Skip to main content

Graphite Fibers and Composites

  • Chapter
Handbook of Composites

Abstract

The technological demand for materials that exhibit improved strength and stiffness characteristics has led to considerable research and development in the field of fiber-reinforced resin-matrix composites. The high mechanical strengths, high moduli of elasticity, and low densities of fibers made from such substances as carbon, boron, and glass, when combined with the toughness of various epoxy, polyester, and polyimide resins, produce a class of materials possessing specific tensile properties that can match or exceed (depending on the fiber—matrix combination) those of the best metal alloys currently in production. This is important because materials that are strong, stiff, and, in addition, lightweight are necessary for many applications. By using composite technology, it is now possible to tailor-make structural materials for specific applications. (See Appendix B.)

The authors wish to acknowledge the contribution of Alan M. Litman, Rebecca M. Jurta, and John J. Deluca in the preparation of this chapter, Cheryl A. Burns for her patience and skill in typing the manuscript, and especially William W. Houghton without whose tireless editing efforts the task would have been much more difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C.L. Mantell (editor), Carbon and Graphite Handbook, Wiley-Interscience, New York, 1968.

    Google Scholar 

  2. O. L. Blakslee et al., “Elastic Constants of Compression-Annealed Pyrolytic Graphite,” J. Appl. Phys. 41, 3373 (1970).

    Article  Google Scholar 

  3. W. S. Williams et al., “Bending Behavior and Tensile Strength of Carbon Fibers,” J. Appl. Phys. 41, 4893 (1970).

    Article  Google Scholar 

  4. G. B. Spence, in: Proceedings of the Fifth Conferenceon Carbon, Vol. 11, Pergamon Press, New York, 1962, p. 53.

    Google Scholar 

  5. Courtaulds Limited, U.S. Patent 3,533,741, 1970.

    Google Scholar 

  6. H. M. Ezekiel, “Graphite Fibers from an Aromatic Polyamide Yarn,” Appl. Polym. Symp. No. 9, 315 (1969).

    Google Scholar 

  7. A. Shindo et al. “Highly Crystallite-Oriented Carbon Fibers from Polymeric Fibers,” Appl. Polym. Symp. No. 9, Appl. Polym. Symp. No. 9. 305 (1969).

    Google Scholar 

  8. E. A. Boucher et al., “Preparation and Structure of Saran-Carbon Fibers,” Carbon 8, 597 (1970).

    Article  Google Scholar 

  9. North American Aviation Inc., French Patent 1,535,800, 1968.

    Google Scholar 

  10. J. Economy, and R. Y. Lin, “Carbonization and Hot Stretching of a Phenolic Fibre,” J. Mater. Sci. 6, 1151 (1971).

    Article  Google Scholar 

  11. U.K. Kawamura, and G. M. Jenkins, “A New Glassy Carbon Fibre,” J. Mater. Sci. 5, 262 (1970).

    Article  Google Scholar 

  12. T. Edison, U.S. Patent 223, 898, 1880.

    Google Scholar 

  13. H. Maxim, U.S. Patent 230, 309, 1880.

    Google Scholar 

  14. T. Edison, U.S. Patent 248,416, 1881.

    Google Scholar 

  15. W. Whitney, U.S. Patent 916,905, 1909.

    Google Scholar 

  16. W. Soltes, U.S. Patent 3,011,981, 1961.

    Google Scholar 

  17. W. Abbott, U.S. Patent 3,053,775, 1962.

    Google Scholar 

  18. R. Bacon, “Carbon Fibers from Rayon Precursors,” in: Chemistry and Physics of Carbon, (edited by P. L. Walder, and P. A. Thrower), volume 9, Marcel-Dekker, Inc., New York, 1973, p. 2.

    Google Scholar 

  19. G. E. Cranch, “Unique Properties of Flexible Carbon Fibers,” in: Proceedings of the Fifth Conference on Carbon, Vol. 11, Pergamon Press, New York, 1962, p. 589.

    Google Scholar 

  20. C. E. Ford and C. V. Mitchell, U.S. Patent 3,107,152, 1963.

    Google Scholar 

  21. R. Bacon, “Growth, Structure, and Properties of Graphite Whiskers,” J. Appl. Phys., 31, 283 (1960).

    Article  Google Scholar 

  22. R. Bacon et al., U. S. Patent 3,305,315, 1967.

    Google Scholar 

  23. M. M. Tang and R. Bacon, “Carbonization of Cellulose Fibers. I. Low Temperature Pyrolysis,” Carbon 2, 211 (1964).

    Article  Google Scholar 

  24. R. Bacon and M. M. Tang, “Carbonization of Cellulose Fibers. II. Physical Property Study,” Carbon 2, 221 (1964).

    Article  Google Scholar 

  25. R. Bacon and M. M. Tang, unpublished data

    Google Scholar 

  26. R. Bacon and W. H. Smith, Soc. Chem. Ind. London Chem. Eng. Group, 203–213 (1966).

    Google Scholar 

  27. W. J. Spry, British Patent 1,093,084, 1967.

    Google Scholar 

  28. Y. Tsunoda, U.S. Patent 3,285,969, 1966.

    Google Scholar 

  29. A. Shindo, J. Ceram. Assoc. Japan 69, C195 (1961).

    Article  Google Scholar 

  30. W. Watt and W. Johnson, “New Materials Make Their Mark,” Nature 220, 835 (1968).

    Article  Google Scholar 

  31. A. Shindo et al., Japanese Patent 4405, 1962.

    Google Scholar 

  32. R. Prescott and A. Standege, “High Elastic Modulus Carbon Fibre,” Nature 211, 169 (1966).

    Google Scholar 

  33. W. Watt et al., The Engineer 221, (1966).

    Google Scholar 

  34. W. Watt et al., U.S. Patent 3,412,062, 1968.

    Google Scholar 

  35. W. Johnston et al., British Patent 1,148,874, 1969.

    Google Scholar 

  36. A. Standege and R. Prescott, Belgian Patent 690,072, 1966.

    Google Scholar 

  37. J. W. Johnston, French Patent 1,551,282, 1968.

    Google Scholar 

  38. D. M. Riggs, Masters’ Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1975.

    Google Scholar 

  39. A. J. Clark and J. E. Bailey, Carbon ′72 Preprints, 296, 1972.

    Google Scholar 

  40. E. Fitzer and A. K. Fiedler, Carbon ′72 Preprints, 299, 1972.

    Google Scholar 

  41. C. W. LeMaistre, Doctoral Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1971.

    Google Scholar 

  42. E. W. Tokarsky, Doctoral Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1973.

    Google Scholar 

  43. R. J. Diefendorf and E. W. Tokarsky, “The Relationships of Structure to Properties in Graphite Fibers, Part I,” AFML-TR-72–133, 1971.

    Google Scholar 

  44. R. J. Diefendorf and E. W. Tokarsky, “The Relationships of Structure to Properties in Graphite Fibers, Part II,” AFML-TR-72–133, 1973.

    Google Scholar 

  45. R. J. Diefendorf and E. W. Tokarsky, “The Relationships of Structure to Properties in Graphite Fibers, Part III,” AFML-TR-72–133, 1975.

    Google Scholar 

  46. R. J. Diefendorf, D. M. Riggs, and I. W. Sorensen, “The Relationships of Structure to Properties in Graphite Fibers, Part IV,” AFML-TR-72–133, 1975.

    Google Scholar 

  47. S. Otani et al., “On the Raw Materials of MP Carbon Fiber,” Carbon 4, 425 (1966).

    Article  Google Scholar 

  48. M. Morishita et al., Japanese Patent 6,902,510, 1969.

    Google Scholar 

  49. A. Tadashi and G. Shimpei, “Production of Molten Pitch Carbon Fiber,” Appl. Polym. Symp. No. 9, 331 (1969).

    Google Scholar 

  50. S. Otani, “The Fundamental Structure of MP Carbon Fiber,” Carbon 3, 213 (1965).

    Article  Google Scholar 

  51. S. Otani et al., “Effects of Heat Treatment under Stress on MP Carbon Fiber,” Appl. Polym. Symp. No. 9, 325 (1969).

    Google Scholar 

  52. H. M. Hawthorne et al., “High Strength, High Modulus Graphite Fibres from Pitch,” Nature 227, 946 (1970).

    Article  Google Scholar 

  53. H. M. Hawthorne, “Carbon Fibers: Their Composites and Applications,” in: Proceedings of the First International Conference on Carbon Fibres, London, February 1971, Plastics Institute, London 1971, p. 81.

    Google Scholar 

  54. R. Didchenko, “Graphite Fibers from Pitch, Part I,” AFML-TR-73–147, 1973.

    Google Scholar 

  55. L. S. Singer, Belgian Patent 797,543, 1973.

    Google Scholar 

  56. J. D. Brooks and G. H. Taylor, “The Formation of Graphitizing Carbons from the Liquid Phase,” Carbon 3, 185 (1965).

    Article  Google Scholar 

  57. J. B. Barr et al., “High Modulus Carbon Fibers from Pitch Precursor,” Appl. Polym. Symp. No. 29, 161 (1976).

    Google Scholar 

  58. H. Fugimaki et al., Tanso, No. 80, 3 (1975).

    Article  Google Scholar 

  59. D. M. Riggs, Doctoral Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1976.

    Google Scholar 

  60. K. Kawamura and G. M. Jenkins, “Mechanical Properties of Glassy Carbon Fibers Derived from Phenolic Resin,” J. Mater. Sci. 7, 1099 (1972).

    Article  Google Scholar 

  61. S. Otani, “On the Carbon Fiber from the Molten Pyrolysis Products,” Carbon 3, 31 (1965).

    Article  Google Scholar 

  62. S. Otani, “Mechanism of the Carbonization of MP Carbon Fiber at the Low Temperature Range,” Carbon 5, 219 (1967).

    Article  Google Scholar 

  63. W. Johnson and W. Watt, “Structure of High Modulus Carbon Fibres,” Nature 215, 384 (1967).

    Article  Google Scholar 

  64. D. V. Badami et al., “Microstructure of High Strength, High Modulus Carbon Fibres,” Nature 215, 386 (1967).

    Article  Google Scholar 

  65. H. M. Ezekieland R. G. Spain, J. Polym. Sci. Part C 19, 249 (1967).

    Google Scholar 

  66. F. Siclari, in: Man-Made Fibers (edited by H. F. Mark, S. M. Atlas, and E. Cernia), Vol. 1, Wiley-Interscience, 1967.

    Google Scholar 

  67. W. E. Fitzgerald and J. P. Craig, “The Extrusion Process in Solution Spinning,” Appl. Polym. Symp. No. 6, 67 (1967).

    Google Scholar 

  68. D. J. Williams, Polymer Science and Engineering, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

    Google Scholar 

  69. P. J. Goodhew et al., Sci. Eng., 17, 3 (1975).

    Google Scholar 

  70. J. P. Craig et al., Text. Res. J. 32, 435 (1962).

    Article  Google Scholar 

  71. D. R. Paul, “Diffusion during the Coagulation Step of Wet-Spinning,” J. Appl. Polym. Sci. 12, 383 (1968).

    Article  Google Scholar 

  72. J. P. Knudsen, Text. Res. J. 33, 13 (1963).

    Google Scholar 

  73. J. P. Bell and J. H. Dumbleton, “Changes in the Structure of Wet Spun Acrylic Fibers during Processing,” Text. Res. J. 41, 196 (1971).

    Article  Google Scholar 

  74. W. Bobeth and U. Muller, Faserforsch. Textiltech. 16, 290 (1965).

    Google Scholar 

  75. D. J. Johnson and C. N. Tyson, Brit. J. Appl. Phys. 2, 215 (1969).

    Google Scholar 

  76. R. D. Andrews and R. M. Kimmel, “Birefringence Effects in Acrylonitrile Polymers. I. Effects at Different Temperatures,” J. Appl. Phys. 35, 3194 (1964).

    Article  Google Scholar 

  77. S. Okajima et al., “A New Transition Point of Polyacrylonitrile,” J. Polym. Sci. Part A-l, 6, 1925 (1968).

    Article  Google Scholar 

  78. W. R. Krigbaum and N. Tokita, “Melting Point Depression Study of Polyacrylonitrile,” J. Polym. Sci. 43, 467 (1968).

    Article  Google Scholar 

  79. A. J. Clarke and J. E. Bailey, “Oxidation of Acrylic Fibers for Carbon Fiber Formation,” Nature 243, 146 (1973).

    Article  Google Scholar 

  80. J. E. Bailey and A. J. Clarke, “Carbon Fiber Formation—The Oxidation Treatment,” Nature 234, 529 (1971).

    Article  Google Scholar 

  81. R. C. Howtz, Text. Res. J. 20, 786 (1950).

    Article  Google Scholar 

  82. A. Standege and R. Matkowski, “Thermal Oxidation of Polyacrylonitrile,” Eur. Polym. J. 7, 775 (1971).

    Article  Google Scholar 

  83. D. J. Muller et al., in: Proceedings of the First International Conference on Carbon Fibres, London, February 1971, Plastics Institute, London, 1971, Paper No. 2.

    Google Scholar 

  84. N. Grassie and R. McGrichan, “Pyrolysis of Polyacrylontrile and Related Polymers. I,” Eur. Polym.J. 6, 1277–1291 (1970).

    Article  Google Scholar 

  85. H. Friedlander et al., “On the Chromophore of Polyacrylonitrile. VI. Mechanism of Color Formation in Polyacrylonitrile,” Macromolecules 1, 79 (1968).

    Article  Google Scholar 

  86. N. Grassie, “Novel Types of Chain Reactions in Polymer Degradation,” J. Polym. Sci. 48, 79 (1960).

    Article  Google Scholar 

  87. W. Watt and W. Johnson, “The Effect of Length Changes during the Oxidation of Polyacrylonitrile Fibers on the Young’s Modulus of Carbon Fibers,” Appl. Polym. Symp. No. 9, 215 (1969).

    Google Scholar 

  88. W. Watt and W. Johnson, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 9, 1245 (1968).

    Google Scholar 

  89. A. Fiedler et al., J. Am. Chem. Soc. 31, 380 (1971).

    Google Scholar 

  90. W. Watt, in: Proceedings of the Third Conference on Industrial Carbon and Graphite, Society of Chemical Industry, London, 1970.

    Google Scholar 

  91. N. Grassie and R. McGrichan, “Pyrolysis of Polyacrylonitrile and Related Polymers. II,” Eur. Polym. J. 7, 1091 (1971).

    Article  Google Scholar 

  92. W. N. Turner and F. C. Johnson, “The Pyrolysis of Acrylic Fiber in Inert Atmosphere. I. Reactions up to 400° C,” J. Appl. Polym. Sci. 13, 2073 (1969).

    Article  Google Scholar 

  93. J. N. Hay, “Thermal Reactions of Polyacrylonitrile,” J. Polym. Sci. Part A-1 6, 2127 (1968).

    Article  Google Scholar 

  94. J. K. Gilham and R. F. Schwenker, “Thermomechanical and Thermal Analysis of Fiber Forming Polymers,” Appl. Polym. Symp. No. 2, 59 (1966).

    Google Scholar 

  95. E. V. Thompson, “The Thermal Behavior of Acrylonitrile Polymers,” J. Polym. Sci. Part B, 4, 361 (1966).

    Article  Google Scholar 

  96. L. Reich, Macromol. Rev. 3, 49 (1968).

    Article  Google Scholar 

  97. T. Uchida, in: Proceedings of the First International Conference on Carbon Fibres, London, February 1971, Plastics Institute, London, 1971, Paper No. 1.

    Google Scholar 

  98. N. Grassie and R. McGrichan, “Pyrolysis of Polyacrylonitrile and Related Polymers. III,” Eur. Polym. J. 7, 1357 (1971).

    Article  Google Scholar 

  99. K. Miyamichi et al., J. Soc. Fibre Sci. Technol. Japan 22, 538 (1966).

    Google Scholar 

  100. S. P. Varma et al., “IR Studies on Pre-Oxidized Pan Fibers,” Carbon 14, 207 (1976).

    Article  Google Scholar 

  101. R. H. Knibbs J. Micros. (Oxford) 94, 273 (1971).

    Article  Google Scholar 

  102. C. R. Rowe, “Evaluation of Stabilized Precursors for High-Strength Carbon Fibers,” NOLTR-72–259, November 1972.

    Google Scholar 

  103. W. Watt, “Carbon Work at the Royal Aircraft Establishment,” Carbon 10, 121 (1972).

    Article  Google Scholar 

  104. R. Bacon, “An Introduction to Carbon/Graphite Fibers,” Appl. Polym. Symp. No. 9, 213 (1969).

    Google Scholar 

  105. W. Watt, Nature 236, 10(1972).

    Google Scholar 

  106. J. B. Donnet and P. Ehrburger, “Carbon Fibre in Polymer Reinforcement,” 143 Carbon 15, (1977).

    Article  Google Scholar 

  107. W. Watt, in: Proceedings of the First International Conference on Carbon Fibres, London, February, 1971, Plastics Institute, London, 1971, Paper No. 4.

    Google Scholar 

  108. P. J. Goodhew et al., Sci. Eng. 17, 3 (1975).

    Google Scholar 

  109. E. S. McCarnety and R. Walline, Nature 191, 1361 (1961).

    Article  Google Scholar 

  110. V. I. Kasatvchkin and V. A. Kargin, Dokl. Phys. Chem. 191, 303 (1970).

    Google Scholar 

  111. A. Marchand and J. V. Zanchetta, “Proprietes Electroniques D’Un Carbone Dope A L’Azote,” Carbon 3, 483 (1966).

    Article  Google Scholar 

  112. W. Ruland et al., Compt. Rend. Acad. Sci. 269C, 1597 (1969).

    Google Scholar 

  113. W. Ruland et al., “The Microstructure of PAN-Base Carbon Fibres,” J. Appl. Crystallogr. 3, 525 (1970).

    Article  Google Scholar 

  114. W. Ruland, “X-ray Studies on Preferred Orientation in Carbon Fibers,” J. Appl. Phys. 38, 3583 (1967).

    Article  Google Scholar 

  115. W. Ruland, Polymer 9, 1368 (1969).

    Google Scholar 

  116. D. J. Johnson and C. N. Tyson, Brit. J. Appl. Phys. 2,789 (1969).

    Google Scholar 

  117. A. Fourdeux et al., in: Proceedings of the First International Conference on Carbon Fibers, London, February 1971, Plastics Institute, London, 1971.

    Google Scholar 

  118. D. Crawford and D. Johnson, J. Micros. (Oxford) 94, 51 (1971).

    Article  Google Scholar 

  119. J. A. Hugo et al., “Intimate Structure of High Modulus Carbon Fiber,” Nature 226, 144 (1970).

    Article  Google Scholar 

  120. D. Crawford, Doctoral Thesis, University of Leeds, 1972.

    Google Scholar 

  121. K. Kawamiria and G. Jenkins, “Structure of Glassy Carbon, Nature 231, 175 (1971).

    Article  Google Scholar 

  122. S. C. Bennett et al., “Structural Characterization of a High Modulus Carbon Fibre by High-Resolution Electron Microscopy and Electron Diffraction,” Carbon 14, 117 (1976).

    Article  Google Scholar 

  123. J. W. Johnson, “Factors Affecting the Tensile Strength of Carbon-Graphite Fibers,” Appl. Polym. Symp. No. 9, 229 (1969).

    Google Scholar 

  124. W. Watt and W. Johnson, “The Effect of Length Changes during the Oxidation of Polyacrylonitrile Fibers on the Young Modulus of Carbon Fibers,” Appl. Polym. Symp. No. 9, 215 (1969).

    Google Scholar 

  125. W. Watt and W. Johnson, in: Proceedings of the Third Conference on Industrial Carbon and Graphite, Society of Chemical Industry, London, 1970.

    Google Scholar 

  126. G. A. Cooper and R. Mayer, “The Strength of Carbon Fibres,” J. Mater. Sci. 6, 60 (1971).

    Article  Google Scholar 

  127. F. Barnet and M. Norr, “Factors Limiting the Tensile Strength of PAN-Based Carbon Fibers,” NOLTR-74–172, November 1974.

    Google Scholar 

  128. D. J. Thoren, “Distribution of Internal Flaws in Acrylic Fibers,” J. Appl. Polym. Sci. 14, 103 (1970).

    Article  Google Scholar 

  129. R. Moreton, Fibre Sci. Technol. 1, 273 (1969).

    Article  Google Scholar 

  130. J. Johnson and D. Thome, “Effect of Internal Polymer Flaws on Strength of Carbon Fibers Prepared from an Acrylic Precursor,” Carbon 7, 659 (1969).

    Article  Google Scholar 

  131. D. J. Johnson and C. N. Tyson, “Low-Angle X-ray Diffraction and Physical Properties of Carbon Fibres,” J. Phys. D. 3, 526(1970).

    Google Scholar 

  132. V. J. Mimeault and D. W. McKee, Nature 224, 147 (1969).

    Article  Google Scholar 

  133. B. F. Jones and R. G. Duncan, “The Effect of Fibre Diameter on the Mechanical Properties of Graphite Fibres Manufactured from Polyacrylonitrile and Rayon,” J. Mater. Sci. 6, 289 (1971).

    Article  Google Scholar 

  134. B. F. Jones, “Further Observations Concerning the Effect of Diameter on the Fracture Strength and Young’s Modulus of Carbon and Graphite Fibres Madefrom Polyacrylonitrile,” J. Mater. Sci. 6, 1225 (1971).

    Article  Google Scholar 

  135. E. Murphy and B. F. Jones, “Surface Flaws on Carbon Fibers,” Carbon 9, 91 (1971).

    Article  Google Scholar 

  136. E. W. Tokarsky and R. J. Diefendorf, “The Modulus and Strength of Carbon Fibers,” 12th Biennial Conference on Carbon, Pittsburgh, Pennsylvania, 1975, p. 301.

    Google Scholar 

  137. W. Watt, “Carbon Work at the Royal Aircraft Establishment,” Carbon 10, 121 (1972).

    Article  Google Scholar 

  138. D. Robson et al., “An Electron Spin Resonance Study of Carbon Fibres Based on Polyacrylonitrile,” J. Phys. D 4, 1426 (1971).

    Article  Google Scholar 

  139. D. Robson et al., “Some Electronic Properties of Polyacrylonitrile-Based Carbon Fibres,” J. Phys. D 5, 169(1972).

    Google Scholar 

  140. D. Robson et al., “Determination of Carbon Fibre Structure by Electron Spin Resonance,” Nature 221, 51 (1969).

    Article  Google Scholar 

  141. D. Robson et al., in: Proceedings of the Third Conference on Industrial Carbon and Graphite, Society of Chemical Industry, London, 1970.

    Google Scholar 

  142. A. Marchand and J. V. Zanchetta, “Proprietes Electroniques D’Un Carbone Dope A L’Azote,” Carbon 3, 483 (1966).

    Article  Google Scholar 

  143. H. W. Helberg and B. Wortenburg, “Dieelektrische Leitfahigkeit von pyrolysiertem Polyacrylnitril im Temperaturberich 1,7 bis 700K,” Phys. Status Solidi A 3, 401(1970).

    Google Scholar 

  144. A. J. Hoiberg (editor), Bituminous Materials: Asphalts, Tars and Pitches, Wiley-Interscience, New York, 1964–1966.

    Google Scholar 

  145. P. Zakar, Asphalt, Chemical Publishing Company, New York, 1971.

    Google Scholar 

  146. R. B. Long, Exxon Corporate Research Laboratories, personal communication.

    Google Scholar 

  147. H. H. Voge, “Catalytic Cracking,” in: Catalysis VI (edited by Paul Emmett), Romhold Publishing Corporation, New York, 1958.

    Google Scholar 

  148. J. Pfeiffer and R. Sadl, J. Phys. Chem. 44, 139 (1940).

    Article  Google Scholar 

  149. L. W. Corbett, Am. Chem. Soc., Div. Petr. Chem.. Prepr. 9(z), 1381 (1964).

    Google Scholar 

  150. “Thermal Reactivity of Aromatic Hydrocarbons,” in: Research and Development on Advanced Graphite Materials, Vol. X, WADD-TR-61–72, August 1962.

    Google Scholar 

  151. Supplement, Research and Development on Advanced Graphite Materials, Vol. X, WADD-TR-61–72, August 1964.

    Google Scholar 

  152. “Carbonization Studies of Polynuclear Aromatic Hydrocarbons,” in: Research and Development on Advanced Graphite Materials, Vol. XXVII, WADD-TR-61–72, AD 427129, November 1963.

    Google Scholar 

  153. “Research and Development for Improved Graphite Materials,” in: Improved Graphite Materials for High Temperature Aerospace Use, Vol. I, ML-TDR-64–125, September 1964.

    Google Scholar 

  154. D. M. Riggs and R. J. Diefendorf, unpublished data.

    Google Scholar 

  155. J. D. Brooks and G. H. Taylor, “Formation of Graphitizing Carbons from the Liquid Phase,” Nature 206, 697(1965).

    Google Scholar 

  156. J. D. Brooks and G. H. Taylor, Chem. Phys. Carbon 4,243(1968).

    Google Scholar 

  157. J. Dubois et al., “The Carbonaceous Mesophase Formed in the Pyrolysis of Graphitizable Organic Materials,” Metallography 3, 337 (1970).

    Article  Google Scholar 

  158. J. L. White et al., “Mesophase Microstructures in Carbonized Coal Tar Pitch,” Carbon 5, 517 (1967).

    Article  Google Scholar 

  159. H. Honda et al., “Optical Mesophase Texture and X-ray Diffraction Pattern of The Early-Stage Carbonization of Pitches,” Carbon 8, 181 (1970).

    Article  Google Scholar 

  160. Y. Sanada et al., Fuel 52, 143 (1973).

    Article  Google Scholar 

  161. S. Mrozowski, Carbon “Electronic Properties and Band Model of Carbons,” 9, 97 (1971).

    Article  Google Scholar 

  162. I. Mochid et al., “Anisotropic Mesophase of Novel Features Found in the Refluxing Carbonization of Acenaphthylene,” Carbon 15, 191 (1977).

    Article  Google Scholar 

  163. M. Makabe et al., “Mesophase Formation of Pitch under Reduced Pressure,” Carbon 14, 365 (1976).

    Article  Google Scholar 

  164. J. L. White, “The Formation of Microstructure in Graphitizable Carbons,” AF #SAMSO-TR-74–93, April 1974.

    Google Scholar 

  165. G. W. Gray, Molecular Structure and the Properties of Liquid Crystals, Academic Press, New York, 1962.

    Google Scholar 

  166. G. W. Gray and P. A. Winsor, Liquid Crystals and Plastic Crystals, Vol. 1, Halsted Press, New York, 1974.

    Google Scholar 

  167. G. W. Gray and P. A. Winsor, Liquid Crystals and Plastic Crystals, Vol. 2, Halsted Press, New York, 1975.

    Google Scholar 

  168. P. A. DeGennes, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1974.

    Google Scholar 

  169. J. B. Barr et al., “High Modulus Carbon Fibers from Pitch Precursor,” Appl. Polym. Symp. No. 29, 161 (1976).

    Google Scholar 

  170. D. A. Schulz, “Process for Producing High Mesophase Content Pitch Fibers,” U.S. Patent 3,919,376, 1975.

    Google Scholar 

  171. L. S. Singer, “Process for Producing High Mesophase Content Pitch Fibers,” U.S. Patent 3,919,387, 1975.

    Google Scholar 

  172. I. C. Lewis, “Process for Producing Carbon Fibers from Mesophase Pitch,” U.S. Patent 3,995,014, 1976.

    Google Scholar 

  173. L. S. Singer, “High Modulus, High Strength Carbon Fibers Produced from Mesophase Pitch,” U.S. Patent 4,005,183, 1977.

    Google Scholar 

  174. I. C. Lewis, “Process for Producing Mesophase Pitch,” U.S. Patent 4,017,327, 1977.

    Google Scholar 

  175. E. R. McHenry, “Process for Producing Mesophase Pitch,” U.S. Patent 4,026,788, 1977.

    Google Scholar 

  176. D. A. Schultz, “Process for Producing Self-Bonded Webs of Non-Woven Carbon Fibers,” U.S. Patent 4,032,607, 1977.

    Google Scholar 

  177. D. M. Riggs, unpublished data.

    Google Scholar 

  178. D. M. Riggs and R. J. Diefendorf, “Elongational Characteristics of Mesophase Containing Pitches,” Paper Presented at the 31st Pacific Coast Regional Meeting of the American Ceramic Society, October 1978.

    Google Scholar 

  179. R. Didchenko et al., “High Modulus Carbon Fibers from Mesophase Pitches. Part 1: Preparation and Properties of Pitches,” Extended Abstracts, 12th Biennial Conference on Carbon, Pittsburgh, Pennsylvania, 1975, pp. 329–330.

    Google Scholar 

  180. R. Didchenko et al., “High Modulus Carbon Fibers from Mesophase Pitches. Part 2: Fiber Properties and Structure,” Extended Abstracts, 12th Biennial Conference on Carbon, Pittsburgh, Pennsylvania, 1975, pp. 331–332.

    Google Scholar 

  181. L. S. Singer, “The Mesophase and High-Modulus Carbon Fibers from Pitch,” Paper Presented at the 13th Biennial Conference on Carbon, Irvine, California, 1977.

    Google Scholar 

  182. Union Carbide Corporation, “Graphite Fibers from Pitch, Part I,” AFML-TR-73–147.

    Google Scholar 

  183. Union Carbide Corporation, “Graphite Fibers from Pitch, Part II,” AFML-TR-73–147.

    Google Scholar 

  184. Union Carbide Corporation, “Graphite Fibers from Pitch, Part III,” AFML-TR-73–147.

    Google Scholar 

  185. J. C. Bowman, Union Carbide Corporation, personal communication.

    Google Scholar 

  186. A. A. Bright and L. S. Singer, “Electronic and Structural Characteristics of Carbon Fibers from Mesophase Pitch,” Paper Presented at the 13th Biennial Conference on Carbon, Irvine, California, 1977, pp. 100–101.

    Google Scholar 

  187. G. Montaud and J. Duflos, U.S. Patent 3,332,489, 1967.

    Google Scholar 

  188. I. Yoneshega and H. Teranishi, Japanese Patent Specification 2774/70, 1970.

    Google Scholar 

  189. S. L. Strong, Am. Chem. Soc., Div. Org. Coat. Plast. Chem., Prepr. 31, 426 (1971).

    Google Scholar 

  190. W. Tang and W. Neile, “Effect of Flame Retardants on Pyrolysis and Combustion of X-Cellulose,” J. Polym. Sci. Part C 6, 75 (1964).

    Google Scholar 

  191. Aggarival, R. K., “Evaluation of Relative Wettability of Carbon Fibres,” Carbon, 15 291 (1977).

    Article  Google Scholar 

  192. P. H. Hermans, Physics and Chemistry of Cellulose Fibers, Elsevier, Amsterdam, 1949.

    Google Scholar 

  193. R. F. Schwenker and E. Pascu, “Chemically Modifying Cellulose for Flame Resistance,” Ind. Eng. Chem. 50, 91 (1958).

    Article  Google Scholar 

  194. R. W. Little, Text. Res. J. 21, 901 (1951).

    Article  Google Scholar 

  195. A. Shindo et al., “Carbon Fibers from Cellulose Fibers,” Appl. Polym. Symp. No. 9, 271 (1969).

    Google Scholar 

  196. A. Shindo, U.S. Patent 3,529,934, 1970.

    Google Scholar 

  197. G. Mackay, Canadian Department of Forestry, Publication No. 1201, 1967.

    Google Scholar 

  198. A. Broido and F. J. Kilger, Fire Res. Abstr. Rev. 5, 157 (1963).

    Google Scholar 

  199. R. C. Laible, Am. Dyest. Rep. 47, 173 (1958).

    Google Scholar 

  200. W. Hoffman et al., Chem. Ind. (London) p. 95 (1960).

    Google Scholar 

  201. R. Moyer et al., U.S. Patent 3,333,926, 1967.

    Google Scholar 

  202. C. L. Gutzeit, U.S. Patent 3,479,150, 1969.

    Google Scholar 

  203. E. M. Peters, U.S. Patent 3,235,353, 1966.

    Google Scholar 

  204. R. Bacon et al., U.S. Patent 3,305,315, 1967.

    Google Scholar 

  205. S. E. Ross, Text. Res. J. 38, 906 (1968).

    Article  Google Scholar 

  206. A. Shindo Polym. Prepr. Am. Chem. Soc, Div. Polym. Chem. 9, 1333 (1968).

    Google Scholar 

  207. C. L. Gutzeit, U.S. Patent 3,479,151, 1969.

    Google Scholar 

  208. D. R. Moore et al., U.S. Patent 3,527,564, 1970.

    Google Scholar 

  209. C. H. Mack, Text. Res. J. 37, 1063 (1967).

    Article  Google Scholar 

  210. H. Schuyten et al., J. Am. Chem. Soc. 70, 1919 (1948).

    Article  Google Scholar 

  211. M. J. Hunter, U.S. Patent 2,532,622, 1950.

    Google Scholar 

  212. W. I. Portnode, U.S. Patent 2,306,222, 1942.

    Google Scholar 

  213. J. V. Duffy, “Pyrolysis of Treated Rayon Fiber,” J. Appl. Polym. Sci. 15, 715 (1971).

    Article  Google Scholar 

  214. S. L. Madorsky et al., “Thermal Degradation of Cellulosic Materials,” J. Res. Nat. Bur. Stand. 60, 343 (1958).

    Google Scholar 

  215. R. W. Little (editor), Flameprooßng Textile Fabrics, Van Nostrand Reinhold, New York, 1947.

    Google Scholar 

  216. S. L. Madorsky et al., “Pyrolysis of Cellulose in a Vacuum,” J. Res. Nat. Bur. Stand. 56, 343 (1956).

    Google Scholar 

  217. W. Tang and W. Eickner, U.S. Forest Service Research Paper, FPL 84, January 1968.

    Google Scholar 

  218. W. A. Reeves et al., “Some Chemical and Physical Factors Influencing Flame Retardancy,” Text. Res. J., 40, 223 (1970).

    Article  Google Scholar 

  219. W. Schalamon and R. Bacon, British Patent 1,167,007, 1969.

    Google Scholar 

  220. R. Bacon and W. Schalamon, Eighth Biennial Conference on Carbon, Buffalo, New York, June 1967.

    Google Scholar 

  221. W. J. Spry, British Patent 1,093,084, 1967.

    Google Scholar 

  222. D. W. Gibson and G. Langlors, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 9, 1376 (1968).

    Google Scholar 

  223. R. Manley, “Fine Structure of Native Cellulose Microfibrils,” Nature 204, 1155 (1964).

    Article  Google Scholar 

  224. R. Manley, “The Fine Structure of Regenerated Cellulose,” J. Polym. Sci. Part B 3, 691 (1965).

    Article  Google Scholar 

  225. R. Jeffries et al., Text. Res. J. 38, 234 (1968).

    Article  Google Scholar 

  226. S. Y. Lin, “Accessibility of Cellulose: A Critical Review,” Fiber Sci. Technol. 5, 303 (1972).

    Article  Google Scholar 

  227. W. Ruland, “Small-Angle Scattering Studies on Carbonized Cellulose Fibers,” J. Polym. Sci. Part C 28, 143 (1969).

    Google Scholar 

  228. W. Ruland, 9th Biennial Conference on Carbon, held at Chestnut Hill, Massachusetts, June 1969.

    Google Scholar 

  229. R. Bacon and W. Schalamon, “Physical Properties of High Modulus Graphite Fibers Made from Rayon Precursor,” Appl. Polym. Symp. No 9, 285 (1969).

    Google Scholar 

  230. R. C. Novak, “Fracture in Graphite Filament Reinforced Epoxy Loaded in Shear,” ASTM STP 460, 1969, p. 540.

    Google Scholar 

  231. R. Simon, S. P. Porsen, and J. Duffy, “Carbon Fibre Composites,” Nature 213, 1113 (1967).

    Article  Google Scholar 

  232. J. C. Goan and S. P. Porsen, “Interfacial Bonding in Graphite Fiber-Resin Composites,” ASTM STP 452, 1969, p. 3.

    Google Scholar 

  233. J. P. Favre and J. Perrin, “Carbon Fibre Adhesion to Organic Matrices,” J. Mater. Sci. 7, 1113 (1972).

    Article  Google Scholar 

  234. D. W. McKee and V. J. Mimeault, “Surface Properties of Carbon Fibers,” Chem. Phys. Carbon 8, 151 (1973).

    Google Scholar 

  235. P. J. Dynes and D. H. Kaelble, “Surface Energy Analysis of Carbon Fibers and Films,” J. Adhes. 6, 195 (1974).

    Article  Google Scholar 

  236. L. T. Drzal, “The Surface Composition and Energetics of Type A Graphite Fibers,” Carbon 15, 129 (1977).

    Article  Google Scholar 

  237. J. V. Larsen, T. G. Smith, and P. W. Erickson, “Carbon Fiber Surface Treatments,” NOLTR 71–165, 1971.

    Google Scholar 

  238. B. Rand and R. Robinson, “Surface Characteristics of Carbon Fibres from PAN,” Carbon 15, 257 (1977).

    Article  Google Scholar 

  239. R. J. Dawksky, “Graphite Fiber Treatments which Affect Fiber Surface Morphology and Epoxy Bonding Characteristics,” J. Adhes. 5, 211 (1973).

    Article  Google Scholar 

  240. D. H. Kaelble, P. J. Dynes, and L. Maus, “Surface Energy Analysis of Treated Graphite Fibers,” J. Adhes. 6, 239 (1974).

    Article  Google Scholar 

  241. B. Harris, P. W. R. Beaumont, and A. Rosen, “Silane Coupling in Carbon Fibre-Reinforced Polyester Resin,” J. Mater. Sci. 4, 432 (1969).

    Article  Google Scholar 

  242. D. J. Pinchin and R. T. Woodhams, “Pyrolytic Surface Treatment of Graphite Fibres,” J. Mater. Sci. 9, 300 (1974).

    Article  Google Scholar 

  243. S. J. Mitchell, “Pyrocarbon Coating of Carbon Fibre to Increase the Interlaminar Strength of Carbon-Fibre-Reinforced Carbon,” in: Proceedings of the Second International Conference on Carbon Fibres, London, February 1974, Plastics Institute, London, 1974, Paper No. 20.

    Google Scholar 

  244. D. Clark, N. J. Wadsworth, and W. Watt, “The Surface Treatment of Carbon Fibres for Increasing the Interlaminar Shear Strength of CFRP,” in: Proceedings of the Second International Conference on Carbon Fibres, London, February 1974, Plastics Institute, London, 1974, Paper No. 7.

    Google Scholar 

  245. J. B. Donnet, E. Papirer, and H. Dauksch, “Surface Modification of Carbon Fibres and Their Adhesion to Epoxy Resins,” in: Proceedings of the Second International Conference on Carbon Fibres, London, February 1974, Plastics Institute, London, 1974, Paper No. 9.

    Google Scholar 

  246. G. Riess and M. Bourdeaux, “Surface Treatment of Carbon Fibres with Alternating and Block Copolymers,” in: Proceedings of the Second International Conference on Carbon Fibres, London, February 1974, Plastics Institute, London, 1974, Paper No. 8.

    Google Scholar 

  247. J. W. Herrick, P. E. Gruber, and F. T. Mansur, “Surface Treatments for Fibrous Carbon Reinforcements, Part I,” AFML-TR-66–178, July 1966.

    Google Scholar 

  248. R. Didchenko, “Carbon and Graphite Surface Properties Relevant to Fiber Reinforced Composites,” AFML-TR-68–45, 1968.

    Google Scholar 

  249. Scala, D. A. and Brooks, 25th Society of Plastics Industry Meeting, Washington, D.C., February 1970.

    Google Scholar 

  250. R. J. Bobka and L. P. Lowell, “Integrated Research on Carbon Composite Materials, Part I,” AFML-TR-66–310, October 1966, pp. 145–152.

    Google Scholar 

  251. F. Tuinstra and J. L. Koenig, “Characterization of Graphite Fiber Surfaces with Raman Spectroscopy,” J. Compos. Mater. 4, 492 (1970).

    Google Scholar 

  252. J. S. Mattson and H. B. Mark, “Infrared Internal Reflectance Spectroscopic Determination of Surface Functional Groups on Carbon,” Colloid Interface Sci. 31, 131 (1969).

    Article  Google Scholar 

  253. D. H. Kaelble, P. J. Dynes, and E. H. Cirlin, “Interfacial Bonding and Environmental Stability of Polymer Matrix Composites,” J. Adhes. 6, 23 (1974).

    Article  Google Scholar 

  254. M. Barber, P. Swift, E. L. Evans, and J. M. Thomas, “High Energy Photoelectron Spectroscopic Study of Carbon Fibre Surfaces,” Nature 227, 1131 (1970).

    Article  Google Scholar 

  255. F. Hopfgarten, “Surface Study of Carbon Fibres with ESCA and Auger Electron Spectroscopy,” Fibre Sci. Technol. 11, 67 (1978).

    Article  Google Scholar 

  256. D. M. Brewis, J. Comyn, J. R. Fowler, D. Briggs, and V. A. Gibson, “Surface Treatments of Carbon Fibers Studied by X-ray Photoelectron Spectroscopy,” Fibre Sci. Technol. 12, 41 (1979).

    Article  Google Scholar 

  257. N. C. W. Judd, “The Effect of Fiber Surface Treatment, Resin Type and Fabrication Process on the Interlaminar Shar Strength of Carbon Fibre Composites,” Brit. Polym. J. 9, 272 (1977).

    Article  Google Scholar 

  258. S. C. Thompson, H. C. Kim, and F. R. Matthew, “The Effect of Processing on the Microstructure of CFRP,” Composites 4, 86 (1973).

    Article  Google Scholar 

  259. N. C. W. Judd and W. W. Wright, “Voids and Their Effects on the Mechanical Properties of Composites—An Appraisal,” SAMPE J., 10 (1978).

    Google Scholar 

  260. J. W. Herrick, “Surface Treatments for Fibrous Carbon Reinforcements, Part II,” AFML-TR-66–178, June 1967.

    Google Scholar 

  261. J. H. Williams and P. N. Kousiounelos, “Thermoplastic Fibre Coatings Enhance Composite Strength and Toughness,” Fibre Sci. Technol. 11, 83 (1978).

    Article  Google Scholar 

  262. E. L. McKague, R. E. Bullock, and J. W. Head, “Improved Mechanical Properties of Composites Reinforced with Neutron-Irradiated Carbon Fibers,” J. Compos. Mater. 7, 288 (1973).

    Article  Google Scholar 

  263. “Test Methods for Determining the Physical Properties of Carbon and Graphite Tows,” Technical Data Sheet HD-SG-2–6001B, Hercules Inc., Magna, Utah, September 1974.

    Google Scholar 

  264. “Torayca Information Quality Carbon Fibre,” Technical Data Sheet No. TY-030, Toray Industries, Inc., Tokyo, Japan.

    Google Scholar 

  265. Advanced Composites Design Guide, 3rd Ed., Vol. IV, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, January 1973.

    Google Scholar 

  266. D. R. Lovell, “Quality Control in Carbon Fibre Manufacture,” in: Proceedings of the First International Conference on Carbon Fibres, London, February 1971, Plastics Institute, London, 1971, p. 359.

    Google Scholar 

  267. “Quality Assurance Testing,” Technical Data Sheet No. TY-020, Toray Industries, Inc., Tokyo, Japan.

    Google Scholar 

  268. “Tensile Strength and Young’s Modulus for High-Modulus Single Filament Materials,” Annual Book of ASTM Standards, Part 36, D3379–75.

    Google Scholar 

  269. “Reporting Test Methods and Results on High Modulus Fibers,” Annual Book of ASTM Standards, Part 36 D3544–76.

    Google Scholar 

  270. P. E. McMahon, “Graphite Fiber Tensile Property Evaluation,” ASTM STP 521, 1973, p. 367.

    Google Scholar 

  271. E. Scala, “High Strength Filaments for Cables and Lines,” ASTM 521, 1973, p. 390.

    Google Scholar 

  272. G. Jouquet and R. Schill, “Mechanical Properties of Carbon Fibres and Their Composites,” in: Proceedings of the First International Conference on Carbon Fibres, London, February 1971, Plastics Institute, London, 1971, Paper No. 16, p. 113.

    Google Scholar 

  273. J. T. Hoggatt, “Test Methods for High Modulus Carbon Yarn and Composites,” ASTM STP 460, 1969, p. 48.

    Google Scholar 

  274. T. T. Chiao and R. L. Moore, “A Tensile Test Method for Fibers,” J. Compos. Mater. 4, 118 (1970).

    Google Scholar 

  275. T. T. Chiao, M. A. Hamstad, and E. S. Jessop, “Tensile Properties of an Ultra High-Strength Graphite Fiber in an Epoxy Matrix,” ASTM STP 580, 1975, p. 612.

    Google Scholar 

  276. W. N. Reynolds, “Structure and Physical Properties of Carbon Fibers,” Chem. Phys. Carbon 11, 1 (1973).

    Google Scholar 

  277. B. F. Jones and R. G. Duncan, J. Mater. Sci. 6, 289 (1971).

    Article  Google Scholar 

  278. A. J. Perry, K. Phillips, and E. deLamotte, Fibre Sci. Technol. 3, 317 (1971).

    Article  Google Scholar 

  279. R. Moreton, Fibre Sci. Technol. 1, 273 (1968).

    Article  Google Scholar 

  280. “Density of Plastics by the Density-Gradient Techniques,” Annual Book of ASTM Standards, Part 35, D1505–68.

    Google Scholar 

  281. “Specific Gravity and Density of Plastics by Displacement,” Annual Book of ASTM Standards, Part 35, D792–66.

    Google Scholar 

  282. I. L. Kalnin, “Thermal Conductivity of High-Modulus Carbon Fibers,” ASTM STP 580 1975, p. 560.

    Google Scholar 

  283. P. E. McMahon, “The Relationship between High Modulus Fiber and Unidirectional Composite Tensile Strength,” 19th SAMPE National Symposium and Exhibition, Buena Park, California, 1974, p. 214.

    Google Scholar 

  284. J. W. Johnson and D. J. Thome, “Effect of Internal Polymer Flaws on Strength of Carbon Fibers Prepared from an Acrylic Precursor,” Carbon 7, 659 (1969).

    Article  Google Scholar 

  285. A. R. Nicoll and A. J. Perry, “Diameter Dependence of Carbon Fibre Mechanical Properties,” Fibre Sci. Technol. 6, 135 (1973).

    Article  Google Scholar 

  286. C. R. Rowe and D. L. Lowe, “High Temperature Properties of Carbon Fibers,” 13th Biennial Conference on Carbon, London, 1977, p. 170.

    Google Scholar 

  287. P. C. Pinoli and A. Ambrosio, “Fiber Density Analysis by Density Gradient Technique, 13th Biennial Conference on Carbon, London, 1977, p. 292.

    Google Scholar 

  288. “Hercules Magnamite Graphite Fibers,” Technical Data Bulletin 200–269B 4–78, Hercules Inc., Salt Lake City, Utah.

    Google Scholar 

  289. ‘Material Properties Composites,” Technical Data Bulletin, Celanese Corporation, Chatham, New Jersey.

    Google Scholar 

  290. J. R. Vinson, “Advanced Composite Materials— Environmental Effects,” ASTM 658, 1978.

    Google Scholar 

  291. A. C. Loos and G. S. Springer, “Effects of Thermal Spiking on Graphite-Epoxy Composites,” J. Compos. Mater. 13, 17 (1979).

    Article  Google Scholar 

  292. E. Fitzer and M. Heyon, “Carbon Fibre Reinforced Composites for Applications at Elevated Temperatures,” 13th Biennial Conference on Carbon, London, 1977, p. 128.

    Google Scholar 

  293. K. E. Hofer, M. Stander, and P. N. Rao, “A Comparison of the Elevated Temperature Strength Loss in High Tensile Strength Graphite/Epoxy Composite Laminates Due to Ambient and Accelerated Aging,” J. Test. Eval. 3, No. 6, 423 (1975).

    Article  Google Scholar 

  294. J. R. Kerr, J. F. Haskins, and B. A. Stein, “Program Definition and Preliminary Results of a Long-Term Evaluation Program of Advanced Composites for Supersonic Cruise Aircraft Applications: Environmental Effects on Advanced Composite Materials,” ASTM STP 602, 1976, p. 3.

    Google Scholar 

  295. W. G. Scheck and J. M. Stuckey, “Development and Evaluation of Graphite and Boron Polyimide Composites,” Fourth National SAMPE Technical Conference, Palo Alto, California, October 17, 1972, p. 9.

    Google Scholar 

  296. V. F. Mazzio and R. L. Mehan, “Effects of Thermal Cycling on the Properties of Graphite-Epoxy Composites,” in Composite Materials: Testing and Design (Fourth Conference), ASTM STP 617, American Society for Testing and Materials, (1977), p. 460.

    Google Scholar 

  297. L. G. Bevan and J. B. Sturgeon, “Fatigue Limits in CFRP,” Proceedings of the Second International Conference on Carbon Fibres, London, February 1974, Plastics Institute, London, 1974, paper No. 32.

    Google Scholar 

  298. J. L. Camahort, F. H. Rennhack, and W. C. Coons, “Effects of Thermal Cycling Environment on Graphite/Epoxy Composites,” ASTM STP 602, 1976, p.37.

    Google Scholar 

  299. P. E. McMahon, “Oxidative Resistance of Carbon Fibers and Their Composites,” ASTM STP 658, 1978, p. 254.

    Google Scholar 

  300. H. H. Gibbs, R. C. Wendt, and F. C. Wilson, “Carbon Fiber Structure and Stability Studies,” 33rd SPI Conference, Paper 24-F, 1978.

    Google Scholar 

  301. S. E. Wentworth, A. O. King, and R. J. Shuford, “The Potential for Accidental Release from Carbon/Graphite Fiber from Resin Matrix Composites as Determined by Thermogravimetric Analysis,” Army Materials and Mechanics Research Center, Watertown, Massachusetts, TR 79–1, January 1979.

    Google Scholar 

  302. S. E. Wentworth, “Assessment of Accidental Release Potential by TGA and SEM,” Paper Presented at the Second Annual Army Composite Materials Research Review, University of Massachusetts, May 1979.

    Google Scholar 

  303. N. C. W. Judd, “The Chemical Resistance of Carbon Fibres and a Carbon-Fibre/Polyester Composite,” in: Proceedings of the First International Conference on Carbon Fibres, London, February 1971, Plastics Institute, London, 1971, Paper No. 32, p. 258.

    Google Scholar 

  304. J. Hertz, “Moisture Effects on the High-Temperature Strength of Fiber-Reinforced Resin Composites,” Fourth National SAMPE Technical Conference, Palo Alto, California, October 17, 1972, p. 1.

    Google Scholar 

  305. C. E. Browning, G. E. Husman, and J. M. Whitney, “Moisture Effects in Epoxy Matrix Composites,” in: Composite Materials: Testing and Design (Fourth Conference), ASTM STP 617, American Society for Testing and Materials, 1977, p. 481.

    Google Scholar 

  306. C. D. Shirrell and J. Halpin, “Moisture Absorption and Desorption in Epoxy Composite Laminates,” in: Composite Materials: Testing and Design (Fourth Conference), ASTM STP 617, American Society for Testing and Materials, 1977, p. 514.

    Google Scholar 

  307. N. C. W. Judd, “Absorption of Water into Carbon Fibre Composites,” Brit. Polym. J. 9, 36 (1977).

    Article  Google Scholar 

  308. H. G. Carter and K. G. Kibler, “Rapid Moisture-Characterization of Composites and Possible Screening Applications,” J. Compos. Mater. 10, 355 (1976).

    Article  Google Scholar 

  309. J. G. Belani and L. J. Broutman, “Moisture Induced Resistivity Changes in Graphite-Reinforced Plastics,” Composites, 9, 273 (1978).

    Article  Google Scholar 

  310. C. E. Browning, “The Mechanisms of Elevated Temperature Property Losses in High Performance Structural Epoxy Resin Matrix Materials after Exposures to High Humidity Environments,” AFMLTR-76–153, March 1977.

    Google Scholar 

  311. P. E. Sandorff and Y. A. Tajima, Sr., “A Practical Method for Determining Moisture Distribution, Solubility and Diffusivity in Composite Laminates,” SAMPE Quart. 10: 21, January 1979.

    Google Scholar 

  312. C. E. Browning and J. T. Hartness, “Effects of Moisture on the Properties of High Performance Structural Resins and Composites,” ASTM STP 546, 1974, p. 284.

    Google Scholar 

  313. D. H. Kaelble, P. J. Dynes, and L. Maus, “Hydrothermal Aging of Composite Materials,” J. Adhes. 8, 121 (1976).

    Article  Google Scholar 

  314. D. H. Kaelble, P. J. Dynes, L. W. Crane, and L. Maus, “Interfacial Mechanisms of Moisture Degradation in Graphite-Epoxy Composites,” J. Adhes. 7, 25 (1975).

    Article  Google Scholar 

  315. D. H. Kaelble and P. J. Dynes, “Methods for Detecting Moisture Degradation in Graphite-Epoxy Composites,” Mater. Eval., 103 (April 1977).

    Google Scholar 

  316. J. M. Augl and A. E. Burger, “Moisture Effect on Carbon Fiber Epoxy Composites,” NSWC/WOL/TR 76–7, September 1976, AD-A034787.

    Google Scholar 

  317. J. M. Augl, “The Effect of Moisture on Carbon Fiber Reinforced Epoxy Composites. II. Mechanical Property Changes,” NSWC/WOL/TR 76–149, February 1977, AD-A039903.

    Google Scholar 

  318. J. H. Powell and D. J. Zyrang, “The Moisture Absorption and Desorption Characteristics of Three Epoxy/Graphite Systems,” SAMPE J. 13, 4 (1977).

    Google Scholar 

  319. H. L. Young and W. L. Greever, “High Temperature Strength Degradation of Composites during Aging in the Ambient Atmosphere,” Compos. Mater. Eng. Design, 695 (1973).

    Google Scholar 

  320. C. Shen and G. S. Springer, “Environmental Effects on the Elastic Moduli of Composite Materials,” J. Composite Materials, 11, 250 (1977).

    Article  Google Scholar 

  321. Shen, C. and Springer, G. S., “Effects of Moisture and Temperature on the Tensile Strength of Composite Materials,” J. Compos. Mater. 11, 2 (1977).

    Article  Google Scholar 

  322. D. J. Wilkins, “Environmental Sensitivity Tests of Graphite-Epoxy Bolt Bearing Properties,” in: Composite Materials: Testing and Design (Fourth Conference), ASTM STP 617, American Society for Testing and Materials, 1977, p. 497.

    Chapter  Google Scholar 

  323. K. E. Hofer, D. Larsen, and V. E. Humphreys, “Development of Engineering Data on the Mechanical and Physical Properties of Advanced Composites Materials,” AFML-TR-24–266, February 1975.

    Google Scholar 

  324. C. Y., Lundemo and S. Thor, “Influence of Environmental Cycling on the Mechanical Properties of Composite Materials,” J. Compos. Mater. 11, 276 (1977).

    Article  Google Scholar 

  325. J. Delmonte, “Moisture Penetration into Composites,” 7th National SAMPE Technical Conference, Albuquerque, New Mexico, 1975, p. 306.

    Google Scholar 

  326. B. Harris, P. W. R. Beaumont, and E. Moncunill de Ferran, “Strength and Fracture Toughness of Carbon Fibre Polyester Composites,” J. Mater. Sci. 6, 238 (1971).

    Article  Google Scholar 

  327. E. L. McKague, Jr., J. E. Halkias, and J. D. Reynolds, “Moisture on Diffusion,” J. Compos. Mater. 9, 2 (1975).

    Article  Google Scholar 

  328. T. T. Serafini and R. D. Vannucci, “Tailor Making High Performance Graphite Fiber Reinforced PMR Polyimides,” 30th Annual SPI Technical Conference, 1975, Section 14-E, pp. 1–5.

    Google Scholar 

  329. C. E. Browning, “HME Resin Matrix System”, SAMPE J., 23rd National SAMPE Symposium, Anaheim, California, 1978, p. 541.

    Google Scholar 

  330. B. Bloch and M. Ropars, “PSP Resins, New Thermosetting Binders for Advanced Composites,” SAMPE J., 23rd National SAMPE Symposium, Anaheim, California, 1978, p. 836.

    Google Scholar 

  331. R. J. Fabian, “Engineer’s Guide to Polyimide Plastics,” Mater. Eng., 26–31 (August 1971).

    Google Scholar 

  332. S. L. Kaplan and C. W. Snyder, “Polyimide Molding Compounds,” 29th Annual SPI Technical Conference, 1974, Section 11-B, pp. 1–7.

    Google Scholar 

  333. R. J. Kray, R. Seltzer, and R. A. E. Winter, “Thermally Stable Polyimides with 400° F Processability,” 29th Annual SPI Technical Conference, 1974, Paper 11-C.

    Google Scholar 

  334. R. D. Vannucci, “Effect of Processing Parameters on Autoclaved PMR Polyimide Composites,” 9th National SAMPE Technical Conference, Atlanta, Georgia, 1977, p. 177.

    Google Scholar 

  335. R. D. Vannucci, and W. B. Alston, “PMR Polyimides with Improved High Temperature Performance,” 31st Annual SPI Technical Conference, 1976, Paper 20-A.

    Google Scholar 

  336. J. T. Hoggatt, and A. D. VonVolkli, “Evaluation of Reinforced Thermoplastic Composites and Adhesives,” Report No. D18D-17503–3, Contract No. N00019–74-C-0226, March 1975.

    Google Scholar 

  337. H. H. Gibbs and J. R. Ness, “The Development of Quality Control Techniques for NR-150 Polyimide Adhesive and Binder,” 23rd National SAMPE Symposium, 1978, p. 806.

    Google Scholar 

  338. T. L. St. Clair and R. A. Jewell, “Solventless LaRC-160 Polyimide Matrix Resin,” 23rd National SAMPE Symposium, Anaheim, California, 1978, p. 520.

    Google Scholar 

  339. N. Bilow and A. L. Land is, “Recent Advances in Acetylene-Substituted Polyimides,” 8th National SAMPE Technical Conference, Seattle, Washington, 1976, p. 94.

    Google Scholar 

  340. J. J. Aponyi, C. B. Delano, J. D. Dodson, R. J. Milligan, and J. M. Hurst, “Thermal 600 and Acetylene Terminated Quinoxaline Resins,” 23rd National SAMPE Symposium, Anaheim, California, 1978, p. 763.

    Google Scholar 

  341. N. Bilow, L. B. Keller, A. L. Landis, R. H. Boschan, and A. A. Castillo, “New Developments in Acetylene Substituted Polyimides,” 23rd National SAMPE Symposium, 1978, p. 791.

    Google Scholar 

  342. N. Sung and F. J. McGarry, “The Mechanical and Thermal Properties of Graphite Fiber Reinforced Polyphenylquinoxaline and Polyimide Composites,” Polym. Eng. Sci. 16, 426 (1976).

    Article  Google Scholar 

  343. R. A. Pike and M. A. DeCrescente, “Elevated Temperature Characteristics of Borsic® and Graphite Fiber/Polyphenylquinoxaline Resin Composites,” 29th Annual SPI Technical Conference, 1974, Paper 18-F.

    Google Scholar 

  344. R. A. Mayor, “Advanced Composites for High Temperature Applications,” 9th National SAMPE Technical Conference, Atlanta, Georgia, 1977, p. 478.

    Google Scholar 

  345. M. G. Maximovich, “Development and Applications of Continuous Graphite Reinforced Thermoplastic Advanced Composites,” 19th National SAMPE Symposium, 1974, p. 262.

    Google Scholar 

  346. C. L. Segal, “Properties and Applications of Graphite Fiber Reinforced Thermoplastic Molding Compounds”, 19th SAMPE Symposium, 1974, p. 277.

    Google Scholar 

  347. B. F. Blumentritt, B. T. Vu, and S. L. Cooper, “Fracture in Oriented Short Fibre-Reinforced Thermoplastics,” Composites 6, 105 (1975).

    Article  Google Scholar 

  348. J. T. Hoggatt, “Study of Graphite Fiber Reinforced Thermoplastic Composites,” Report No. D180–18034–1, AD-778000, Contract No. N00019–73-C-0414, February 1974.

    Google Scholar 

  349. M. G. Maximovich, “Evaluation of Selected High-Temperature Thermoplastic Polymers for Advanced Composite and Adhesive Applications,” in: Composite Materials: Testing and Design (Fourth Conference), ASTM STP 617, American Society for Testing and Materials, 1977, p. 123.

    Chapter  Google Scholar 

  350. B. F. Blumentritt, B. T. Vu, and S. L. Cooper, “The Mechanical Properties of Oriented Discontinuous Fiber-Reinforced Thermoplastics. I. Unidirectional Fiber Orientation,” Polym. Eng. Sci. 14, 633 (1974).

    Article  Google Scholar 

  351. R. C. Novak, “Graphite Fiber Reinforced Thermoplastic Resins,” N77–27231, Contract No. NAS3–20077, NASA-CR-135197, April 1977.

    Google Scholar 

  352. J. E. Theberge, B. Arkles, and R. Robinson, “Carbon Fibers Add Muscle to Plastics,” Machine Design 2, 1 (1974).

    Google Scholar 

  353. J. E. Theberge, B. Arkles, and R. Robinson, “Carbon Fiber Reinforced Thermoplastics,” 29th Annual SPI Technical Conference, 1974, Paper 20-D.

    Google Scholar 

  354. D. G. Chasin and Dr. J. Feltzin, “Properties and Applications of Polyethersulfones—A New Family of High Temperature Performance Engineering Thermoplastics,”7th National SAMPE Technical Conference, Albuquerque, New Mexico, 1975, p. 395.

    Google Scholar 

  355. D. R. Askins, “Development of Engineering Data on Advanced Composites,” AFML-TR-77–151, September 1977.

    Google Scholar 

  356. L. N. Phillips and G. Wood, “Thermosetting and Thermoplastic Carbon-Fibre Composites,” in: Proceedings of the International Conference on Carbon Fibres, London, 1971, Plastics Institute, London, 1971, p. 266.

    Google Scholar 

  357. H. S. Katz, Plastics Compounding, 18 (March-April 1979).

    Google Scholar 

  358. A. T. Dibenedetto and Gideon Salee, “The Fatigue Behavior of Graphite Fiber Reinforced Nylon,” Poly. Eng. Sci. 18, 634 (1978).

    Article  Google Scholar 

  359. Scientific American 9, No. 41 (June 24, 1854).

    Google Scholar 

  360. R. W. Lewis and P. F. Brake, “Polymer Matrix Composites for Automotive Applications,” Symposium on Polymeric Materials and Their Use in Transportation, Polytechnic Institute of New York, Brooklyn, New York, April 1977.

    Google Scholar 

  361. M. J. Owen, “Fatigue of Carbon-Fiber-Reinforced Plastics,” in: Composite Materials. Vol. 5. Fatigue and Fracture (edited by L. J. Broutman), Academic Press, New York, 1975, pp. 342–369.

    Google Scholar 

  362. M. G. Bader and M. Johnson, “Fatigue Strength and Failure Mechanisms in Uniaxial Carbon Fibre Reinforced Epoxy Resin Composite Systems,” Composites 5, 58 (1974).

    Article  Google Scholar 

  363. A. K. Green and P. L. Pratt, “The Axial Fatigue Behavior of Unidirectional Type III S Carbon Fibre-Epoxy Resin Composites,” Composites 5, 63 (1974).

    Article  Google Scholar 

  364. C. K. H. Dharan, “Fatigue Failure Mechanisms in Pultruded Graphite-Polyester,” in: Proceedings of the Second Symposium on Failure Modes in Composites, American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, May 1974.

    Google Scholar 

  365. C. K. H. Dharan, “Fatigue Failure in Graphite Fibre and Glass Fibre-Polymer Composites,” J. Mater. Sci. 10, 1665–1670 (1975).

    Article  Google Scholar 

  366. J. J. Nevadunsky, J. J. Lucas, and M. J. Salkind, “Early Fatigue Damage Detection in Composite Materials,” J. Compos. Mater . 9, 394 (1975).

    Article  Google Scholar 

  367. J. Awerbuch and H. T. Hahn, “Fatigue and Proof-Testing of Unidirectional Graphite/Epoxy Composite,” in: Fatigue of Filamentary Composite Materials (edited by K. L. Reifsnider and K. N. Lauraitis), ASTM STP 636, American Society for Testing and Materials, 1977, pp. 248–266.

    Google Scholar 

  368. J. T. Ryder and E. K. Walker, “Effect of Compression on Fatigue Properties of a Quasi-Isotropic Graphite/Epoxy Composite,” in: Fatigue of Filamentary Composite Materials (edited by K. L. Reifsnider and K. N. Lauraitis), ASTM STP 636, American Society for Testing and Materials, 1977, pp. 3–26.

    Chapter  Google Scholar 

  369. D. C. Hiler, “Carbon Fiber Composites,” Plastics World (July 1977).

    Google Scholar 

  370. T. T. Chiao, C. C. Chiao, and R. J. Sherry, “Lifetimes of Fiber Composites under Sustained Tensile Loading,” Proceedings of the 1977 International Conference on Fracture Mechanics and Technology, Hong Kong, March 21–25, 1977.

    Google Scholar 

  371. K. E. Hofer and L. C. Bennett, “Influence of Fiber and Matrix Variables on the Fatigue and Creep Characteristics of Hybrid Composites,” Final Report to Naval Air Systems Command, Contract N00019–75-C-0470, IIT Research Institute, Chicago, Illinois, November 1977.

    Google Scholar 

  372. C. C. Chamis and R. F. Lark, “Hybrid Composites—State of the Art Review: Analysis, Design, Application and Fabrication,” Report NASA TMX-73545, NASA/Lewis Research Center, Cleveland, Ohio, 1977.

    Google Scholar 

  373. J. Summerscales and D. Short, “Carbon Fiber and Glass Fibre Hybrid Reinforced Plastics,” Composites 9, 157–166 (1978).

    Article  Google Scholar 

  374. C. H. Zweben, “Tensile Strength of Hybrid Composites,” J. Sci. 12, 1325–1337 (1977).

    Google Scholar 

  375. L. N. Phillips, “The Development and Uses of Glass/Carbon Hybrids,” in: Proceedings of the 1978 International Conference on Composite Materials, Toronto, Canada, American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1978, p. 1340.

    Google Scholar 

  376. E. Guerini and P. Lissae, “Contribution to the Study of Hybrid Laminates Fabricated from Graphite, Kevlar 49 and Glass,” Verre Text. Plast. Reinf, No. 6, pp. 5–12 (July-August 1978).

    Google Scholar 

  377. D. Yates, “Design and Fabrication of High Performance Composites,” SAE International Automotive Engineering Congress and Exposition, Detroit, Michigan, February 27-March 3, 1977.

    Google Scholar 

  378. J. D. Helfinstine, “Charpy Impact of Unidirectional Graphite/Aramid/Epoxy Hybrid Composites,” in: Composite Materials: Testing and Design (Fourth Conference), ASTM STP 617, American Society for Testing and Materials, 1977, pp. 375–388.

    Chapter  Google Scholar 

  379. C. H. Zweben “Hybrid Fiber Composite Materials,” in: Proceedings of the 1975 International Conference on Composite Materials, Boston, Massachusetts Vol. 1, American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1975, p. 345.

    Google Scholar 

  380. R. Dukes and D. L. Griffiths, “Marine Aspects of Carbon Fibre and Glass Fibre/Carbon Fibre Composites,” in: Proceedings of the First International Conference on Carbon Fibres London, February 1971, Plastics Institute, London, 1971, Paper No. 28, pp. 226–231.

    Google Scholar 

  381. Advanced Composites Design Guide, 3rd Ed., Vol. I, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, January 1973.

    Google Scholar 

  382. “Composite Box Beam Optimization,” Fourth Quarterly Progress Report for AFML, Contract F33615–71-C-1605, Grumman Aerospace Corporation, Bethpage, New York, June 1972.

    Google Scholar 

  383. I. L. Kalnin, “Evaluation of Unidirectional Glass-Graphite Fiber/Epoxy Resin Composites,” in: Composite Materials: Testing and Design (Second Conference), ASTM STP 497, American Society for Testing and Materials, 1972, pp. 551–563.

    Chapter  Google Scholar 

  384. K. E. Hofer, M. Stander, and L. C. Bennett, “Degradation and Enhancement of the Fatigue Behavior of Glass/Graphite/Epoxy Hybrid Composites after Accelerated Aging,” Proceedings of the 32nd Annual Conference, SPI, Reinforced Plastics/Composites Institute, Washington, D.C., February 1977, p. 11-F.

    Google Scholar 

  385. K. E. Hofer, N. Rao, and M. Stander, “Fatigue Behavior of Graphite/Glass/Epoxy Hybrid Composites,” in: Proceedings of the International Conference on Carbon Fibres, London, February 1974, Plastics Institute, London, 1974, Paper No. 31.

    Google Scholar 

  386. R. Kaiser, “Technology Assessment of Advanced Composite Materials,” Final Report to National Science Foundation, Contract ERS77–19467, Argos Associates Inc., Winchester, Massachusetts, April 1978.

    Google Scholar 

  387. E. M. Trewin, “Graphite Fibres—The Expanding Scope of Applications in the Industrial Market,” in: Proceedings of the 1978 International Conference on Composite Materials, American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1978, pp. 1462–1473.

    Google Scholar 

  388. G. Lubin and P. Donohue, “Real Life Aging Properties of Composites,” Proceedings of the 35th Annual Conference, SPI Reinforced Plastics/Composites Institute, New Orleans, February 1980, p. 17-E.

    Google Scholar 

  389. C. Staebler, G. Lubin and M. Stander, “Application and Testing of Metallic Coatings on Graphite Epoxy Composites,” Proceedings of the 36th Annual Conference, SPI, Reinforced Plastics/Composites Institute, Washington, D.C., February 1981, p. 17-D.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Van Nostrand Reinhold Company Inc.

About this chapter

Cite this chapter

Riggs, D.M., Shuford, R.J., Lewis, R.W. (1982). Graphite Fibers and Composites. In: Lubin, G. (eds) Handbook of Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7139-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7139-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7141-4

  • Online ISBN: 978-1-4615-7139-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics