Skip to main content

Mechanism of Eosinophilia in Parasitic Infection with Special Emphasis on the Eosinophil Chemotactic Lymphokines Directed Against Different Maturation Stages of Eosinophils

  • Chapter
Intestinal Anisakiasis in Japan
  • 176 Accesses

Abstract

In this review, we have demonstrated three major facets of the eosinophilic mechanism in parasitic infections. Firstly, eosinophilia is primarily a matter of cell differentiation and/or maturation from hemopoietic stem cells. During infections with tissue-invading parasites, large numbers of pluripotent hemopoietic stem cells are generated, and mobilized to extramedullary hemopoietic sites such as the liver, where they become mature eosinophils in response to the increased demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartelmez SH, Dodge WH, Mahmoud AAF, Bass DA (1989) Stimulation of eosinophil production in vitro by eosinophilopoietin and spleen-cell-derived eosinophil growth-stimulating factor. Blood 56: 706–711

    Google Scholar 

  2. Basten A, Beeson PB (1969) Mechanism of eosinophilia. II. Role of the lymphocyte. J Exp Med 131: 1288–1305

    Article  Google Scholar 

  3. Beeson PB, Bass DA (1977) Life cycle. In Smith LH Jr. (eds), The eosinophil. Major problems in internal medicine XIV, Saunders, Philadelphia, pp. 3–9

    Google Scholar 

  4. Blomjous FJEM,Elgersma A, Kruzinga W, Ruitenburg EJ (1986) Thymus independence of eosinophilia induced by a non-parasite antigen. Int Archs Allergy Appl. Immun 79: 376–379

    Article  CAS  Google Scholar 

  5. Colley DG, James SL (1979) Participation of eosinophils in immunological systems. In Gupta S, Good RA (eds), Cellular, molecular, and clinical aspects of allergic disorders. Comprehensive Immunology 6, Plenum, New York, pp. 55–86

    Google Scholar 

  6. Boggs SS, Wilson SM, Smith WW (1973) Effects of endotoxin on hematopoiesis in irradiated and nonirradiated W/Wv mice. Radiat Res 56: 481–493

    Article  PubMed  CAS  Google Scholar 

  7. Borojevic R, Stocker S, Grimaud JA (1981) Hepatic eosinophil granulocytopoiesis in murine experimental schistosomiasis mansoni. Br J Exp Pathol 62: 480–489

    PubMed  CAS  Google Scholar 

  8. Bradley TR, Metcalf D (1966) The growth of mouse bone marrow cells in vitro. Aust J Exp BioI Med Sci 44: 287–300

    Article  CAS  Google Scholar 

  9. Burgess A, Nicola N (1983) Growth factors and stem cells Academic Press, Sydney, pp 43–91

    Google Scholar 

  10. Byram JE, Imohiosen EAE, Von Lichtenberg F (1978) Tissue eosinophil proliferation and maturation in schistosome-infected mice and hamsters. Am J Trop Med Hyg 27:267–270

    PubMed  CAS  Google Scholar 

  11. Capron M, Capron A, Dessaint JP, Torpier G, Johansson SGO, Prin L (1981) Fc receptors for IgE on human and rat eosinophils. J Immunol 126: 2087–2092

    PubMed  CAS  Google Scholar 

  12. Fischkoff SA, Pollak A, Gleich GJ, Testa JR, Misawa S, Reber TJ (1984) Eosinophilic differentiation of the human promyelocytic leukemia cell line HL-60. J Exp Med 160: 179–196

    Article  PubMed  CAS  Google Scholar 

  13. Goetzl EJ, Austen KF (1976) Structural determinants of the eosinophil chemotactic activity of the acidic tetrapeptides of eosinophil chemotactic factor of anaphylaxis. J Exp Med 144: 1424–1437

    Article  PubMed  CAS  Google Scholar 

  14. Goetzl EJ, Foster DW, Goldman DW (1983) Receptor-directed modulation of human eosinophil function. In Yoshida T, Torisu M (eds), Immunobiology ofthe eosinophil, Elsevier, New York, pp. 61–76

    Google Scholar 

  15. Grimaud JA, Borojevic R (1972) Mesenchyme et parenchyme hepatique dans la bilharziose experimentale aSchistosoma mansoni: Metaplasie Myeloide. CR Acad Sci Paris 274: 897–899

    CAS  Google Scholar 

  16. Horii Y, Fujita K, Owhashi M (1986) Partial purification and characterization of eosinophil chemotactic factors from soluble extract ofFasciola species. Am J Vet Res 47: 123–126

    PubMed  CAS  Google Scholar 

  17. Horii Y, Owhashi M, Ishii A, Bandou K, Usui M (1984a) Leukocyte accumulation in sparganosis: Demonstration of eosinophil and neutrophil chemotactic factors from the plerocercoid ofSpirometra erinacei in vivo and in vitro. Am J Trop Med Hyg 33: 138–143

    PubMed  CAS  Google Scholar 

  18. Horii Y, Owhashi M, Ishii A, Bandou K, Usui M (1984b) Eosinophil and neutrophil chemotactic activities of adult worm extracts ofSchistosoma japonicum in vivo and in vitro. J Parasitol 70: 955–961

    Article  PubMed  CAS  Google Scholar 

  19. Horii Y, Ishii A, Owhashi M (1985) In vitro and in vivo induction of neutrophil and eosinophil chemotactic responses bySchistosoma japonicum cercaria. Am J Trop Med Hyg-34: 513–518

    PubMed  CAS  Google Scholar 

  20. Johnson GR, Metcalf D (1980) Detection of a new type of mouse eosinophil colony by Luxol-Fast-Blue staining. Exp Hematol 8: 549–561

    PubMed  CAS  Google Scholar 

  21. Mahmoud AAF, Stone MK, Kellermeyer RW (1977) Eosinophilopoietin. A circulating low molecular weight peptide-like substance which stimulates the production of eosinophils in mice. J Clin Invest 60: 675–682

    Article  PubMed  CAS  Google Scholar 

  22. Maruyama H, Higa A, Asami M, Owhashi M, Nawa Y (1990) Extramedullary eosinophilopoiesis in the liver ofSchistosoma japonicum-infected mice, with reference to hemopoietic stem cells. Parasitol Res (in press)

    Google Scholar 

  23. Metcalf D, Johnson GR (1978) Production by spleen and lymph node cells of conditioned medium with erythroid and other hemopoietic colony-stimulating activity. J Cell Physiol 96: 31–42

    Article  PubMed  CAS  Google Scholar 

  24. Metcalf D, Parker J, Chester HM, Kincade PW (1974) Formation of eosinophil-like granulocytic colonies by mouse bone marrow cells in vitro. J Cell Physiol 84: 275–289

    Article  PubMed  CAS  Google Scholar 

  25. Moore RN, Hoffeld JT, Farrar JJ, Mergenhagen SE, Oppenheim JJ, Shadduck RK (1981) Role of colony-stimulating factors as primary regulation of macrophage functions. Lymphokines 3: 119–148

    CAS  Google Scholar 

  26. Nawa Y, Owhashi M, Imai J, Abe T (1986) Chemotactic reactivity of eosinophils obtained from bone marrow and peritoneal cavity of cyclophosphamide-treatedToxocara canis-infected mice. Int Archs Allergy Appl Immun 80: 412–416

    Article  CAS  Google Scholar 

  27. Nawa Y, Owhashi M, Imai J, Abe T (1987) Eosinophil response in mast celldeficient W/Wv mice. Int Archs Allergy Appl Immun 83: 6–11

    Article  CAS  Google Scholar 

  28. Nicola NA, Metcalf D, Johnson GR, Burgess A W (1979) Separation of functionally distinct human granulocyte-macrophage colony stimulating factors. Blood 54: 614- 627

    PubMed  CAS  Google Scholar 

  29. Owhasi M, Horii Y, Ishii A, Nawa Y (1986a) Detection of high molecular weight eosinophil chemotactic factor in murine schistosomiasis sera. Am J Trop Med Hyg 35: 1192–1197

    Google Scholar 

  30. Owhashi M, Horii Y, Ishii A, Nawa Y (1986b) Low molecular weight eosinophil chemotactic factor (ECF) in the serum of murine schistosomiasis japonica. Int Archs Allergy Appl Immunol 79: 178–181

    Article  CAS  Google Scholar 

  31. Owhashi M, Ishii A (1982) Purification and characterization of a high molecular weight eosinophil chemotactic factor fromSchistosoma japonicum eggs. J Immunol 129: 2226–2231

    PubMed  CAS  Google Scholar 

  32. Owhashi M, Maruyama H, Nawa Y (1986) Eosinophil chemotactic lymphokine produced by egg-associated granulomas in murine schistosomiasis japonicum. Infect Immunol 54: 723–727

    CAS  Google Scholar 

  33. Owhashi M, Maruyama H, Nawa Y (1987) Granulocyte-macrophage colonystimulating factor enhances the production of eosinophil chemotactic lymphokine by egg-associated granulomas ofSchistosoma japonicum-infected mice. Infect Immuno155: 2042–2046

    Google Scholar 

  34. Owhashi M, Nawa Y (1985) Granulocyte-macrophage colony-stimulating factor in the sera ofSchistosoma japonicum-infected mice, Infect Immunol 49: 533–537

    CAS  Google Scholar 

  35. Owhashi M, Nawa Y (1986) Granulocyte-macrophage colony-stimulating factor produced by splenic T lymphocytes of mice infected withSchistosoma japonicum. Infect Immunol 51: 213–217

    CAS  Google Scholar 

  36. Owhashi M, Nawa Y (1987a) Eosinophil chemotactic lymphokine produced by spleen cells ofSchistosoma japonicum-infected mice. Int Archs Allergy Appl Immuno1 82: 20–25

    Article  CAS  Google Scholar 

  37. Owhashi M, Nawa Y (1987b) Eosinophil chemotactic lymphokine produced by spleen cells ofSchistosoma japonicum-infected mice. II. Physicochemical heterogeneity of eosinophil chemotactic lymphokines selective to bone marrow- or peritoneal exudate-eosinophils. Int Archs Allergy Appl Immunol 83: 290–295

    Article  CAS  Google Scholar 

  38. Owhashi M, Nawa Y (1987c) Eosinophil chemotactic lymphokine produced by spleen cells ofSchistqsoma japonicum-infected mice. III. Isolation and characterization of two distinctive eosinophil chemotactic lymphokines directed against different maturation stages of eosinophils. Int Archs Allergy Appl Immunol 84: 185–189

    Article  CAS  Google Scholar 

  39. Phillips SM, Diconza JJ, Gold JA, Reid WA (1977) Schistosomiasis in congenitally athymic (nude) mouse. I. Thymic dependency of eosinophilia, granuloma formation and host morbidity. Ummunol 118: 594–599

    CAS  Google Scholar 

  40. Pluznik DH, Sachs L (1965) The cloning of normal ’mast cells’ in tissue culture. J Cell Comp Physiol 66: 319–324

    Article  CAS  Google Scholar 

  41. Ruscetti FW, Cypess RH, Chervenick PA (1976) Specific release of neutrophilic- and eosinophilic-stimulating factors from sensitized lymphocytes. Blood 47: 757–765

    PubMed  CAS  Google Scholar 

  42. Sanderson CJ, Warren DJ, Strath M (1985) Identification of a lymphokine that stimulates eosinophil differentiation in vitro. Its relationship to interleukin 3, and functional properties of eosinophils produced in cultures. J Exp Med 162: 60–74

    Article  PubMed  CAS  Google Scholar 

  43. Sonoda T, Hayashi C, Kitamura Y, Nakano T, Bessho M, Hirashima K, Miyazaki E, Hara H (1984) Poor response of Wv/Wx mice to a grafted neutrophilia-inducing, colony-stimulating factor-producing tumor. Exp Hematol 12: 850–855

    PubMed  CAS  Google Scholar 

  44. Spry CJF (1971) Mechanism of eosinophilia. VI. Eosinophil mobilization. Cell Tissue Kinet 4: 365–374

    PubMed  CAS  Google Scholar 

  45. Sugane K, Oshima T (1982) Eosinophilia, granuloma formation and migratory behavior of larvae in the congenitally athymic mouse infected withToxocara canis. Parasite Immunol 4: 307–318

    Article  PubMed  CAS  Google Scholar 

  46. Tanaka J, Baba T, Torisu M (1979)Ascaris and eosinophil. II. Isolation and characterization of eosinophil chemotactic factor and neutrophil chemotactic factor of parasite inAscaris antigen. J Immunol 122: 302–308

    CAS  Google Scholar 

  47. Tanaka J, Torisu M (1978)Anisakis and eosinophil. I. Detection of a soluble factor selectively chemotactic for eosinophils in the extract from Anisakis larvae. J Immunol 120: 745–749

    CAS  Google Scholar 

  48. Vadas MA (1981) Cyclophosphamide pretreatment induces eosinophilia to nonparasite antigens. J Immunol 127: 2083–2086

    PubMed  CAS  Google Scholar 

  49. Walls RS, Carter RL, Leuchers E, Davies AJS (1973): The immunopathology of trichiniasis in T-cell deficient mice. Clin Exp Immunol 13: 231–242

    PubMed  CAS  Google Scholar 

  50. Wasserman SI, Whitmer D, Goetzl EJ, Austen KF (1975) Chemotactic deactivation of human eosinophils by the eosinophil chemotactic factor of anaphylaxis (38527). Proc Soc Exp Bioi Med 148: 301–306

    CAS  Google Scholar 

  51. Weller PF, Goetzel EJ (1980) The regulatory and effector roles of eosinophils. Adv Immunol 27: 339–371

    Article  Google Scholar 

  52. Hirashima M, Hirotsu Y, Hayashi H (1983) Natural mediators of eosinophil chemotaxis in inflammation. In Yoshida T, Torisu M (eds), Immunobiology of the eosinophil, Elsevier, New York, pp 213–227

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Nawa, Y., Owhashi, M., Maruyama, H. (1990). Mechanism of Eosinophilia in Parasitic Infection with Special Emphasis on the Eosinophil Chemotactic Lymphokines Directed Against Different Maturation Stages of Eosinophils. In: Ishikura, H., Kikuchi, K. (eds) Intestinal Anisakiasis in Japan. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68299-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68299-8_29

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68301-8

  • Online ISBN: 978-4-431-68299-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics