Skip to main content

Einleitung

  • Chapter
  • First Online:
Wilhelm Conrad Röntgen

Part of the book series: Klassische Texte der Wissenschaft ((KLASSWISS))

Zusammenfassung

In unserem Alltag bedienen wir uns rund um die Uhr Spitzenprodukten aus den Denkstuben der Materialwissenschaftler: maßgeschneiderten Materialien, die elektrische, magnetische, optische und mechanische sowie biokompatible Eigenschaften besitzen. Ohne Hightech-Materialien geht heute und in Zukunft schon lange nichts mehr; sie sind die Grundbausteine für alle modernen Technologien, angefangen von Information und Kommunikation über Medizin, Energie und Umwelt bis hin zu Verkehr und Transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Verwendete und weiterführende Literatur

  1. Watson JD, Crick FH (1953) The structure of DNA. Cold Spring Harb Symp Quant Biol.18: 123–131.

    Article  Google Scholar 

  2. Kalender WA1, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology. 176: 181–183.

    Google Scholar 

  3. Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U. (1999) Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol. 31: 110–124.

    Article  Google Scholar 

  4. Lauterbur PC. (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242: 190–191

    Article  ADS  Google Scholar 

  5. Mansfield P. (1977) Multi-planar image formation using NMR spin echoes. J Phys C 10: L55.

    Article  ADS  Google Scholar 

  6. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD (1986). FLASH imaging: rapid NMR imaging using low flip-angle pulses. J Magn Reson 67: 258–266.

    ADS  Google Scholar 

  7. Mader S, Pantel K. (2017) Liquid Biopsy: Current Status and Future Perspectives. Oncol Res Treat. 40: 404–408.

    Article  Google Scholar 

  8. Napel S, Mu W, Jardim-Perassi BV, Aerts HJWL, Gillies RJ (2018) Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats Cancer. 2018 Nov 1. https://doi.org/10.1002/cncr.31630. [Epub ahead of print]

    Google Scholar 

  9. Herper M (2017) https://www.forbes.com/sites/matthewherper/2017/02/19/md-anderson-benches-ibm-watson-in-setback-for-artificial-intelligence-in-medicine/#4e46704e3774

    Google Scholar 

  10. https://www.bundesgesundheitsministerium.de/service/begriffe-von-a-z/e/e-health.html

    Google Scholar 

  11. Dreyer KJ, Geis JR (2017). When Machines Think: Radiology’s Next Frontier. Radiology 285: 713–718

    Article  Google Scholar 

  12. Kuhn S (2018) Medizin im digitalen Zeitalter: Transformation durch Bildung. Dtsch Arztebl 115, A-633 / B-552 / C-552

    Google Scholar 

  13. Schlett CL, Hendel T, Weckbach S, Reiser M, Kauczor HU, Nikolaou K, Günther M, Forsting M, Hosten N, Völzke H, Bamberg F (2016) Population-Based Imaging and Radiomics: Rationale and Perspective of the German National Cohort MRI Study. Rofo 188: 652–661

    Article  Google Scholar 

  14. https://www.youtube.com/watch?v = E9_4z1-vLIs

    Google Scholar 

  15. Bradley WG Jr (2012) Teleradiology. Neuroimaging Clin N Am. 22: 511–517

    Google Scholar 

  16. Rosenberg C, Langner S, Rosenberg B, Hosten N (2011) Medizinische und rechtliche Aspekte der Teleradiologie in Deutschland. Fortschr Röntgenstr 183: 804–811

    Article  Google Scholar 

  17. Andronikou S, McHugh K, Abdurahman N, Khoury B, Mngomezulu V, Brant WE, Cowan I, McCulloch M, Ford N. (2011) Paediatric radiology seen from Africa. Part I: providing diagnostic imaging to a young population. Pediatr Radiol. 41: 811–825

    Article  Google Scholar 

  18. Baum RA, Baum S (2014) Interventional radiology: a half century of innovation. Radiology. 273(2 Suppl):S 75–91

    Article  Google Scholar 

  19. Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, Jattke K, Townsend D, Nahmias C, Jacob PK, Heiss WD, Claussen CD (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248: 1028–35

    Article  Google Scholar 

  20. Raaymakers BW, Lagendijk JJ, Overweg J. (2009) Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 54: N229 –237

    Article  ADS  Google Scholar 

  21. Hamm CW, Arsalan M, Mack MJ (2016) The future of transcatheter aortic valve implantation. Eur Heart J 37: 803–810

    Article  Google Scholar 

  22. Deuschl F, Schofer N, Lubos E, Schirmer J, Conradi L, Treede H, Reichenspurner H, Blankenberg S, Schäfer U (2015) MitraClip-data analysis of contemporary literature. J Thorac Dis 7: 1509–1517

    Google Scholar 

  23. Paravastu SC, Jayarajasingam R, Cottam R, Palfreyman SJ, Michaels JA, Thomas SM (2014) Endovascular repair of abdominal aortic aneurysm. Cochrane Database Syst Rev. 23;(1):CD004178. https://doi.org/10.1002/14651858.cd004178.pub2.

    Google Scholar 

  24. Haegele J1, Sattel T, Erbe M, Luedtke-Buzug K, Taupitz M, Borgert J, Buzug TM, Barkhausen J, Vogt FM. (2012) Magnetic particle imaging (MPI) Fortschr Röntgenstr 184:420–426

    Google Scholar 

  25. Willer K, Fingerle AA, Gromann LB, De Marco F, Herzen J, Achterhold K, Gleich B, Muenzel D, Scherer K, Renz M, Renger B, Kopp F, Kriner F, Fischer F, Braun C, Auweter S, Hellbach K, Reiser MF, Schroeter T, Mohr J, Yaroshenko A, Maack HI, Pralow T, van der Heijden H, ProksaR, Koehler T, Wieberneit N, Rindt K, Rummeny EJ, Pfeiffer F, Noël PB X-ray dark-field imaging of the human lung – A feasibility study on a deceased body (2018) PLos One 13: e0204565

    Google Scholar 

  26. Hetterich H, Willner M, Fill S, Herzen J, Bamberg F, Hipp A, Schüller U, Adam-Neumair S, Wirth S, Reiser M, Pfeiffer F, Saam T (2014) Phase-contrast CT: qualitative and quantitative evaluation of atherosclerotic carotid artery plaque. Radiology 2014 271:870–878

    Article  Google Scholar 

  27. Bogart LK, Pourroy G, Murphy CJ, Puntes V, Pellegrino T, Rosenblum D, Peer D, Lévy R. (2014) Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano 22: 3107–3122.

    Article  Google Scholar 

  28. Freund L (1903) Grundriss der gesamten Radiotherapie für praktische Ärzte. Berlin, Urban & Schwarzenberg

    Google Scholar 

  29. Engenhart R, Wowra B, Kimmig B, Höver KH, Kunze S, Wannenmacher M (1992) Stereotactic convergent-beam irradiation: its current prospects based on clinical results. Strahlenther Onkol. 1992 May;168(5):245–59

    Google Scholar 

  30. Bortfeld T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ (1994) Realization and verification of three-dimensional conformal radiotherapy with modulated fields. Int J Radiat Oncol Biol Phys. 1994 Nov 15;30(4):899–908

    Google Scholar 

  31. Bourhis J, Montay-Gruel P, Gonçalves Jorge P, Bailat C, Petit B, Ollivier J, Jeanneret-Sozzi W, Ozsahin M, Bochud F, Moeckli R, Germond JF, Vozenin MC (2019) Clinical translation of FLASH radiotherapy: Why and how?. Radiother Oncol. 2019 Oct. pii: S 0167–8140(19)30360-3. https://doi.org/10.1016/j.radonc.2019.04.008

    Google Scholar 

  32. Collins FS (2011) Meine Gene – mein Leben. Auf dem Weg zur personalisierten Medizin. 1. Aufl., Spektrum Akademischer Verlag 2011

    Google Scholar 

  33. Hricak H (2018) 2016 New Horizons Lecture: Beyond Imaging-Radiology of Tomorrow. Radiology. 2018 Mar;286(3):764–775. https://doi.org/10.1148/radiol.2017171503. Epub 2018 Jan 18

    Google Scholar 

  34. Weber WA, Grosu AL, Czernin J (2008) Technology Insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol. 2008 Mar;5(3):160–70. https://doi.org/10.1038/ncponc1041

    Google Scholar 

  35. Zamboglou C, Carles M, Fechter T, Kiefer S, Reichel K, Fassbender TF, Bronsert P, Koeber G, Schilling O, Ruf J, Werner M, Jilg CA, Baltas D, Mix M, Grosu AL (2019) Radiomic features from PSMA PET for non-invasive intraprostatic tumor discrimination and characterization in patients with intermediate- and high-risk prostate cancer – a comparison study with histology reference. Theranostics. 2019 Apr 13;9(9):2595-2605. https://doi.org/10.7150/thno.32376

    Google Scholar 

  36. Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, Bortfeld T (2016) Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016 Apr;16(4):234–49

    Google Scholar 

  37. Coleman CN, Higgins GS, Brown JM, Baumann M, Kirsch DG, Willers H, Prasanna PG, Dewhirst MW, Bernhard EJ, Ahmed MM (2016) Improving the Predictive Value of Preclinical Studies in Support of Radiotherapy Clinical Trials. Clin Cancer Res. 2016 Jul 1;22(13):3138-47. https://doi.org/10.1158/1078-0432.ccr-16-0069. Epub 2016 May 6. Review. PMID: 27154913

    Google Scholar 

  38. Erhard, A. (2014): Verfahren der zerstörungsfreien Materialprüfung. Grundlagen. Düsseldorf: DVS Media GmbH.

    Google Scholar 

  39. Luxbacher, G. (Hrsg.) (2018): Durchleuchten und Durchschallen. Geschichte der Gesellschaft für Zerstörungsfreie Prüfung von 1933 bis 2018. München: Hanser.

    Google Scholar 

  40. Glasser, O. (1995): Wilhelm Conrad Röntgen und die Geschichte der Röntgenstrahlen. 3. Auflage, Berlin Heidelberg New York: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Dosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dosch, H., Adam, G., Grosu, AL., Purschke, M. (2020). Einleitung. In: Busch, U. (eds) Wilhelm Conrad Röntgen. Klassische Texte der Wissenschaft. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61350-4_2

Download citation

Publish with us

Policies and ethics