Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 86))

  • 204 Accesses

Abstract

The optimum development of barley over its life cycle depends on a number of environmental stress factors that can prevent the plant’s expressing its maximum genetic potential. Severe grain losses are often caused by high or low temperatures, drought, anaerobiosis, and such soil anomalies as excess salt. The responses elicited from the plant by these stresses, when not lethal, include alterations in its processes of photosynthesis, respiration, and hormonal regulation through the development of specific, adaptive defense systems and mechanisms that are molecularly controlled. The duration of the stress and the plant’s growth stage at the former’s onset in turn affect yield. One can also find differing reactions as to plant susceptibility to adverse conditions. Thus, genetic variability plays a primary role in determining positive adaptation to environmental stresses and, hence, in supporting the spread of various barley genotypes to extreme climatic conditions (Stanca et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Cattivelli L, Bartels D (1989) Cold-induced mRNAs accumulate with different kinetics in barley coleoptiles. Planta 178: 184–188.

    Article  CAS  Google Scholar 

  • Cattivelli L, Bartels D (1990) Molecular cloning and characterization of cold-regulated genes in barley. Plant Physiol 93: 1504–1510.

    Article  PubMed  CAS  Google Scholar 

  • Cattivelli L, Crosatti C, Grossi M, Pecchioni N, Portesi A, Rizza F, Stanca AM, Terzi V (1991) Molecular response to abiotic stresses in barley. Vortr Pflanzenzuchtg 20: 168–172 /5.

    Google Scholar 

  • Cattivelli L, Bartels D (1992) Biochemistry and molecular biology of cold-inducible enzymes and proteins in higher plants. In: “Society for Experimental Biology Seminar Series 49: Inducible Plant Proteins” (JL Wray ed.), Cambridge University Press, pp. 267–288.

    Google Scholar 

  • Chen THH, Gusta LV (1983) Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Chen H-H, Li PH, Brenner ML (1983) Involvement of abscisic acid in potato cold acclimation. Plant Physiol 71: 362–365.

    Article  PubMed  CAS  Google Scholar 

  • Cloutier Y (1987) Lipid and protein changes in cold- and drought-hardened cereals. Phytoprotection 68: 87–96.

    CAS  Google Scholar 

  • Dunn MA, Hughes MA, Pearce R.S, Jack PL (1990) Molecular characterization of a barley gene induced by cold treatment, J Exp Bot 41: 1405–1413.

    Article  CAS  Google Scholar 

  • Dunn MA, Hughes MA, Zhang L, Pearce RS, Quigley AS, Jack PL (1991) Nucleotide sequence and molecular characterization of the low temperature induced cereal gene, BLT4. Mol Gen Genet 229: 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Ala P, Yang DSC, Hon W-C, Moffatt B (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100: 593–596.

    Article  PubMed  CAS  Google Scholar 

  • Grossi M, Cattivelli L, Terzi V, Stanca AM (1992) Modification of gene expression induced by ABA, in relation to drought and cold stress in barley shoots. Plant Physiol Biochem 30 (1): 97–103.

    CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Ann Rev Plant Physiol Plant Mol Biol 41: 187–223.

    Article  CAS  Google Scholar 

  • Hajela RK, Horvath DP, Gilmour SJ, Thomashow MF (1990) Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol 93: 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  • Heino P, Sandman G, Lang V, Nordin K, Palva ET (1990) Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana ( L.) Heynh. Theor Appl Genet 79: 801–806.

    Google Scholar 

  • Hughes MA, Pearce RS (1988) Low temperature treatment of barley plants causes altered gene expression in shoot meristems. J Exp Bot 39: 1461–1467.

    Article  Google Scholar 

  • Kolar SC, Hayes PM, Chen THH, Linderman RG (1991) Genotypic variation for cold tolerance in winter and facultative barley. Crop Sci. 31: 1149–1152.

    Article  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold- and ABA-inducible Arabidospis gene. Plant Mol Biol 15: 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (ed) (1980) Responses of Plants to Environmental Stresses, Vol. I, Chilling, Freezing, and High Temperature Stresses. Academic Press, Orlando FL.

    Google Scholar 

  • Livingston III DP, Olien CR, Freed RD (1989) Sugar composition and freezing tolerance in barley crowns at varying carbohydrate levels. Crop Sci. 29: 1266–1270.

    Article  CAS  Google Scholar 

  • Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma ). Plant Physiol. 83: 761–767.

    Google Scholar 

  • Marmiroli N, Terzi V, Odoardi Stanca M, Lorenzoni C, Stanca AM (1986) Protein synthesis during cold shock in barley tissues. Theor Appl Genet 73: 190–196.

    Article  CAS  Google Scholar 

  • Olien CR (1979) Physiology of winter hardiness in barley, Barley. USDA Agric. Handb. 338, Washington D.C., pp. 147–154.

    Google Scholar 

  • Schindelin H, Marahiel MA, Heinemann U (1993) Universal nucelic acid-binding domain revealed by crystal structure of the B_s_ subtilis major cold-shock protein. Nature 364: 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Schnuchel A, Wiltscheck R, Czisch M, Herrier M, Willimsky G, Graumann P, Marahiel MA, Holak TA (1993) Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature 364: 169–171.

    Article  PubMed  CAS  Google Scholar 

  • Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. The Plant Cell 2: 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Stanca AM, Terzi V, Cattivelli L (1992) Biochemical and molecular studies of stress tolerance in barley. In: “Barley: genetics, biochemistry, molecular biology and biotechnology” ( P.R. Shewry ed.), C.A.B. International, Wallingford UK, pp. 277–288.

    Google Scholar 

  • Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphytica 42: 41–44.

    Article  Google Scholar 

  • Thomashow MF (1990) Molecular genetics of cold acclimation in higher plants. Adv in Genet 28: 99–131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cattivelli, L. et al. (1994). Molecular Analysis of Cold-Hardening in Barley. In: Cherry, J.H. (eds) Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. NATO ASI Series, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79133-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79133-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79135-2

  • Online ISBN: 978-3-642-79133-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics