Skip to main content

Mathematical modelling – a key to citizenship education

  • Chapter
  • First Online:
Initiationen mathematikdidaktischer Forschung

Abstract

The pandemic has demonstrated more than ever that citizens around the world need to understand how mathematics contributes to understanding global challenges and ways of overcoming them. People need to understand that predictions are based on models that make use of assumptions and the best inputs available. They also need to learn to critically evaluate reports based on the outcomes of models to make effective decisions and deal with the inherent uncertainty in an appropriate way. These capabilities make it clear that mathematical modelling is a key element of citizenship education. Given this fundamental role of modelling, we take a closer look at its definition, its history, its connection to other teaching approaches, as well as the competences students need to carry through modelling processes and the competences teachers need for teaching modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Ärlebäck, J. B., & Doerr, H. (2018). Students’ interpretation and reasoning about phenomena with negative rates of change throughout a model development sequence. ZDM – Mathematics Education, 50(1/2), 187–200. https://doi.org/10.1007/s11858-017-0881-5

  • Artigue, M. (2017). Qué es la educación matemática basada en la indagación ? La Gaceta de la Real Sociedad Matemática Española, 20(3), 1–17.

    Google Scholar 

  • Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM – Mathematics Education, 45(6), 797–810.

    Google Scholar 

  • Bakogianni, D., Potari, D., Psycharis, G., Sakonidis, C., Spiliotopoulou, V., & Triantafillou, C. (2021). Mathematics teacher educators’ learning in supporting teachers to link mathematics and workplace situations in classroom teaching. In M. Goos & K. Beswick (Eds.), The Learning and Development of Mathematics Teacher Educators (S. 281–299). Springer, Cham.

    Google Scholar 

  • Barbosa, J. (2006). Mathematical modelling in the classroom: a socio-critical and discursive perspective. ZDM – Mathematics Education, 38, 293–301.

    Google Scholar 

  • Barquero, B., Monreal, N., Ruiz-Munzón, N., & Serrano, L. (2018). Linking transmission with inquiry at university level through study and research paths: the case of forecasting Facebook user growth. International Journal of Research in Undergraduate Mathematics Education, 4(1), 8–22.

    Article  Google Scholar 

  • Blömeke, S., & Kaiser, G. (2017). Understanding the development of teachers’ professional as personally, situationally and socially determined. In D. J. Clandini & J. Husu (Hrsg.), International handbook on research on teacher education (S. 783–802). Sage.

    Google Scholar 

  • Blömeke, S., Kaiser, G., König, J., & Jentsch, A. (2020). Profiles of mathematics teachers’ competence and their relation to instructional quality. ZDM – Mathematics Education, 52(2), 329–342.

    Google Scholar 

  • Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. B. Ferri, & G. Stillman (Hrsg.), Trends in teaching and learning of mathematical modelling: ICTMA14 (S. 15–30). Springer Science & Business Media.

    Google Scholar 

  • Bosch, M. (2018). Study and research paths: A model for inquiry. In B. Sirakov, P. N. de Souza, & M. Viana (Hrsg.), International Congress of Mathematicians (Bd. 3, S. 4001–4022). World Scientific Publishing.

    Google Scholar 

  • Burkhardt, H. (1981). The real world and mathematics. Blackie.

    Google Scholar 

  • Burkhardt, H. (2019). Improving policy and practice. Educational Designer, 3(12). http://www.educationaldesigner.org/ed/volume3/issue12/article46/.

  • Burkhardt, H., & Schoenfeld, A. H. (2019). Formative assessment in mathematics. In R. Bennett, G. Cizek, & H. Andrade (Hrsg.), Handbook of formative assessment in the disciplines (S. 35–67). Routledge.

    Chapter  Google Scholar 

  • Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70, 30–35.

    Google Scholar 

  • Chevallard, Y. (2015). Teaching mathematics in tomorrow’s society: A case for an oncoming counter paradigm. In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education, Cham, Springer (S. 173–187).

    Google Scholar 

  • Dewey, J. (1916). Democracy and education. Macmillan.

    Google Scholar 

  • Dobber, M., Zwart, R., Tanis, M., & van Oers, B. (2017). Literature review: The role of the teacher in inquiry-based education. Educational Research Review, 22, 194–214.

    Article  Google Scholar 

  • Doorman, L. M. (2019). Design and research for developing local instruction theories. Avances de Investigacion en Educacion Matematica, 15, 29–42. https://doi.org/10.35763/aiem.v0i15.266

    Article  Google Scholar 

  • Dorier, J., & Maass, K. (2014). Inquiry based mathematics education. In S. Lerman (Hrsg.), Encyclopedia of mathematics education (S. 300–304). Springer.

    Chapter  Google Scholar 

  • Engelbrecht, J., Borba, M., Llinares, S., & Kaiser, G. (2020). Will 2020 be remembered as the year in which education was changed? ZDM – Mathematics Education, 52(5), 821–824.

    Google Scholar 

  • English, L. D. (2016). Advancing mathematics education research within a STEM environment. In K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison, & K. Fry (Hrsg.), Research in mathematics education in Australasia 2012–2015 (S. 353–371). Springer.

    Chapter  Google Scholar 

  • Galbraith, P., & Stillman, G. (2001). Assumptions and context: Pursuing their role in modelling activity. In J. F. Matos, W. Blum, K. Houston, & S. P. Carreira (Eds.), Modelling and Mathematics Education, ICTMA 9: Applications in Science and Technology (S 300–310). Horwood Publishing.

    Google Scholar 

  • Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155–177.

    Article  Google Scholar 

  • Geiger, V., Galbraith, P., Niss, M., & Delzoppo, C. (2021, online first). Developing a task design and implementation framework for fostering mathematical modelling competencies. Educational Studies in Mathematics. https://doi.org/10.1007/s10649-021-10039-y.

  • Geiger, V., Stillman, G., Brown, J., Galbraith, P., & Niss, M. (2018). Using mathematics to solve real world problems: The role of enablers. Mathematics Education Research Journal, 30(1), 7–19. https://doi.org/10.1007/s13394-017-0217-3

    Article  Google Scholar 

  • English, L. D., & Watson, J. (2018). Modelling with authentic data in sixth grade. ZDM Mathematics Education, 50(1/2), 103–115. https://doi.org/10.1007/s11858-017-0896-y

    Article  Google Scholar 

  • Hansen, N. S., Iversen, C., & Troels-Smith, K. (1996). Modelkompetencer—udvikling og afprøvning af et begrebsapparat. Tekster fra IMFUFA, No. 321. IMFUFA, Roskilde Universitet.

    Google Scholar 

  • Hazelkorn, E., Ryan, C., Beernaert, Y., Constantinou, C., Deca, L., Grangeat, M., Karikorpi, M., Lazoudis, A., Casulleras, R., & Welzel-Breuer, M. (2015). Science education for responsible citizenship. http://ec.europa.eu/research/swafs/pdf/pub_science_education/KI-NA-26-893-EN-N.pdf. Retrieved: 09. Sept. 2015.

  • Israel, G. (1996). La Mathématisation du réel: Essai sur la modélisation mathématique. Editions du Seuil.

    Google Scholar 

  • Kaiser, G. (1995). Realitätsbezüge im Mathematikunterricht—Ein Überblick über die aktuelle und historische Diskussion. In G. Graumann, T. Jahnke, G. Kaiser, & J. Meyer (Eds.), Materialien für einen realitätsbezogenen Mathematikunterricht (Bd. 2, S. 66–84). Franzbecker.

    Google Scholar 

  • Kaiser, G., Blomhøj, M., & Sriraman, B. (2006). Mathematical modelling in school—Theoretical reflections and empirical research. ZDM—Zentralblatt für Didaktik der Mathematik, 38(2), 82–85.

    Google Scholar 

  • Kaiser, G., & Maaß, K. (2007). Modelling in lower secondary mathematics classroom—problems and opportunities. In W. Blum, P. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 99–108). Springer, Boston, MA.

    Google Scholar 

  • Kaiser, G., & Grünewald, S. (2015). Promotion of mathematical modelling competencies in the context of modelling projects. In L. N. Hoe & N. K. E. Dawn (Eds.), Mathematical modelling. From theory to practice (S. 21–39). World Scientific.

    Google Scholar 

  • Kaiser, G., & König, J. (2019). Competence measurement in (mathematics) teacher education and beyond: Implications for policy. Higher Education Policy, 32, 597–615.

    Article  Google Scholar 

  • Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education—examples and experiences. Journal für Mathematik-Didaktik, 31(1), 51–76.

    Article  Google Scholar 

  • Kaiser, G., Schwarz, B., & Buchholz, N. (2011). Authentic modelling problems in mathematics education. In G. Kaiser, W. Blum, R. B. Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: ICTMA14 (S. 591–602). Springer Science & Business Media.

    Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM—Zentralblatt für Didaktik der Mathematik, 38(3), 302–310.

    Google Scholar 

  • Kaiser-Messmer, G. (1986). Anwendungen im Mathematikunterricht. Band 1: Theoretische Konzeption. Band 2: Empirische Untersuchungen. Bad Salzdetfurth: Franzbecker.

    Google Scholar 

  • Kaiser-Messmer, G. (1993). Results of an empirical study into gender differences in attitudes towards mathematics. Educational studies in Mathematics, 25(3), 209–233.

    Article  Google Scholar 

  • Krainer, K. (2005). What is “good” mathematics teaching, and how can research inform practice and policy? [Editorial]. Journal of Mathematics Teacher Education, 8(1), 75–81.

    Article  Google Scholar 

  • Krainer, K., Zehetmeier, S., Hanfstingl, B., Rauch, F., & Tscheinig, T. (2018). Insights into scaling up a nation-wide learning and teaching initiative on various levels. Educational Studies in Mathematics, 102(3), 395–415.

    Article  Google Scholar 

  • Lesh, R. A., English, L. D., Riggs, C., & Sevis, S. (2013). Problem solving in the primary school (K-2). The Mathematics Enthusiast, 10(1&2), 35–60.

    Article  Google Scholar 

  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly & R. Lesh (Hrsg.), Handbook of research design in mathematics and science education (S. 591–646). Lawrence Erlbaum.

    Google Scholar 

  • Maass, K. (2004). Mathematisches Modellieren im Unterricht—Ergebnisse einer empirischen Studie. Verlag Franzbecker.

    Google Scholar 

  • Maass, K. (2007). Modelling in class: What do we want students to learn. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Hrsg.), Mathematical modelling—Education, engineering and economics (S. 63–78). Horwood Limited Publishing.

    Chapter  Google Scholar 

  • Maass, K. (2010). Classification scheme for modelling tasks. ZDM – Mathematics Education, 31(2), 285–311.

    Google Scholar 

  • Maass, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: A synthesis. ZDM – Mathematics Education, 45(6), 779–795.

    Google Scholar 

  • Maass, K., Cobb, P., Krainer, K., & Potari, D. (2019a). Different ways to implement innovative teaching approaches at scale. Educational Studies in Mathematics, 102(3), 303–318.

    Article  Google Scholar 

  • Maass, K., Doorman, M., Jonker, V., & Wijers, M. (2019b). Promoting active citizenship in mathematics teaching. ZDM – Mathematics Education, 51(6), 991–1003. https://doi.org/10.1007/s11858-019-01048-6

  • Maass, K., & Engeln, K. (2018). Impact of professional development involving modelling on teachers and their teaching. ZDM – Mathematics Education, 50(1), 273–285. https://doi.org/10.1007/s11858-018-0911-y

  • Maass, K., & Engeln, K. (2019). Professional development on connections to the world of work in mathematics and science education. ZDM – Mathematics Education, 51(6), 967–978. https://doi.org/10.1007/s11858-019-01047-7

  • Maass, K., & Mischo, C. (2011). Implementing modelling into day-to-day teaching practice—The project STRATUM and its framework. Journal für Mathematik-Didaktik, 32(1), 103–131.

    Article  Google Scholar 

  • Maass, K., Sorge, S., Hesse, A., Romero-Ariza, M., & Straser (2021). Promoting active citizenship in mathematics and science teaching. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-021-10182-1.

  • Mischo, C., & Maass, K. (2013). Which personal factors affect mathematical modelling? The effect of abilities, domain specific and cross domain-competences and beliefs on performance in mathematical modelling. Journal of Mathematical Modelling and Application, 1(7), 3–19.

    Google Scholar 

  • Nelson, T. H., & Slavit, D. (2007). Collaborative inquiry among science and mathematics teachers in the USA: Professional learning experiences through cross-grade, cross-discipline dialogue. Journal of In-service Education, 33(1), 23–39.

    Article  Google Scholar 

  • Niss, M. (2010). Modeling a crucial aspect of students’ mathematical modeling. In R. Lesh, P. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical competencies (pp. 43–59). Springer.

    Google Scholar 

  • Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge.

    Book  Google Scholar 

  • Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Hrsg.), Modelling and applications in mathematics education (S. 3–32). Springer.

    Chapter  Google Scholar 

  • Potari, D., Psycharis, G., Spiliotopoulou, V., Triantafillou, C., Zachariades, T., & Zoupa, A. (2016). Mathematics and science teachers’ collaboration: Searching for common grounds. In C. Csikos, A. Rausch, & J. Szitanyi (Eds.), Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education, Szeged, Hungary: PME, (Vol. 4, S. 91–98).

    Google Scholar 

  • Rhodes, T., & Lancaster, K. (2020). Mathematical models as public troubles in COVID-19 infection control. Health Sociology Review, 29(2), 177–194.

    Google Scholar 

  • Roux, S. (2011). Pour une étude des formes de la mathématisation. In H. Chabot & S. Roux (Eds.), La mathématisation comme problème (S. 3–38). Editions des Archives Contemporaines.

    Google Scholar 

  • Schukajlow, S., Kaiser, G., & Stillman, G. (2018). Empirical research on teaching and learning of mathematical modelling: A survey on the current-state-of-the-art. ZDM – Mathematics Education, 50(1–2), 5–18.

    Google Scholar 

  • Stacey, K., & Turner, R. (Hrsg.). (2015). Assessing Mathematical Literacy: The Pisa Experience. Springer. https://doi.org/10.1007/978-3-319-10121-7

    Book  MATH  Google Scholar 

  • Stender, P., & Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM – Mathematics Education, 47(7), 1255–1267.

    Google Scholar 

  • Stillman, G. A., Kaiser, G., & Lampen, C. E. (Hrsg.). (2020). Mathematical modelling and sense-making. Springer.

    Google Scholar 

  • Triantafillou, C., Psycharis, G., Potari, D., Bakogianni, D., & Spiliotopoulou, V. (2021). Teacher Educators’ Activity Aiming to Support Inquiry through Mathematics and Science Teacher Collaboration. International Journal of Science and Mathematics Education, 19(2), 1–17.

    Google Scholar 

  • Vorhölter, K., Kaiser, G., & Borromeo Ferri, R. (2014). Modelling in mathematics classroom instruction: An innovative approach for transforming mathematics education. In Y. Li, E. A. Silver, & S. Li (Hrsg.), Transforming Mathematics Instruction (S. 21–36). Springer.

    Google Scholar 

  • Willke, H. (1999). Systemtheorie II: Interventionstheorie (3. Aufl.). Lucius & Lucius UTB.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Maass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maass, K. et al. (2022). Mathematical modelling – a key to citizenship education. In: Buchholtz, N., Schwarz, B., Vorhölter, K. (eds) Initiationen mathematikdidaktischer Forschung. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-36766-4_2

Download citation

Publish with us

Policies and ethics