Skip to main content

Neuronal Encoding of Visual Motion in Real-Time

  • Chapter
Motion Vision

Abstract

Changes in the activity of sensory neurones carry information about a given stimulus. However, neuronal activity changes may also arise from noise sources within or outside the nervous system. Here, the reliability of encoding of visual motion information is analysed in the visual motion pathway of the fly and compared to the findings obtained in other animal species. Several constraints determine and limit the reliability of encoding of visual motion information: (i) the biophysical mechanisms underlying the generation of action potentials; (ii) the computations performed in the motion vision pathway; and (iii) the dynamical properties of motion stimuli an animal encounters when moving around in its natural environment. The responses of fly motion-sensitive neurones are coupled to visual motion on a timescale of milliseconds up to several tens of milliseconds, depending on the dynamics of the motion stimuli. Only rapid velocity changes lead to a precise time-locking of spikes to the motion stimuli on a millisecond scale. Otherwise, the exact timing of spikes is mainly determined by fast stochastic membrane-potential fluctuations. It is discussed on what timescale behaviourally relevant motion information may be encoded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen C, Stevens CF (1994) An evaluation of causes for unreliability of synaptic transmission. Proc Natl Acad Sci USA 91: 10380–10383

    Article  PubMed  CAS  Google Scholar 

  • Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8: 1185–1202

    CAS  Google Scholar 

  • Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci USA 94: 5411–5416

    Article  PubMed  CAS  Google Scholar 

  • Bialek W, Rieke F (1992) Reliability and information transmission in spiking neurons. Trends Neurosci 15: 428–433

    Article  PubMed  CAS  Google Scholar 

  • Bialek W, Rieke F, de Ruyter van Steveninck R, Warland D (1991) Reading a neural code. Science 252: 1854–1857

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Egelhaaf M (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol Cybern 56: 209–215

    Article  Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12: 297–306

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Theunissen FE (1999) Information theory an neural coding. Nature Neurosci 2:947–957

    Article  PubMed  CAS  Google Scholar 

  • Britten KH, Shadlen MN, Newsome WT, Movshon JA (1993) Responses of neurons in macaque MT to stochastic motion signals. Vis Neurosci 10: 1157–1169

    CAS  Google Scholar 

  • Buchner, E (1984) Behavioural analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York, London, pp 561–621

    Chapter  Google Scholar 

  • Buracas GT, Zador AM, DeWeese MR, Albright TD. (1998) Efficient dicrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20: 959–969

    Article  PubMed  CAS  Google Scholar 

  • Calvin WH, Stevens CF (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J Neurophysiol 31: 574–587

    PubMed  CAS  Google Scholar 

  • Carr CE (1993) Processing of temporal information in the brain. Ann Rev Neurosci 16: 223–243.

    Article  PubMed  CAS  Google Scholar 

  • Collett TS (1980) Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly. J Comp Physiol 140: 145–158.

    Article  Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverflySyritta pipiensL. J Comp Physiol 99: 1–66.

    Article  Google Scholar 

  • Egelhaaf M (1987) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol A 161: 777–783

    Article  Google Scholar 

  • Egelhaaf M (1989) Visual afferences to flight steering muscles controlling optomotor response of the fly. J Comp Physiol A 165: 719–730

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Borst A (1989) Transient and steady-state response properties of movement detectors. J Opt Soc Am A 6: 116–127

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Borst A (1993a) A look into the cockpit of the fly: Visual orientation, algorithms, and identified neurons. J Neurosci 13: 4563–4574

    CAS  Google Scholar 

  • Egelhaaf M, Borst A (1993b) Movement detection in arthropods. In: Wallman J, Miles FA (eds) Visual motion and its role in the stabilization of gaze, Elsevier, Amsterdam, London, New York, pp 53–77

    Google Scholar 

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybern 56: 69–87

    Article  Google Scholar 

  • Egelhaaf M, Warzecha A-K (1999) Encoding of motion in real time by the fly visual system. Curr Opinion Neurobiol 9: 454–460

    Article  CAS  Google Scholar 

  • Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci 11: 351–358

    Article  PubMed  CAS  Google Scholar 

  • Eggermont JJ, Johannesma PIM, Aertsen AMHJ (1983) Reverse-correlation methods in auditory research. Quart Rev Biophys 16: 341–414

    Article  CAS  Google Scholar 

  • Farina WM, Kramer D, Varjú D (1995) The response of the hovering hawk mothMacroglossum stellatarumto translatory pattern motion. J Comp Physiol A 176: 551–562

    Article  Google Scholar 

  • Farina WM, Varjú D, Zhou Y (1994) The regulation of distance to dummy flowers during hov-ering flight in the hawk mothMacroglossum stellatarum.J Comp Physiol 174: 239–247

    Article  Google Scholar 

  • Fayyazuddin A, Dickinson MH (1996) Haltere afferents provide direct, electrotonic input to a steering motor neuron in the blowflyCalliphora.J Neurosci 16: 5225–5232

    PubMed  CAS  Google Scholar 

  • Geisler WS, Albrecht DG (1997) Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Vis Neurosci 14: 897–919

    Article  PubMed  CAS  Google Scholar 

  • Gershon ED, Wiener MC, Latham PE, Richmond BJ (1998) Coding strategies in monkey V1 and inferior temporal cortices. J Neurophysiol 79: 1135–1144

    PubMed  CAS  Google Scholar 

  • Gestri G, Mastebroek HAK, Zaagman WH (1980) Stochastic constancy, variability and adaptation of spike generation: Performance of a giant neuron in the visual system of the fly. Biol Cybern 38: 31–40

    Article  Google Scholar 

  • Götz KG (1968) Flight control inDrosophilaby visual perception of motion. Kybernetik 4: 199–208

    Article  PubMed  Google Scholar 

  • Götz KG (1975) The optomotor equilibrium of theDrosophilanavigation system. J Comp Physiol 99: 187–210

    Article  Google Scholar 

  • Götz KG (1991) Bewertung and Auswertung visueller Zielobjekte bei der FliegeDrosophila.Zool Jb Physiol 95: 279–286

    Google Scholar 

  • Green DM, Swets JA (1974) Signal detection theory and psychophysics. Robert Krieger Publ Comp, Huntington, New York

    Google Scholar 

  • Gur M, Beylin A, Snodderly DM (1998) Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci 17: 2914–2920

    Google Scholar 

  • Haag J, Borst A (1996) Amplification of high frequency synaptic inputs by active dendritic membrane processes. Nature 379: 639–641

    Article  CAS  Google Scholar 

  • Laughlin SB (1994) Matching coding, circuits, cells, and molecules to signals: general principles of retinal design in the fly’s eye. Prog Retinal Eye Research 13: 165–196

    Article  CAS  Google Scholar 

  • Laughlin SB, Howard J, Blakeslee B (1987) Synaptic limitations to contrast coding in the retina of the blowflyCalliphora.Proc Roy Soc Lond B 231: 437–467

    Article  CAS  Google Scholar 

  • Liebenthal E, Uhlmann O, Camhi JM (1994) Critical parameters of the spike trains in a cell assembly: coding of turn direction by giant intemeurons of the cockroach. J Comp Physiol A 174: 281–296

    Article  PubMed  CAS  Google Scholar 

  • Lisberger SG, Movshon JA (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 19: 2224–2246

    PubMed  CAS  Google Scholar 

  • Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc Roy Soc Lond B 225:251–275

    Article  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Mastebroek HAK (1974) Stochastic structure of neural activity in the visual system of the blowfly. Doctoral Dissertation, Rijksuniversiteit te Groningen

    Google Scholar 

  • Mikami A, Newsome WT, Wurtz RH (1986) Motion selectivity in macaque visual cortex. II Spatiotemporal range of directional interactions in MT and V l. J Neurophysiol 55: 1328–1339

    PubMed  CAS  Google Scholar 

  • Miles FA, Waltman J (1993) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, London, New York

    Google Scholar 

  • Movshon JA, Lisberger SG, Krauzlis RJ (1990) Visual cortical signals supporting smooth pursuit eye movements. Cold Spring Harb Symp Quant Biol 55: 707–716

    Article  PubMed  CAS  Google Scholar 

  • Nowak LG, Sanchez-Vives MV, McCormick DA (1997) Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cerebral Cortex 7: 487–501

    Article  PubMed  CAS  Google Scholar 

  • O’Carroll DC, Bidwell NJ, Laughlin SB, Warrant EJ (1996) Insect motion detectors matched to visual ecology. Nature 382: 63–66

    Article  PubMed  Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. MIT Press and John Wiley and Sons, New York, London, pp 303–317.

    Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry. Biol Cybern 46 (Suppl): 1–30

    Article  Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Quart Rev Biophys 9: 311–375

    Article  CAS  Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes. MIT Press, Cambridge, MA

    Google Scholar 

  • Roberts A, Bush BMH (1981) Neurones without impulses. Cambridge University Press, Cambridge, London, New York

    Google Scholar 

  • de Ruyter van Steveninck R, Bialek W (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: Coding and information transfer in short spike sequences. Proc Roy Soc Lond B 234: 379–414

    Article  Google Scholar 

  • de Ruyter van Steveninck R, Bialek W (1995) Reliability and statistical efficiency of a blowfly movement-sensitive neuron. Phil Trans Roy Soc Lond B 348: 321–340

    Article  Google Scholar 

  • de Ruyter van Steveninck R, Laughlin SB (1996) The rate of information transfer at graded-potential synapses. Nature 379: 642–645

    Article  Google Scholar 

  • de Ruyter van Steveninck R, Lewen GD, Strong SP, Koberle R, Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275: 1805–1808

    Article  Google Scholar 

  • de Ruyter van Steveninck R, Zaagman WH, Mastebroek HAK (1986) Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowflyCalliphora erythrocephala.Biol Cybern 54: 223–236

    Article  Google Scholar 

  • Schilstra C, van Hateren JH (1999) Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J Exp Bio 202: 1481–1490

    Google Scholar 

  • Shadlen MN, Britten KH, Newsome WT, Movshon JA (1996) A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J Neurosci 16: 1486–1510

    PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18: 3870–3896

    PubMed  CAS  Google Scholar 

  • Haag J, Borst A (1997) Encoding of visual motion information and reliability in spiking and graded potential neurons. J Neurosci 17: 4809–4819

    PubMed  CAS  Google Scholar 

  • Haag J, Borst A (1998) Active membrane properties and signal encoding in graded potential neurons. J Neurosci 18: 7972–7986

    PubMed  CAS  Google Scholar 

  • Haag J, Theunissen F, Borst A (1997) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties. J Comput Neurosci 4: 349–369

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, O’Carroll DC, Laughlin SB (1999) Adaptation and the temporal delay filter of fly motion detectors. Vision Res 39: 2603–2613

    Article  PubMed  CAS  Google Scholar 

  • van Hateren JH, Schilstra C (1999) Blowfly flight and optic flow. II. Head movements during flight. J Exp Biol 202: 1491–1500

    PubMed  Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 74: 49–70

    Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The Horizontal Cells: Structure and signals. Biol Cybern 45: 143–156

    Article  Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The Horizontal Cells: Receptive field organization and response characteristics. Biol Cybern 46: 67–79

    Article  Google Scholar 

  • Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga D, Hardie R (eds) Facets of vision. Springer, Berlin, Heidelberg, New York, pp 391–424

    Chapter  Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision inDrosophila. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Heisenberg M, Wolf R (1988) Reafferent control of optomotor yaw torque inDrosophila melanogaster.J Comp Physiol A 163: 373–388

    Article  Google Scholar 

  • Hengstenberg R (1977) Spike responses of `non-spiking’ visual interneurone. Nature 270: 338–340

    Article  PubMed  CAS  Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora.J Comp Physiol 149: 179–193

    Article  Google Scholar 

  • Horstmann W, Egelhaaf M, Warzecha A-K (2000) Synaptic interactions increase optic flow specificity. Europ J Neurosci: in press

    Google Scholar 

  • Ibbotson MR, Mark RF, Maddess T (1994) Spatiotemporal response properties of direction-selective neurons in the nucleus of the optic tract and dorsal terminal nucleus of the wallabyMacropus eugenii.J Neurophysiol 72: 2927–2943

    PubMed  CAS  Google Scholar 

  • Järvilehto M, Weckström M, Kouvalainen E (1989) Signal coding and sensory processing in the peripheral retina of the compound eye. In: Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum Press, New York, London, pp 53–70

    Google Scholar 

  • Johnston D, Wu M-S (1995) Foundations of cellular neurophysiology. MIT Press, Cambridge, MA

    Google Scholar 

  • Juusola M, French AS, Uusitalo RO, Weckström M (1996) Information processing by gradedpotential transmission through tonically active synapses. Trends Neurosci 19: 292–297

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M (1993) Temporal hyperacuity in the gymnotiform electric fishEigenmannia.Amer Zool 33: 86–93

    Google Scholar 

  • Kern R, Varjú D (1998) Visual position stabilization in the hummingbird hawk mothMacroglossum stellatarumL. I. Behavioural analysis. J Comp Physiol A 182: 225–237

    Article  PubMed  CAS  Google Scholar 

  • Kern R, Lorenz S, Lutterklas M, Egelhaaf M (1999) How do fly interneurons respond to optic flow experienced in 3D-environments? In: Elsner N, Eysel U (eds) Proceedings of the 27th Göttingen Neurobiol Conf 1999. Thieme, Stuttgart, p 438

    Google Scholar 

  • Kern R, Lutterklas M, Egelhaaf M (2000) Neural representation of optic flow experienced by walking flies with largely asymmetric visual input. J Comp Physiol A 186: 467–479

    Article  PubMed  CAS  Google Scholar 

  • Kimmerle B, Srinivasan MV, Egelhaaf M (1996) Object detection by relative motion in freely flying flies. Naturwiss. 83: 380–381

    Article  Google Scholar 

  • Kimmerle B, Warzecha A-K, Egelhaaf M (1997) Object detection in the fly during simulated translatory flight. J Comp Physiol A 181: 247–255

    Article  Google Scholar 

  • Koenderink JJ (1986) Optic Flow. Vision Res 26:161–180

    Article  PubMed  CAS  Google Scholar 

  • Krapp H (1999) Neuronal matched filters for optic flow processing in flying insects. In: Lappe M (ed) Neuronal processing of optic flow. Academic Press, San Diego, San Francisco, New York, pp 93–120

    Chapter  Google Scholar 

  • Land MF (1993) Chasing and pursuit in the dolichopodid flyPoecilobothrus nobilitatus.J Comp Physiol A 173: 605–613

    Google Scholar 

  • Land MF, Collett TS (1974) Chasing behaviour of houseflies(Fannia canicularis).A description and analysis. J Comp Physiol 89: 331–357

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. The University of Illinois Press, Urbana

    Google Scholar 

  • Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of cortical neurons. Nature Neurosci 1: 210–217

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ (1989) Beneath the compound eye: neuroanatomical analysis and physiological correlates in the study of insect vision. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, Heidelberg, New York, pp 317–359

    Chapter  Google Scholar 

  • Strong SP, Koberle R, de Ruyter van Steveninck R, Bialek W (1998) Entropy and information in neural spike trains. Physical Review Letters 80: 197–200

    Article  CAS  Google Scholar 

  • Theunissen F, Roddey JC, Stufflebeam S, Clague H, Miller JP (1996) Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cereal system. J Neurophysiol 75: 1345–1364

    PubMed  CAS  Google Scholar 

  • Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in, single neurons in cat and monkey visual cortex. Vis Res 23: 775–785

    Article  PubMed  CAS  Google Scholar 

  • Virsik R, Reichardt W (1976) Detection and tracking of moving objects by the flyMusca domestica.Biol Cybern 23: 83–98

    Article  Google Scholar 

  • Vogels R, Spileers W, Orban GA (1989) The response variability of striate cortical neurons in the behaving monkey. Exp Brain Res77: 432–436

    Article  PubMed  CAS  Google Scholar 

  • Voss R, Zeil J (1998) Active vision in insects: An analysis of object-directed zig-zag flights in wasps(Odynerus spinipesEumenidae). J Comp Physiol A 182: 373–387

    Article  Google Scholar 

  • Wagner H (1986a) Flight performance and visual control of the flight of the free-flying housefly(Musca domestica).II. Pursuit of targets. Phil Trans Roy Soc Lond B 312: 553–579

    Article  Google Scholar 

  • Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly(Musca domestica).III. Interactions between angular movement induced by wide-and smallfield stimuli. Phil Trans Roy Soc Lond B 312: 581–595

    Article  Google Scholar 

  • Warzecha A-K (1994) Reliability of neuronal information processing in the motion pathway of the blowfliesCalliphora erythrocephalaandLucilia cuprina.Doctoral Disseration, Universität Tübingen

    Google Scholar 

  • Warzecha A-K, Egelhaaf M (1996) Intrinsic properties of biolotical motion detectors prevent the optomotor control system from getting unstable. Phil Trans F_oy Soc Lond B 351: 1579–1591

    Article  Google Scholar 

  • Warzecha A-K, Egelhaaf M (1997) How reliably does a neuron in the visual motion pathway of the fly encode behaviourally relevant information? Europ J Neurosci 9: 1365–1374

    Article  CAS  Google Scholar 

  • Warzecha A-K, Egelhaaf M (1998) On the performance of biological movement detectors and ideal velocity sensors in the context of optomotor course stabilization. Vis Neurosci 15: 113–122

    Article  PubMed  CAS  Google Scholar 

  • Warzecha A-K, Egelhaaf M. (1999) Variability in spike trains during constant and dynamic stimulation. Science 283: 1927–1930

    Article  PubMed  CAS  Google Scholar 

  • Warzecha A-K, Kretzberg J, Egelhaaf M (1998) Temporal precision of encoding of motion information by visual interneurons. Curr Biol 8: 359–368

    Article  PubMed  CAS  Google Scholar 

  • White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci. 23: 131–137

    Article  PubMed  CAS  Google Scholar 

  • Zanker JM, Egelhaaf M, Warzecha A-K (1991) On the coordination of motor output during visual flight control of flies. J Comp Physiol A 169: 127–134

    Article  Google Scholar 

  • Zeil J (1993) Orientation flights of solitary wasps(CercerisSphecidae, Hymenoptera). I. Description of flights. J Comp Physiol 172: 189–205

    Article  Google Scholar 

  • Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370: 140–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Warzecha, AK., Egelhaaf, M. (2001). Neuronal Encoding of Visual Motion in Real-Time. In: Zanker, J.M., Zeil, J. (eds) Motion Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56550-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56550-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62979-2

  • Online ISBN: 978-3-642-56550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics