes a specific promoter and the RNA polymerase from the phage SP6 of Salmonella typhimurium. We also describe methods used to analyze translation of these RNAs in the Xenopus oocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asselbergs F, Koopman M, Van Venrooij W, Bloemendal H (1978) Post-translational assembly oflens α-crystallin in the reticulocyte rysate and in Xenopus laevis oocytes. Eur J Biochem 91: 65–72.

    Article  PubMed  CAS  Google Scholar 

  2. Asselbergs FAM, Mathews MB, Smart JE (1983) Structural characterization of the proteins encoded by adenovirus early region 2A. J Mol Biol 163: 177–207.

    Article  PubMed  CAS  Google Scholar 

  3. Banerjee AK (1980) 5’-terminal cap structure in eukaryotic messenger ribonucleic acids. Microbiol Rev 44: 175–205.

    PubMed  CAS  Google Scholar 

  4. Bassuner R, Huth A, Manteuffel R, Rapoport TA (1983) Secretion of plant storage globulin polypeptides by Xenopus laevis oocytes. Eur J Biochem 133: 321–326.

    Article  PubMed  CAS  Google Scholar 

  5. Colman A, Lane C, Craig R, Boulton A, Mohun T, Morser J (1981) The influence of topology and glycosylation on the fate of heterologous secretory proteins made in Xenopus oocytes. Eur J Biochem 113: 339–348.

    Article  PubMed  CAS  Google Scholar 

  6. Colman A, Morser J (1979) Export of proteins from oocytes of Xenopus laevis. Cell 17: 517–526.

    Article  PubMed  CAS  Google Scholar 

  7. Colman A (1984) Translation of eukaryotic messenger RNA in Xenopus oocytes. In: Transcription and Translation — A Practical Approach, pp 271–302. Oxford: IRL Press.

    Google Scholar 

  8. Cutler D, Lane C, Colman A (1981) Non-parallel kinetics and the role of tissue-specific factors in the secretion of chicken ovalbumin and lysozyme from Xenopus oocytes. J Mol Biol 153: 917–931.

    Article  PubMed  CAS  Google Scholar 

  9. DeRobertis EM (1983) Nucleocytoplasmic segregation of proteins and RNAs. Cell 32: 1021–1025.

    Article  CAS  Google Scholar 

  10. Dingwall C (1985) The accumulation of proteins in the nucleus. Trends Biochem Sci 10: 64–66.

    Article  CAS  Google Scholar 

  11. Drummond DR, Armstrong J, Colman A (1985) The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes. Nucl Acids Res 13: 7375–7394.

    Article  PubMed  CAS  Google Scholar 

  12. Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stage of oocyte development in laboratory-maintained animals. J Morphol 136: 153–180.

    Article  PubMed  CAS  Google Scholar 

  13. Ereken-Tumer N, Richter JD, Nielsen NC (1982) Structural characterization of glycinin precursors. J Biol Chem 257: 4016–4018.

    PubMed  CAS  Google Scholar 

  14. Ford CC, Gurdon JB (1977) A method for enucleating oocytes of Xenopus laevis. J Embryol Exp Morph 37: 203–209.

    PubMed  CAS  Google Scholar 

  15. Galili G, Kawata EE, Cuellar RE, Smith LD, Larkins BA (1986) Synthetic oligonucleotide tails inhibit in vitro and in vivo translation of SP6 transcripts of maize zein cDNA clones. Nucl Acids Res 14: 1511–1524.

    Article  PubMed  CAS  Google Scholar 

  16. Green MR, Maniatis T, Melton DA (1983) Human beta-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei. Cell 32: 681–694.

    Article  PubMed  CAS  Google Scholar 

  17. Gurdon JB, Melton DA (1981) Gene transfer in amphibian eggs and oocytes. Ann Rev Genet 15: 189–218.

    Article  PubMed  CAS  Google Scholar 

  18. Gurdon JB, Lane CD, Woodland HR, Marbaix G (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233: 177–182.

    Article  PubMed  CAS  Google Scholar 

  19. Harland R, Weintraub H (1985) Translation of mRNA injected into Xenopus oocytes is specifically inhibited by antisense RNA. J Cell Biol 101: 1094–1099.

    Article  PubMed  CAS  Google Scholar 

  20. Houamed KM, Bilbe B, Smart TG, Constanti A, Brown DA, Barnard EA, Richards BM (1984) Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA. Nature 310: 318–321.

    Article  PubMed  CAS  Google Scholar 

  21. Hurkman WJ, Smith LD, Richter J, Larkins BA (1981) Subcellular compartmentalization of maize storage proteins in Xenopus oocytes injected with zein messenger RNAs. J Cell Biol 89: 292–299.

    Article  PubMed  CAS  Google Scholar 

  22. Krieg PA, Melton DA (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucl Acids Res 12: 7057–7070.

    Article  PubMed  CAS  Google Scholar 

  23. Krieg PA, Melton DA (1984) Formation of the 3’ end of histone mRNA by post-transcriptional processing. Nature 308: 203–206.

    Article  PubMed  CAS  Google Scholar 

  24. Krieg PA, Rebagliati MR, Green MR, Melton DA (1985) Synthesis of hybridization probes and RNA substrates with SP6 RNA polymerase. In: Setlow JK, Kollaender A (eds) Genetic Engineering, Vol VII, pp 165–184. New York: Plenum Press.

    Google Scholar 

  25. Lane CD, Knowland J (1975) The injection of RNA into living cells. The use of frog oocytes for the assay of mRNA and the study of the control of gene expression. In: Weber R (ed) The Biochemistry of Animal Development, Vol III, pp 145–181. New York: Academic Press.

    Google Scholar 

  26. Larkins BA, Pedersen K, Handa AK, Hurkman WJ, Smith LD (1979) Synthesis and processing of maize storage proteins in Xenopus laevis oocytes. Proc Natl Acad Sci USA 76: 6448–6452.

    Article  PubMed  CAS  Google Scholar 

  27. Melton DA (1985) Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc Natl Acad Sci USA 82: 144–148.

    Article  PubMed  CAS  Google Scholar 

  28. Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacterio-phage SP6 promoter. Nucl Acids Res 12: 7035–7056.

    Article  PubMed  CAS  Google Scholar 

  29. Miledi R, Parker I, Sumikawa K (1982) Properties of acetylcholine receptors translated by cat muscle mRNA in Xenopus oocytes. EMBO J 1: 1307–1312.

    PubMed  CAS  Google Scholar 

  30. Richter JD, Evers DC, Smith LD (1983) The recruitment of membrane-bound mRNAs for translation in microinjected Xenopus oocytes. J Biol Chem 258: 2614–2620.

    PubMed  CAS  Google Scholar 

  31. Richter JD, Jones NC, Smith LD (1982) Stimulation of Xenopus oocyte protein synthesis by microinjected adenovirus RNA. Proc Natl Acad Sci USA 79: 3789–3793.

    Article  PubMed  CAS  Google Scholar 

  32. Richter JD, Smith LD (1981) Differential capacity for translation and lack of competition between mRNAs that segregate to free and membrane-bound polysomes. Cell 27: 183–191.

    Article  PubMed  CAS  Google Scholar 

  33. Schibler U, Kelley DE, Perry RP (1977) Comparison of methylated sequences in mRNA and hnRNA from mouse L cells. J Mol Biol 115: 695–714.

    Article  PubMed  CAS  Google Scholar 

  34. Shih RJ, O’Connor CM, Keem K, Smith LD (1978) Kinetic analysis of amino acid pools and protein synthesis in amphibian oocytes and embryos. Dev Biol 66: 172–182.

    Article  PubMed  CAS  Google Scholar 

  35. Soreq H (1985) The biosynthesis of biologically active proteins in mRNA-injected Xenopus oocytes. CRC Crit Rev Biochem 18: 199–238.

    Article  PubMed  CAS  Google Scholar 

  36. Soreq H, Parvari R, Silman I (1982) Biosynthesis and secretion of catalytically active acetyl-cholinesterase in Xenopus oocytes microinjected with mRNA from rat brain and from Torpedo electric organ. Proc Natl Acad Sci USA 79: 830–834.

    Article  PubMed  CAS  Google Scholar 

  37. Valle G, Besley J, Williamson A, Mosmann T, Coiman A (1983) Post-translational fate of variant MOPC 315 chains in Xenopus oocytes and mouse myeloma cells. Eur J Biochem 132: 131–138.

    Article  PubMed  CAS  Google Scholar 

  38. Wallace RA, Jared DW, Dumont JN, Sega MW (1973) Protein incorporation by isolated amphibian oocytes. III. Optimum incubation conditions. J Exp Zool 184: 321–324.

    Article  PubMed  CAS  Google Scholar 

  39. Wion D, Dicou E, Brachet P (1984) Synthesis and partial maturation of the α- and γ-subunits of the mouse submaxillary gland nerve growth factor in Xenopus laevis oocytes. FEBS Lett 166: 104–108.

    Article  PubMed  CAS  Google Scholar 

  40. Woodland H (1979) The modification of stored histones H3 and H4 during the oogenesis and early development of Xenopus laevis. Dev Biol 68: 360–370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Kawata, E.E., Galili, G., Smith, L.D., Larkins, B.A. (1989). Translation in Xenopus oocytes of mRNAs transcribed in vitro . In: Gelvin, S.B., Schilperoort, R.A., Verma, D.P.S. (eds) Plant Molecular Biology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0951-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0951-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6918-2

  • Online ISBN: 978-94-009-0951-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics