Skip to main content

Carbonate Dissolution in the Deep-Sea: Methods, Quantification and Paleoceanographic Application

  • Chapter
Use of Proxies in Paleoceanography

Abstract

Understanding spatial and temporal changes in oceanic carbonate dissolution and preservation patterns is of key importance for testing models which seek to explain past changes in atmospheric pCO2 and surface water PCO2 through changes in the global carbon cycle. As part of the South Atlantic Dissolution Experiment, three deep-sea transects covering areas above and below the calcite lysocline into the Brazil and through the Cape Basin were investigated. Our work includes (1) determination of sediment surface assemblages of coccolithophores and planktic foraminifera; (2) SEM ultrastructure analysis of the planktic foraminifera Globigerina bulloides; and (3) comparative assessment of different carbonate dissolution proxies. We find that all dissolution proxies are able to distinguish the area above the calcite lysocline from the area below. Moreover, some parameters are qualified to distinguish the upper continental margin of upwelling areas from the open ocean. Regarding three different oceanographic regimes, only the carbonate ion content and the percentage of sediment carbonate content put us in the position to determine the total scale of the calcite transition zone. If these parameters are not available, a combination of the Globigerina bulloides Dissolution Index, the Calcidiscus leptoporus — Emiliania huxleyi Dissolution Index, and the rain ratio give the best approach to the authentic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adelseck CG (1977) Dissolution of deep-sea carbonate: Preliminary calibration of preservational and morphological aspects. Deep-Sea Res 25:1167–1185

    Article  Google Scholar 

  • Andel TH van, Heath GR, Moore TC (1975) Cenozoic history and paleoceanography of the central equatorial Pacific Ocean. GeolSocAmer Mem 143:1–134

    Google Scholar 

  • Archer DE (1996) An Atlas of the distribution of calcium carbonate in sediments of the deep-sea. Global Biogeochem Cycles 10(1): 159–174

    Article  Google Scholar 

  • Archer DE, Emerson S, Reimer C (1989) Dissolution of calcite in deep-sea sediments: pH and 02 microelectrode results. Geochim Cosmochim Acta 53: 2831–2846

    Article  Google Scholar 

  • Archer DE, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–264

    Article  Google Scholar 

  • Arrhenius GOS (1952) Sediment Cores from the East Pacific — Fasc. 1. Rep Swed Deep-Sea Exped 1947-1948 5:1–227

    Google Scholar 

  • Baes CFJ (1982) Effects of ocean chemistry and biology. In: Clark WC (ed) Carbon dioxide Review 1982. Oxford University Press, Oxford, pp 1–488

    Google Scholar 

  • Bainbridge AE (1981) GEOSECS Atlantic Expedition, Hydrographic Data, 1972–1973. National Science Foundation, Superintendent of Documents, US Govt Printing Office, Washington DC, pp 1–121

    Google Scholar 

  • Bassinot FC, Beaufort L, Vincent E, Labeyrie LD, Rostek F, Müffler P J, Quidelleur X, Lancelot Y (1994) Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: A 1,500 kyr record of carbonate dissolution. Paleoceanography 9(4): 579–600

    Article  Google Scholar 

  • Baumann K-H, Andruleit H, Schröder-Ritzrau A, Samtleben C (1997) Spatial and temporal dynamics of coccolithophore communities during low production phases (spring-early summer) in the Norwegian-Greenland Sea. In: Hass HC, Kaminski MA (eds) Contributions to the micropaleontology and paleoceanography of the northern North Atlantic. Grzybowski Foundation Special Publication, Krakow 5:227–243

    Google Scholar 

  • Baumann K-H, Meggers H (1996) Paleoceanographical change in the Labrador Sea during the last 3.1 MY: Evidence from calcareous plankton records. In: Moguilevsky A, Whatley R (eds) Microfossils and Oceanic Environments. Aberystwyth-Press, Aberystwyth, pp 131–154

    Google Scholar 

  • Bé AWH (1977) An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. In: Ramsay ATS (ed) Oceanic Micropaleontology. Academic Press, London, 1, pp 1–100

    Google Scholar 

  • Bé AWH, Morse JW, Harrison SM (1975) Progressive dissolution and ultrastructural breakdown of planktonic foraminifera. In: Sliter WV, Bé AWH, Berger WH (eds) Dissolution of Deep-Sea Carbonates. Cushman Found Foram Res Spec Publ, Ithaka, NY, 13, pp 27–55

    Google Scholar 

  • Bender ML, Lorens RB, Williams DF (1975) Na, Mg, Sr in the tests of planktonic foraminifera. Micropaleontology 21:448–459

    Article  Google Scholar 

  • Bennekom AJ van, Berger GW (1984) Hydrography and silica budget of the Angola Basin. Neth J Sea Res 17:149–200

    Article  Google Scholar 

  • Berelson WM, Hammond DE, Cutter GA (1990) In situ measurements of calcium carbonate dissolution rates in deep-sea sediments. Geochim Cosmochim Acta 54:3013–3020

    Article  Google Scholar 

  • Berger WH (1967) Foraminiferal ooze: Solution at depths. Science 156(3773): 383–385

    Article  Google Scholar 

  • Berger WH (1968) Planktonic foraminifera: Selective solution and paleoclimatic interpretation. Deep-Sea Res 15:31–43

    Google Scholar 

  • Berger WH (1970) Planktonic foraminifera: Selective solution and the lysocline. Mar Geol 8: 111–138

    Article  Google Scholar 

  • Berger WH (1973a) Deep-sea carbonates: Evidence for a coccolith lysocline. Deep-Sea Res 20:917–921

    Google Scholar 

  • Berger WH (1973b) Deep-sea carbonates: Pleistocene dissolution cycles. J Foram Res 3(4): 187–195

    Article  Google Scholar 

  • Berger WH (1975) Deep-sea carbonates: Dissolution profiles from foraminiferal preservation. In: Sliter WV, Bé AWH, Berger WH (eds) Cushman Found Foram Res Spec Publ, Ithaka, NY, 13, pp 82–86

    Google Scholar 

  • Berger WH (1979) Preservation of foraminifera. In: Lipps JH, Berger WH, Buzas MA, Douglas RG, Ross CA (eds) Foraminiferal Ecology andPalecology. Society of Economic Paleontologists and Mineralogists, Houston, 6, pp 105–155

    Google Scholar 

  • Berger WH (1982) Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften 69: 87–88

    Article  Google Scholar 

  • Berger WH (1991) Produktivität des Ozeans aus geologischer Sicht: Denkmodelle und Beispiele. Z Dtsch Geol Ges 142:149–178

    Google Scholar 

  • Berger WH, Adelseck CG, Mayer LA (1976) Distribution of carbonate in surface sediments of the Pacific Ocean. J Geophys Res 81(C): 2617–2627

    Article  Google Scholar 

  • Berger WH, Bonneau M-C, Parker FL (1982) Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanol Acta 5(2): 249–258

    Google Scholar 

  • Berger WH, Fischer K, Lai C, Wu G (1987) Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. Scripps Inst Oceanogr, Univ California, pp 1–67

    Google Scholar 

  • Berger WH, Keir RS (1984) Glacial-Holocene changes in atmospheric CO2 and the deep-sea record. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity. Geophys Monogr 29, Maurice Ewing Series, Washington DC, 5, pp 337–351

    Chapter  Google Scholar 

  • Berger WH, Smetacek VS, Wefer G (1989) Ocean productivity and paleoproductivity — An overview. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Ocean: Present and Past. J Wiley & Sons, New York, pp 1–34

    Google Scholar 

  • Berner RA (1977) Sedimentation and dissolution of pteropods in the ocean. In: Andersen NR, Malahoff A (eds) The Fate of Fossil Fuel CO2 in the Oceans. Plenum Press, New York, pp 243–260

    Google Scholar 

  • Bickert T, Wefer G (1996) Late Quaternary deep water circulation in the South Atlantic: Reconstruction from carbonate dissolution and benthic stable isotopes. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin Heidelberg New York, pp 599–620

    Chapter  Google Scholar 

  • Bickert T, Cordes R, Wefer G (1997) Late Pliocene to Mid-Pleistocene(2.6-1.0 M.Y.) carbonate dissolution in the western equatorial Atlantic: Results of Leg 154, Ceara Rise. In: Shackleton NJ, Curry WB, Richter C, Bralower TJ (eds) Proc ODP Sci Results 154, College Station, TX, pp 229–237

    Google Scholar 

  • Biscaye PE, Kolla V, Turekian KK (1976) Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. J Geophys Res 81(C5): 2595–2603

    Article  Google Scholar 

  • Boltovskoy E (1991) La destruction des tests de foraminifères (experiences de laboratoire). Revue de Micropaléontologie 34(1): 19–25

    Google Scholar 

  • Boltovskoy E, Totah VI (1992) Preservation index and preservation potential of some foraminiferal species. J Foram Res 22(3): 267–273

    Article  Google Scholar 

  • Boyle EA (1988) Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature 331: 55–56

    Article  Google Scholar 

  • Bramlette MN (1961) Pelagic sediments. In: Sears M (ed) Oceanography. AAAS Publication, New York, 67, pp 345–366

    Google Scholar 

  • Broecker WS, Peng TH (1982) Tracers in the Sea. Eldigio Press, New York, pp 1–689

    Google Scholar 

  • Broecker WS, Takahashi T (1978) The relationship between lysocline depth and in situ carbonate ion concentration. Deep-Sea Res 25F(1): 65–95

    Google Scholar 

  • Brown SJ, Elderfield H (1996) Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg-dependent dissolution. Paleoceanography 11(5): 543–551

    Article  Google Scholar 

  • Chave KE, Suess E (1970) Calcium carbonate saturation in sea water: Effects of dissolved organic matter. Limnol Oceanogr 15:633–637

    Article  Google Scholar 

  • CLIMAP Project members (1976) The surface of the ice-age earth. Science 191(4232): 1131–1137

    Article  Google Scholar 

  • CLIMAP Project members (1984) The last interglacial ocean. Quat Res 21:123–224

    Article  Google Scholar 

  • Connary SD, Ewing M (1972) The nepheloid layer and bottom circulation in the Guinea and Angola Basins. In: Gordon AL (ed) Studies in physical oceanography: a tribute to Georg Wüst on his 80th birthday. Gordon and Breach, New York, 2, pp 169–184

    Google Scholar 

  • Corliss BH, Honjo S (1981) Dissolution of deep-sea benthic foraminifera. Micropaleontology 27(4): 356–378

    Article  Google Scholar 

  • Culkin F (1965) The major ion components of seawater. In: Riley JP, Skirrow G (eds) Chemical Oceanography. Academic Press, New York, 1, pp 121–162

    Google Scholar 

  • Curry WB, Lohmann GP (1990) Reconstructing past particle fluxes in the tropical Atlantic Ocean. Paleoceanography 5:487–506

    Article  Google Scholar 

  • De Vernal A, Bilodeaul G, Hillaire-Marcel C, Kassou N (1992) Quantitative Assessment of Carbonate Dissolution in Marine Sediments from Foraminifer Linings vs. Shell Ratios: Davis Strait, Northwest North Atlantic. Geology 20:527–530

    Article  Google Scholar 

  • Diester-Haass L, Müller PJ (1979) Processes influencing sand fraction composition and organic matter content in surface sediments off W Africa (12–19°N). “Meteor”Forsch Ergebn C 31:21–47

    Google Scholar 

  • Diester-Haass L, Rothe P (1987) Plio-Pleistocene sedimentation on the Walvis Ridge, Southeast Atlantic (DSDP Leg 75, Site 532) — Influence of surface currents, carbonate dissolution and climate. Mar Geol 77:53–85

    Article  Google Scholar 

  • Dittert N, Henrich R (subm) Carbonate dissolution in the South Atlantic Ocean: Evidence by Globigerina bullloides’ ultrastructure breakdown. Deep-Sea Res

    Google Scholar 

  • Edmont JM (1970) High precision determination of titration alkalinity and total carbon dioxide content of seawater by potentiometric titration. 17:737–750

    Google Scholar 

  • Emerson S, Archer D (1990) Calcium carbonate preservation in the ocean. Phil Trans R Soc Lond A 331: 29–40

    Article  Google Scholar 

  • Emerson S, Bender M (1981) Carbon fluxes at the sediment-water interface of the deep-sea: calcium carbonate preservation. J Mar Res 39: 139–162

    Google Scholar 

  • Emerson S, Hedges JI (1988) Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3(5): 621–634

    Article  Google Scholar 

  • Farrell JW, Prell WL (1989) Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4(4): 447–466

    Article  Google Scholar 

  • Farrell JW, Prell WL (1991) Pacific CaCO3 preservation and δ18O since 4 Ma: paleoceanographic and paleoclimatic implications. Paleoceanography 6(4): 485–498

    Article  Google Scholar 

  • Freiwald A (1995) Bacteria-induced carbonate degradation: A taphonomic case study of Cibicides lobolatus from a high-boreal carbonate setting. Palaios 10:337–346

    Article  Google Scholar 

  • Gattuso J-P, Pichon M, Delesalle B, Frankignoulle M (1993) Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia). Mar Ecol Prog Ser 96:259–267

    Article  Google Scholar 

  • Giraudeau J, Monteiro PMS, Nikodemus K (1993) Distribution and malformation of living coccolithophores in the northern Benguela upwelling system off Namibia. Mar Micropaleontol 22:93–110

    Article  Google Scholar 

  • Hales B, Emerson S, Archer D (1994) Respiration and dissolution in the sediments of the western North Atlantic: estimates from models of in situ microelectrode measurements of pore water oxygen andpH. Deep-Sea Res 41(4): 695–719

    Article  Google Scholar 

  • Hastings DW (1994) Vanadium in the ocean: A marine mass balance and paleoseawater record. PhD Thesis, pp 1–177

    Google Scholar 

  • Hay WW (1970) Calcareous nannofossils from cores recovered on Leg 4. Init Repts Deep Sea Drilling Project 4, US Govt Printing Office, Washington DC, pp 455–501

    Google Scholar 

  • Hebbeln D, Wefer G, Berger WH (1990) Pleistocene dissolution fluctuations from apparent depth of deposition in core ERDC-127P, West-Equatorial Pacific. Mar Geol 92:165–176

    Article  Google Scholar 

  • Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminifera. Springer, Berlin Heidelberg New York, pp 1–363

    Book  Google Scholar 

  • Henrich R (1989) Glacial/interglacial cycles in the Norwegian Sea: Sedimentology, paleoceanography, and evolution of late Pliocene to Quaternary northern hemisphere climate. In: Eldholm O, Thiede J, Taylor E (eds) Proc ODP Sci Results 104, College Station, TX, pp 189–232

    Google Scholar 

  • Henrich R, Wefer G (1986) Dissolution of biogenic carbonates: Effects of skeletal structure. Mar Geol 71: 341–362

    Article  Google Scholar 

  • Honjo S (1975) Dissolution of suspended coccoliths in the deep-sea water column and sedimentation of coccolith ooze. In: Sliter WV, Bé AWH, Berger WH (eds) Dissolution of Deep-Sea Carbonates. Cushman Found Foram Res Spec Publ, Ithaka, 13:114–120

    Google Scholar 

  • Honjo S (1976) Coccoliths: production, transportation and sedimentation. Mar Micropaleontol 1(1): 65–79

    Article  Google Scholar 

  • Honjo S, Erez J (1978) Dissolution rates of calcium carbonate in the deep ocean; an in-situ experiment in the North Atlantic Ocean. Earth Planet Sci Lett 40: 287–300

    Article  Google Scholar 

  • Honjo S, Manganini SJ, Cole JJ (1982) Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res 29(5A): 609–625

    Article  Google Scholar 

  • Hooper PWP, Funnell BM, Weaver PPE (1991) Late Miocene-Early Pliocene planktonic foraminifera and paleoceanography of the North Atlantic. J Micropaleontol 9:145–152

    Article  Google Scholar 

  • Hsü KJ, Andrews JE (1970) Lithology. In: Bader RG (ed) Init Repts Deep Sea Drilling Project 3, US Govt Printing Office, Washington DC, pp 445–453

    Google Scholar 

  • Imbrie J, Kipp NG (1971) A new micropaleontological method for quantitative paleoclimatology: application to a Late Pleistocene Carribean core. In: Turekian KK (ed) Late Cenocoic glacial ages. (Memorial Lectures) Yale University Press, New Haven, 43, pp 71–181

    Google Scholar 

  • Jahnke RA, Craven DB, Gaillard JF (1994) The influence of organic matter diagenesis on CaCO3 dissolution at the deep-sea floor. Geochim Cosmochim Acta 58: 2799–2809

    Article  Google Scholar 

  • JGOFS (1989) Canadian National Programme for the Joint Global Ocean Flux Study. The Canadian Committee for JGOFS, Halifax, pp 1–28

    Google Scholar 

  • Johnson TC, Hamilton EL, Berger WH (1977) Physical properties of calcareous ooze: Control by dissolution at depth. Mar Geol 24:259–277

    Article  Google Scholar 

  • Jumars PA, Altenbach AV, De Lange GJ, Emerson SR, Hargrave BT, Müller PJ, Prahl FG, Reimers CE, Steiger T, Suess E (1989) Transformation of Seafloor-arriving Fluxes into the Sedimentary Record. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Ocean: Present and Past. J Wiley & Sons, New York, pp 291–311

    Google Scholar 

  • Keigwin LD (1976) Late Cenozoic planktonic foraminiferal biostratigraphy and paleoceanography of the Panama Basin. Micropaleontology 22:419–422

    Article  Google Scholar 

  • Keir RS (1980) The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim Cosmochim Acta 44:241–252

    Article  Google Scholar 

  • Keir RS (1990) Reconstructing the ocean carbon system variation during the last 150,000 years according to the Antarctic nutrient hypothesis. Paleoceanography 5(3): 253–276

    Article  Google Scholar 

  • Kennett JP (1966) Foraminiferal evidence of a shallow calcium carbonate solution boundary, Ross Sea, Antarctica. Science 153(3732): 191–193

    Article  Google Scholar 

  • Kleijne A (1990) Distribution and malformation of extant calcareous nannoplankton in the Indonesian Seas. Mar Micropaleontol 16:293–316

    Article  Google Scholar 

  • Kolla V, Bé AWH, Biscaye PE (1976) Calcium carbonate distribution in surface sediments of the Indian Ocean. J Geophys Res 81 (CI5): 2605–2616

    Article  Google Scholar 

  • Kreveld SA van (1996) Calcium carbonate dissolution indices on the northeast Atlantic sea floor. In: van Kreveld-Alfane SA (ed) Late Quaternary sediment records of mid-latitude Northeast Atlantic calcium carbonate production and dissolution. FEBO BV, Enschede, pp 135–184

    Google Scholar 

  • Le J, Shackleton NJ (1992) Carbonate dissolution fluctuations in the western equatorial Pacific during the Late Quaternary. Paleoceanography 7:21–42

    Article  Google Scholar 

  • Liss PS (1973) Process of gas exchange across an air-water interface. Deep-Sea Res 20:221–238

    Google Scholar 

  • Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Ménard-Buat P (ed) The role of air-sea exchange in geochemical cycling. NATO ASI Series CI85, Dordrecht Boston, pp 113–127

    Google Scholar 

  • Maier-Reimer E, Hasselmann K (1987) Transport and storage of CO2 in the Ocean — An inorganic ocean-circulation carbon cycle model. Clim Dyn 2:63–90

    Article  Google Scholar 

  • Malmgren BA (1983) Ranking of dissolution susceptibility of planktonic foraminifera at high latitudes of the South Atlantic Ocean. Mar Micropaleontol 8: 183–191

    Article  Google Scholar 

  • Matsuoka H, Mclntyre A, Molfmo A, Verardo B (1991) A sensitive dissolution indicator Calcidiscus leptoporus: Concordance with climate-forced dissolution at orbital time scales. EOS 72(44): 271

    Google Scholar 

  • McCartney MS (1992) Recirculating components to the Deep Boundary of the Northern North Atlantic. Progr Oceanogr 29:283–383

    Article  Google Scholar 

  • Mclntyre A, Mclntyre R (1971) Coccolith concentrations and differential solution in Oceanic Sediments. In: Funnell BM, Riedel WR (eds) The micropaleontology of oceans. Cambridge University Press, London, pp 253–261

    Google Scholar 

  • Mercier H, Speer KG, Honnorez J (1994) Tracing the Antarctic Bottom Water through the Romanche and Chain Fracture Zones. Deep-Sea Res 41:1457–1477

    Article  Google Scholar 

  • Millero FJ (1979) The thermodynamics of the carbonate system in seawater. Geochim Cosmochim Acta 43: 1651–1661

    Article  Google Scholar 

  • Milliman JD (1975) Dissolution of aragonite, Mg-calcite, and calcite in the North Atlantic Ocean. Geology 3(8): 461–462

    Article  Google Scholar 

  • Mix AC, Morey AE (1996) Climate feedback and Pleistocene variations in the Atlantic south equatorial current. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin Heidelberg New York, pp 503–525

    Chapter  Google Scholar 

  • Murray CN, Riley JP (1971) The solubility of gases in distilled water and seawater. IV. Carbon dioxide. Deep-Sea Res 18:533–541

    Google Scholar 

  • Murray J (1897) On the distribution of the pelagic foraminifera at the surface and on the floor of the ocean. Nat Sci 11(65): 17–27

    Google Scholar 

  • Murray J, Renard AF (1891) Deep-sea deposits based on the specimens collected during the voyage of H.M.S. Challenger in the years 1872–1876. London, pp 1–525

    Google Scholar 

  • Murray JW (1989) Syndepositional dissolution of calcareous foraminifera in modern shallow-water Sediments. Mar Micropaleontol 15:117–121

    Article  Google Scholar 

  • Nejstgaard JC, Witte HJ, Van-der-Wal P, Jacobsen A (1994) Copepod grazing during a mesocosm study of an Emiliania huxleyi (Prymnesiophyceae) bloom. Sarsia 79(4): 369–377

    Google Scholar 

  • Nürnberg D (1995) Magnesium in tests of Neogloboquadrinapachyderma, sinistral from high northern and southern latitudes. J Foram Res 25(4): 350–368

    Article  Google Scholar 

  • Olausson E (1965) Evidence of climatic changes in North Atlantic deep-sea cores, with remarks on isotopic paleotemperature analysis. In: Sears M (ed) Progress in Oceanography. Pergamon Press, London, pp 221–252

    Google Scholar 

  • Parker LF, Berger WH (1971) Faunal and solution patterns of planktonic foraminifera in surface sediments of the South Pacific. Deep-Sea Res 18:73–107

    Google Scholar 

  • Paull CK, Hills SJ, Thierstein HR(1988) Progressive dissolution of fine carbonate particles in pelagic sediments. Mar Geol 81:27–40

    Article  Google Scholar 

  • Peterson LC, Prell WL (1985) Carbonate dissolution in recent sediments of the eastern equatorial Indian Ocean: Preservation patterns and carbonate loss above the lysocline. Mar Geol 64:259–290

    Article  Google Scholar 

  • Peterson MNA (1966) Calcite: Rates of dissolution in a Vertical profile in the central Pacific. Science 154(3756): 1542–1544

    Article  Google Scholar 

  • Philippi E (1910) Die Grundproben der Deutschen Südpolar-Expedition 1901-1903. Deutsch Südpolar-Exped 1901–1903 2:411–616

    Google Scholar 

  • Reid JL (1989) On the total geostrophic circulation of the South Atlantic Ocean: Flow patterns, tracers and transports. Progr Oceanogr 23: 149–244

    Article  Google Scholar 

  • Reimers CE (1989) Control of benthic fluxes by particulate supply. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity ofthe Ocean: Present and Past. J Wiley & Sons, New York, pp 217–233

    Google Scholar 

  • Revelle R (1944) Marine bottom samples collected in the Pacific Ocean by the ‘Carnegie’ on its seventh cruise. Carnegie Inst Wash Publ 556(2-1): 1–133

    Google Scholar 

  • Rhein M, Schott F, Fischer J, Send U, Stramma L (1996) The deep water regime in the equatorial Atlantic. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin Heidelberg New York, pp 261–271

    Chapter  Google Scholar 

  • Rosenthal Y, Boyle EA (1993) Factors controlling the fluoride content of planktonic foraminifera: An evaluation of its paleoceanographic applicability. Geochim Cosmochim Acta 57:335–346

    Article  Google Scholar 

  • Roth PH, Coulbourn WT (1982) Floral and solution patterns of coccoliths in surface sediments ofthe North Pacific. Mar Micropaleontol 7:1–52

    Article  Google Scholar 

  • Roth PH, Thierstein HR (1972) Calcareous nannoplankton. Deep Sea Drilling Project Leg 14. Init Repts Deep Sea Drilling Project 14, US Govt Printing Office, Washington DC, pp 421–486

    Google Scholar 

  • Ruddiman WF, Janecek TP (1989) Pliocene-Pleistocene biogenic and terrigenous fluxes at equatorial Atlantic Sites 662,663 and 664. In: Ruddiman WF et al. (eds) Proc ODP Sci Results 108, College Station, TX, pp 211–240

    Chapter  Google Scholar 

  • Russell AD, Emerson S, Nelson BK, Erez J, Lea DW (1994) Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochim Cosmochim Acta 58:671–681

    Article  Google Scholar 

  • Santschi PH, Bower P, Nyffeler UP, Azevedo A, Broecker WS (1983) Estimates ofthe resistance to chemical transport posed by the deep-sea benthic boundary layer. Limnol Oceanogr 28:899–912

    Article  Google Scholar 

  • Schott W (1935) Die Foraminiferen in dem äquatorialen Teil des Atlantischen Ozeans. Wiss Ergebn d Deutschen Atl Exp Meteor 1925–1927, 3:1–135

    Google Scholar 

  • Schulz HD, cruise participants (1992) Bericht und erste Ergebnisse über die Meteor-Fahrt M20/2, Abidjan-Dakar, 27.12.1991-3.2.1992. Ber Fachber Geowiss Univ Bremen 25, pp 1–173

    Google Scholar 

  • Shannon LV, Chapman P (1991) Evidence of Antarctic Bottom Water in the Angola Basin at 32°S. Deep-Sea Res 38:1299–1304

    Article  Google Scholar 

  • Takahashi T, Broecker WS, Bainbridge AE, Weiss RF (1980) Carbonate chemistry of the Atlantic, Pacific and Indian Oceans: The results of the GEOSECS expeditions 1972–1978. Lamont-Doherty Geological Observatory, Palisades,NY, pp 1–211

    Google Scholar 

  • Thunell RC, Honjo S (1981) Calcite dissolution changes in the South Atlantic Ocean: Response to initiation of northern hemisphere glaciation. Paleoceanography 4:565–583

    Google Scholar 

  • Verardo DJ, Ruddiman WF (1996) Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: Climatic and geochemical significance. Geology 24(9): 855–857

    Article  Google Scholar 

  • Vilks G (1975) Comparison of Globorotaliapachyderma (EHRENBERG) in the water column and sediments of the Canadian Arctic. J Foram Res 5:313–325

    Article  Google Scholar 

  • Vincent E (1981) Carbonate stratigraphy of Hess Rise, Central North Pacific and paleoceanographic implications. Mar Biol 62: 571–606

    Google Scholar 

  • Warren BA, Speer KG (1991) Deep circulation in the eastern South Atlantic Ocean. Deep-Sea Res 38: 281–322

    Article  Google Scholar 

  • Wefer G, Bleil U, cruise participants (1990) Bericht über die Meteor-Fahrt M12/1, Kapstadt-Funchal, 13.3.1990-14.4.1990. Ber Fachber Geowiss Univ Bremen 11, pp 1–66

    Google Scholar 

  • Wefer G, Bleil U, Schulz HD, cruise participants (1989) Bericht über die Meteor-Fahrt M9-4, Dakar-Santa Cruz, 19.2.-16.3.1989. Ber Fachber Geowiss Univ Bremen 7, pp 1–103

    Google Scholar 

  • Wu G, Herguera JC, Berger WH (1990) Differential dissolution: Modification of late Pleistocene oxygen isotope records in the western Equatorial Pacific. Paleoceanography 5(4): 581–594

    Article  Google Scholar 

  • Wüst G (1935) Schichtung und Zirkulation des atlantischen Ozeans. Wiss Ergebn d Deutschen Atl Exp Meteor 1925-1927, pp 1–2

    Google Scholar 

  • Yasuda M, Berger WH, Wu G, Burke S, Schmidt H (1993) Foraminiferal preservation record for the last million years: Site 805, Ontong Java Plateau. In: Berger WH, Kroenke LW, Janecek TR, Sliter WV (eds) Proc ODP Sci Results 130, College Station, TX, pp 491–508

    Google Scholar 

  • Young JR (1994) Variations in Emiliania huxleyi coccolith morphology in samples from the Norwegian EHUX experiment. Sarsia 79:417–425

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dittert, N. et al. (1999). Carbonate Dissolution in the Deep-Sea: Methods, Quantification and Paleoceanographic Application. In: Fischer, G., Wefer, G. (eds) Use of Proxies in Paleoceanography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58646-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63681-3

  • Online ISBN: 978-3-642-58646-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics