Skip to main content

Horse Optimization Algorithm: A Novel Bio-Inspired Algorithm for Solving Global Optimization Problems

  • Conference paper
  • First Online:
Artificial Intelligence and Bioinspired Computational Methods (CSOC 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1225))

Included in the following conference series:

Abstract

We introduce a novel bio-inspired algorithm named Horse Optimization Algorithm (HOA) which has as primary source of inspiration the hierarchical organization of the horse herds. The article presents the main principles of the proposed algorithm, the pseudo-code version of the algorithm and a modified version named Discrete Binary Horse Optimization Algorithm (DBHOA). HOA is evaluated and validated using six objective functions and is compared with Chicken Swarm Optimization (CSO) and Cat Swarm Optimization Algorithm (CSOA). Finally, the article presents the application of DBHOA in features selection for data generated in a smart grid for the classification of the stability of the system and it considers as experimental support the Electrical Grid Stability Simulated Dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Gonzalez, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12538-6_6

  2. Brabazon, A., Cui, W., O’Neill, M.: The Raven roosting optimisation algorithm. Soft Comput. 20(2), 525–545 (2016). https://doi.org/10.1007/s00500-014-1520-5

    Article  Google Scholar 

  3. Shefaei, A., Mohammadi-Ivatloo, B.: Wild goats algorithm: an evolutionary algorithm to solve the real-world optimization problems. IEEE Trans. Ind. Inf. 14(7), 2951–2961 (2018). https://doi.org/10.1109/TII.2017.2779239

    Article  Google Scholar 

  4. Jain, M., Maurya, S., Rani, A., Singh, V.: OWL search algorithm: a novel nature-inspired heuristic paradigm for global optimization. J. Intell. Fuzzy Syst. 34(3), 1573–1582 (2018). https://doi.org/10.3233/JIFS-169452

    Article  Google Scholar 

  5. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput. 23, 715–734 (2019). https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  6. Hafez, A.I., Zawbaa, H.M., Emary, E., Mahmoud, H.A., Hassanien, A.E.: An innovative approach for feature selection based on chicken swarm optimization. In: Proceedings of the 7th International Conference on Soft Computing and Pattern Recognition (SoCPaR), Fukuoka, Japan, pp. 19–24 (2015). https://doi.org/10.1109/SOCPAR.2015.7492775

  7. Pestov, V.: Is the k-NN classifier in high dimensions affected by the curse of dimensionality? Comput. Math. Appl. 65(10), 1427–1437 (2013). https://doi.org/10.1016/j.camwa.2012.09.011

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, X., Bian, H., Zhang, S., Pradhan, B., Ahmad, B.B.: Modeling flood susceptibility using data-driven approaches of naive Bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ. 701, 134979 (2020). https://doi.org/10.1016/j.scitotenv.2019.134979

    Article  Google Scholar 

  9. Lin, K.-C., Zhang, K.-Y., Huang, Y.-H., Hung, J.C., Yen, N.: Feature selection based on an improved cat swarm optimization algorithm for big data classification. J. Supercomput. 72, 3210–3221 (2016). https://doi.org/10.1007/s11227-016-1631-0

    Article  Google Scholar 

  10. Lin, K.-C., Hsieh, Y.-H.: Classification of medical datasets using SVMs with hybrid evolutionary algorithms based on endocrine-based particle swarm optimization and artificial bee colony algorithms. J. Med. Syst. 39, 119 (2015). https://doi.org/10.1007/s10916-015-0306-3

    Article  Google Scholar 

  11. Wang, Z., Wang, J.: A delay-adaptive control scheme for enhancing smart grid stability and resilience. Int. J. Electr. Power Energy Syst. 110, 477–486 (2019). https://doi.org/10.1016/j.ijepes.2019.03.030

    Article  Google Scholar 

  12. Aldeen, M., Saha, S., Alpcan, T.: Voltage stability margins and risk assessment in smart power grids. IFAC Proc. Vol. 47(3), 8188–8195 (2014). https://doi.org/10.3182/20140824-6-ZA-1003.02102

    Article  Google Scholar 

  13. Shamisa, A., Majidi, B., Patra, J.C.: Sliding-window-based real-time model order reduction for stability prediction in smart grid. IEEE Trans. Power Syst. 34(1), 326–337 (2019). https://doi.org/10.1109/TPWRS.2018.2868850

    Article  Google Scholar 

  14. Meng, X., Liu, Y., Gao, X., Zhang, H.: A new bio-inspired algorithm: chicken swarm optimization. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds) Advances in Swarm Intelligence. ICSI 2004. Lecture Notes in Computer Science, vol. 8794, pp. 86–94. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11857-4_10

  15. Chu, S.-C., Tsai, P.-W., Pan, J.-S.: Cat Swarm Optimization. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science, vol. 4099, pp. 854–858. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-36668-3_94

  16. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time series feature extraction on basis of scalable hypothesis tests (tsfresh - a Python package). Neurocomputing 307, 72–77 (2018). https://doi.org/10.1016/j.neucom.2018.03.067

    Article  Google Scholar 

  17. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2019). https://archive.ics.uci.edu/ml/citation_policy.html

  18. Arzamasov, V., Bohm, K., Jochem, P.: Towards Concise Models of Grid Stability. In: Proceedings of the 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark, pp. 1–6 (2018). https://doi.org/10.1109/SmartGridComm.2018.8587498

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Moldovan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moldovan, D. (2020). Horse Optimization Algorithm: A Novel Bio-Inspired Algorithm for Solving Global Optimization Problems. In: Silhavy, R. (eds) Artificial Intelligence and Bioinspired Computational Methods. CSOC 2020. Advances in Intelligent Systems and Computing, vol 1225. Springer, Cham. https://doi.org/10.1007/978-3-030-51971-1_16

Download citation

Publish with us

Policies and ethics