Skip to main content

Late Quaternary Deep Water Circulation in the South Atlantic: Reconstruction from Carbonate Dissolution and Benthic Stable Isotopes

  • Chapter
The South Atlantic

Abstract

Carbonate dissolution data (sand contents) and δ13C records of the epibenthic foraminifer Cibicides wuellerstorfi from 12 gravity cores are used to reconstruct the history of deep water circulation in the South Atlantic for the last 360,000 years. The cores were selected from depth-sections in four basins (Brasil-, Guinea-, Angola- and Cape Basins) in water depths between 2900 m and 4600 m. The depth-transect approach allows removal of mean global shifts as well as local productivity effects from the paleo-property records and extraction of variations which are due to changes in deep water chemistry and/or circulation in the South Atlantic. As a result of the reduction of NADW during the last glacial maximum the Southern Component Water was higher in the water column and extended farther north than it does today. This glacial water mass can be divided into an upper part (USCW) with δ13C values between 0.2%o and 0.7%o and a lower part (LSCW) characterized by values of -0.2%o to 0.2%o. The boundary, marked also by the calcite lysocline, was at 3800 m water depth near the equator and rose slightly toward the Southern Ocean. The asymmetry observed in bottom water circulation today (LCDW in western basins and in the Cape Basin, NADW in eastern basins below 4000 m) was not present. From comparison to a deep western Pacific core (ODP 806B; Bickert et al. 1993) there is evidence that the nutrient-enriched but oxygen-depleted LSCW resembles the glacial Pacific Deep Water. This is also true for the older glacial stages 4, 6, 8 and 10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Archer D, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367: 260–263

    Article  Google Scholar 

  • Arrhenius GOS (1952) Sediment cores from the east Pacific. Reports of the Swedish Deep Sea Expedition, 1947–1948 5: 1–202

    Google Scholar 

  • Balsam WL, McCoy FWJ (1987) Atlantic sediments: Glacial/interglacial comparisons. Paleoceanography 2: 531–542

    Article  Google Scholar 

  • Bassinot FC, Beaufort L, Vincent E, Labeyrie LD, Rostek F, Müller PJ, Quidelleur X, Lancelot Y (1994) Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: A 1500-kyr record of carbonate dissolution. Paleoceanography 9: 579–600

    Article  Google Scholar 

  • Berger WH (1973) Deep-sea carbonates: Pleistocene dissolution cycles. Journal of Foraminiferal Research 3: 187–195

    Article  Google Scholar 

  • Berger WH (1989) Global maps of ocean productivity. In: Berger WH Smetacek VS, and Wefer G. (eds), Productivity in the oceans: Present and Past. Wiley & Sons, New York, pp 429–455

    Google Scholar 

  • Berger WH, Adelseck CG, Mayer LA (1976) Distribution of carbonate in surface sediments of the Pacific Ocean. Journal of Geophysical Research 81:2617–2627

    Article  Google Scholar 

  • Berger WH, Bonneau MC, Parker FL (1982) Foraminifera on the deep-sea floor: lysocline and dissolution rate. Oceanologica Acta 5: 249–258

    Google Scholar 

  • Berger WH, Stax R (1994) Neogene carbonate stratigraphy of Ontong Java Plateau (western equatorial Pacific): three unexpected findings. Terra Nova 6: 520–534

    Article  Google Scholar 

  • Berger WH, Fischer K, Lai C, Wu G (1987) Ocean productivity and organic carbon flux. (Part I: Overview and maps of primary productivity and export production). San Diego: University of California, SIO Reference 87–30: 67

    Google Scholar 

  • Bickert T (1992) Rekonstruktion der spätquartären Bodenwasserzirkulation im östlichen Südatlantik über stabile Isotope benthischer Foraminiferen. Ber. FB Geo Univ. Bremen 27: 205 pp

    Google Scholar 

  • Bickert T, Berger WH, Burke S, Schmidt H, Wefer G (1993) Late Quaternary stable isotope record of benthic foraminifera at sites 805 and 806, Ontong Java Plateau. Proc. ODP, Sci. Results 130:411–420

    Google Scholar 

  • Bickert T, Berger WH, Wefer G (1996) The deep western equatorial Pacific in Quaternary times: Results from Leg 130 (Ontong Java Plateau). Paleoceanography, subm.

    Google Scholar 

  • Bickert T, Wefer G (1996) Late Quaternary deep water circulation in the South Atlantic: Reconstruction from benthic stable isotopes. Paleoceanography, subm.

    Google Scholar 

  • Biscaye PE, Kolla V, Turekian KK (1976) Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. Journal of Geophysical Research 81:2595–2603

    Article  Google Scholar 

  • Boyle EA (1988) The role of vertical chemical fractionation in controlling late Quartenary atmospheric carbon dioxide. Journal of Geophysical Research 93: 15701–15714

    Article  Google Scholar 

  • Boyle EA, Keigwin L (1987) North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330: 35–40

    Article  Google Scholar 

  • Broecker W, Blanton S, Smethie WM, Ostlund G (1991) Radiocarbon decay and oxygen utilization in the deep Atlantic Ocean. Global Biogeochemical Cycles 5: 87–117

    Article  Google Scholar 

  • Broecker WS, Maier-Reimer E (1992) The influence of air and sea exchange on the carbon isotope distribution in the sea. Global Biogeochemical Cycles 6:315–320

    Article  Google Scholar 

  • Broecker WS, Peng TH (1982) Tracers in the Sea. Lamont Doherty Geol. Obs. Publication, Columbia University, New York, 689 pp

    Google Scholar 

  • Broecker WS, Peng TH (1987) The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Global Biogeochemical Cycles 1:15–29

    Article  Google Scholar 

  • Broecker WS, Peng TH (1989) The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis. Global Biogeochemical Cycles 3: 215–239

    Article  Google Scholar 

  • Charles CD, Wright JD, Fairbanks RG (1993) Thermodynamic influences on the marine carbon isotope record. Paleoceanography 8: 691–697

    Article  Google Scholar 

  • Connary SD, Ewing M (1974) Penetration of Antarctic Bottom Water from the Cape Basin into the Angola Basin. Journal of Geophysical Research 79: 463–469

    Article  Google Scholar 

  • Crowley TJ (1983) Depth-dependent carbonate dissolution changes in the eastern North Atlantic during the last 170,000 years. Marine Geology 54: 25–31

    Article  Google Scholar 

  • Crowley TJ (1985) Late Quaternary carbonate dissolution changes in the North Atlantic and Atlantic/ Pacific comparisons. In: Sundquist E, Broecker W (eds), The carbon cycle and atmospheric CO2: Natural variations Archean to Present. AGU, Washington D. C., pp

    Google Scholar 

  • Curry WB, Duplessy JC, Labeyrie LD, Shackleton NJ (1988) Changes in the distribution of δ13C of deep water TCO2 between the last glaciation and the Holocene. Paleocanography 3: 317–341

    Article  Google Scholar 

  • Curry WB, Lohmann GP (1983) Reduced advection into Atlantic Ocean deep eastern basins during last glaciation maximum. Nature 306: 577–580

    Article  Google Scholar 

  • Curry WB, Lohmann GP (1990) Reconstructing past particle fluxes in the tropical Atlantic Ocean. Paleoceanography 5: 487–506

    Article  Google Scholar 

  • Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3: 343–360

    Article  Google Scholar 

  • Emerson S, Bender M (1981) Carbon fluxes at the sediment- water interface of the deep-sea: calcium carbonate preservation. Journal of Marine Research 39: 139–162

    Google Scholar 

  • Farrell JW, Prell WL (1989) Climatic change and CaCO3 preservation: an 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4: 447–466

    Article  Google Scholar 

  • Hebbeln D, Wefer G, Berger WH (1990) Pleistocene dissolution fluctuations from apparent depth of deposition in core ERDC-127P, West-Equatorial Pacific. Marine Geology 92: 165–176

    Article  Google Scholar 

  • Howard WR, Prell WL (1994) Late Quaternary CaCO3 production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling. Paleoceanography 9: 453–482

    Article  Google Scholar 

  • Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, Mclntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciation cycles, 1, Linear responses to Milankovitch forcing. Paleoceanography 7: 701–738

    Article  Google Scholar 

  • Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, Mclntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1993) On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography 8: 699–735

    Article  Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, Mclntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine dl8O record. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds), Milankovitch and climate, Part I. D. Reidel, Dordrecht, pp 269–305

    Google Scholar 

  • Jahnke RA, Craven DB, Gaillard JF (1994) The influence of organic matter diagenesis on CaCO3 dissolution at the deep-sea floor. Geochimica et Cosmochimica Acta 58: 2799–2809

    Article  Google Scholar 

  • Johnson TC, Hamilton EL, Berger WH (1977) Physical properties of calcareous ooze: Control by dissolution at depth. Marine Geology 24: 259–277

    Article  Google Scholar 

  • Keir RS, Berger WH (1983) Atmospheric CO2 content in the last 120,000 years: the phosphate-extraction model. J Geophys Res 88: 6027–6038

    Article  Google Scholar 

  • Keir RS (1990) Reconstructing the ocean carbon system variation during the last 150,000 years according the Antarctic nutrient hypothesis. Paleoceanography 5: 253–276

    Article  Google Scholar 

  • Kolla V, Be AWH, Biscaye PE (1976) Calcium carbonate distribution in the surface sediments of the Indian Ocean. J Geophys Res 81: 2605–2616

    Article  Google Scholar 

  • Kroopnick P (1985) The distribution of 13C of ΣCO2 in the world oceans. Deep-Sea Research 32: 57–84

    Article  Google Scholar 

  • Labeyrie LD, Duplessy JC, Blanc PL (1987) Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327: 477–482

    Article  Google Scholar 

  • Le J, Shackleton NJ (1992) Carbonate dissolution fluctuations in the western equatorial Pacific during the Late Quaternary. Paleoceanography 7: 21–42

    Article  Google Scholar 

  • Mackensen A, Hubberten HW, Bickert T, Fischer G, Futterer DK (1993) δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (SCHWAGER) relative to δ13C of dissolved inorganic carbon in Southem Ocean deep water: implications for glacial ocean circulation models. Paleoceanography 8: 587–610

    Article  Google Scholar 

  • Mix AC (1989) Pleistocene paleoproductivity: evidence from organic carbon and foraminiferal species. In: Berger WH, Smetacek VS, Wefer G (eds), Productivity of the ocean: present and past. J. Wiley & Sons, Chichester, pp 313–340

    Google Scholar 

  • Oppo DW, Fairbanks RG (1987) Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25, 00 years: Northern Hemisphere modulation of the Southern Ocean. Earth and Planetary Science Letters 86: 1–15

    Article  Google Scholar 

  • Oppo DW, Fairbanks RG (1990) Atlantic Ocean thermohaline circulation of the last 150.000 years: relationship to climate and atmospheric CO2. Paleoceanography 5: 277–288

    Article  Google Scholar 

  • Oppo DW, Rosenthal Y (1994) Cd/Ca changes in a deep Cape Basin core over the past 730,000 years: Response of circumpolar deepwater variability to northern hemisphere ice sheet melting? Paleoceanography 9: 661–676

    Article  Google Scholar 

  • Ostlund HG, Craig C, Broecker WS, Spencer D (1987) GEOSECS Atlantic, Pacific, and Indian Ocean Expedition, Shorebased data and graphics (GEOSECS Atlas Ser. vol. 7. U.S. Government Printing Office, Washington, 200 pp

    Google Scholar 

  • Raymo ME, Ruddiman WF, Shackleton NJ, Oppo DW (1990) Evolution of Atlantic-Pacific δ13C gradients over the last 2.5 m.y. Earth and Planetary Science Letters 97: 353–368

    Article  Google Scholar 

  • Reid JL (1989) On the total geostrophic circulation of the South Atlantic Ocean: Flow patterns, tracers, and transports. Progress in Oceanography 23: 149–244.

    Article  Google Scholar 

  • Sarnthein M, Winn K, Jung SJA, Duplessy JC, Labeyrie L, Erlenkeuser H, Ganssen G (1994) Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9: 209–268

    Article  Google Scholar 

  • Shackleton NJ (1977) Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In: Anderson NR, Malahoff A (eds), Fate in fossil fuel CO2 in the oceans. Plenum, New York, pp 401–427

    Google Scholar 

  • Shannon LV, Chapman P (1991) Evidence of Antarctic Bottom Water in the Angola Basin at 32°S. Deep-Sea Research 38: 1299–1304

    Article  Google Scholar 

  • Sundquist ET, Broecker WS (1985) The carbon cycle and atmospheric CO2: Natural variations Archean to Present. AGU, Washington D. C., 627 pp

    Book  Google Scholar 

  • Thunell RC (1982) Carbonate dissolution and abyssal hydrography in the Atlantic Ocean. Marine Geology 47: 165–180

    Article  Google Scholar 

  • Van Bennekom AJ, Berger GW (1984) Hydrography and silica budget of the Angola Basin. Netherlands Journal of Sea Research 17: 149–200

    Article  Google Scholar 

  • Verardo DJ, Mclntyre A (1994) Production and destruction: Control of biogenous sedimentation in the tropical Atlantic 0–300,000 years B.P. Paleoceanography 9: 63–86

    Article  Google Scholar 

  • Vincent E (1981) Carbonate stratigraphy of Hess Rise, Central North Pacific and paleoceanographic implications. DSDP, Initial Reports 62: 571–606

    Google Scholar 

  • Volat JL, Pastouret L, Vergnaud-Grazzini C (1980) Dissolution and carbonate fluctuations in Pleistocene deep-sea cores: a review. Marine Geology 34: 1–28

    Google Scholar 

  • Warren BA, Speer KG (1991) Deep circulation in the eastern South Atlantic Ocean. Deep-Sea Research 38, Suppl 1:281–322

    Google Scholar 

  • Wefer G, Bleil U, Müller PJ, Schulz HD, Fahrtteilnehmer (1988) Bericht über die Meteor-Fahrt M6/6, Libreville - Las Palmas, 18.2. - 23.3.1988. Ber. FB Geow. Univ. Bremen 3: 97 pp

    Google Scholar 

  • Wefer G, Bleil U, Schulz HD, Fahrtteilnehmer (1989) Bericht über die Meteor-Fahrt M9/4, Dakar - Santa Cruz, 19.2. - 16.3.1989. Ber. FB Geow. Univ. Bremen 7: 103 pp

    Google Scholar 

  • Wefer G, Fahrtteilnehmer (1990) Bericht über die Meteor-Fahrt Ml2/1, Kapstadt - Funchal, 13.3. - 14.4.1990. Ber FB Geow Univ Bremen 11: 66 pp

    Google Scholar 

  • Wu G, Berger WH (1991) Pleistocene δ18O record from Ontong Java Plateau: effects of winnowing and dissolution. Marine Geology 96: 193–209

    Article  Google Scholar 

  • Wu G, Herguera JC, Berger WH (1990) Differential dissolution: Modification of late Pleistocene oxygen isotope records in the western Equatorial Pacific. Paleoceanography 5: 581–594

    Article  Google Scholar 

  • Yasuda M, Berger WH, Wu G, Burke S, Schmidt H (1993) Foraminiferal preservation record for the last million years: Site 805, Ontong Java Plateau. Proc ODP, Sci Results 130: 491–508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bickert, T., Wefer, G. (1996). Late Quaternary Deep Water Circulation in the South Atlantic: Reconstruction from Carbonate Dissolution and Benthic Stable Isotopes. In: The South Atlantic. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80353-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80353-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80355-0

  • Online ISBN: 978-3-642-80353-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics