Skip to main content

A2E, a Fluorophore of RPE Lipofuscin: Can It Cause RPE Degeneration?

  • Conference paper
Retinal Degenerations

Abstract

In atrophic age-related macular degeneration (AMD) and Stargardt disease, the death of retinal pigment epithelial (RPE) cell death leads to photoreceptor cell degeneration and visual impairment. Nevertheless, the cause of RPE atrophy is poorly understood. One factor that may place RPE cells at risk is the accumulation of critical levels of lipofuscin. Indeed, several lines of evidence indicate that the excessive accumulation of lipofuscin by RPE cells is significant in terms of the etiology of AMD. Firstly, histological analyses of human donor eyes (Wing et al., 1978; Weiter et al., 1986), in addition to fundus spectrophotometry (Delori et al., 1995a; Delori et al., 2001), and confocal ophthalmoscopy (von Rückmann et al., 1997), have shown that RPE cells overlying the macula, with the exception of RPE in the cone-rich fovea, exhibit the most pronounced age-related accumulation of fluorescent material. Lipofuscin levels in RPE cells are also topographically correlated with histopathological indicators of AMD (Feeney-Burns et al., 1984; Dorey et al., 1989) and with the loss of photoreceptor cells in aged eyes (Dorey et al., 1989). Interestingly, increased fundus autofluorescence at the borders of geographic atrophy is considered to represent an enhanced accumulation of RPE lipofuscin and to implicate the latter in the disease process (Holz et al., 1999; Holz et al., 2001). While the amassing of lipofuscin by RPE is a feature of aging, excessive accretion also occurs in Stargardt disease, some forms of retinitis pigmentosa and cone-rod dystrophy (Weingeist et al., 1982; Rabb et al., 1986; Lopez et al., 1990; Delori et al., 1995b; Kennedy et al., 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahn J, Wong JT, Molday RS, 2000, The effect of lipid environment and retinoids on the ATPase activity of ABCR, the photoreceptor ABC transporter responsible for Stargardt macular dystrophy. JBiol Chem. 275:20399.

    Article  CAS  Google Scholar 

  • Allikmets R, 2000, Further evidence for an association of ABCR alleles with age-related macular degeneration. The international ABCR Screening Consortium. Am J Hum Genet. 67:487.

    Article  PubMed  CAS  Google Scholar 

  • Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, Peiffer A, Zabriskie NA, Li Y, Hutchinson A, Dean M, Lupski JR, Leppert M, 1997, Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shabat S, Itagaki Y, Jockusch S, Sparrow JR, Turro NJ, Nakanishi K, 2002a, Formation of a nona-oxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. Angew Chem In! Ed. 41: 814.

    Article  CAS  Google Scholar 

  • Ben-Shabat S, Parish CA, Vollmer HR, Itagaki Y, Fishkin N, Nakanishi K, Sparrow JR, 2002b, Biosynthetic studies ofA2E, a major fluorophore of RPE lipofuscin. JBiol Chem. 277:7183.

    Article  CAS  Google Scholar 

  • Bressler SB, Bressler NM, Gragoudas ES, 2000, Age-related macular degeneration: drusen and geographic atrophy. In: Albert DM, Jakobiec FA, Azar DT, Gragoudas ES (eds) Principles and Practice of Ophthalmology, vol 3. W.B. Saunders Co, Philadelphia, pp 1982.

    Google Scholar 

  • Busch EM, Gorgels TGMF, Roberts JE, van Norren D, 1999a, The effects of two stereoisomers of Nacetylcysteine on photochemical damage by UVA and blue light in rat retina. Photochem Photobiol. 70:353.

    CAS  Google Scholar 

  • Busch EM, Gorgels TGMF, van Norren D, 19996, Temporal sequences of changes in rat retina after UV-A and blue light exposure. Vision Res. 39:1233.

    Google Scholar 

  • De S, Sakmar TP, 2002, Interaction of A2E with model membranes. Implications to the pathogenesis of age-related macular degeneration. JGen Physio.1120:147.

    Article  Google Scholar 

  • Delori FC, 1995, RPE lipofuscin in ageing and age-related macular degeneration. In: Coscas G, Piccolino FC (eds) Retinal Pigment Epithelium and Macular Disease (Documenta Ophthalmologica), vol 62. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 37.

    Chapter  Google Scholar 

  • Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ, 1995a, In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci. 36:718.

    CAS  Google Scholar 

  • Delori FC, Goger DG, Dorey CK, 2001, Age-related accumulation and spatial distribution of lipofuscin in RPE

    Google Scholar 

  • of normal subjects. Invest Ophthalmol Vis Sci. 42:1855.

    Google Scholar 

  • Delori FC, Staurenghi G, Arend O, Dorey CK, Goger DG, Weiter JJ, 19956, In vivo measurement of lipofuscin in Stargardt’s disease--Fundus flavimaculatus. Invest Ophthalmol Vis Sci. 36:2327.

    Google Scholar 

  • Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ, 1989, Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 30:1691.

    PubMed  CAS  Google Scholar 

  • Eldred GE, 1998 Lipofuscin and other lysosomal storage deposits in the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ (eds) The Retinal Pigment Epithelium: Function and Disease. Oxford University Press, New York, pp 651.

    Google Scholar 

  • Eldred GE, Katz ML, 1988, Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res. 47:71.

    Article  PubMed  CAS  Google Scholar 

  • Eldred GE, Lasky MR, 1993, Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724.

    Article  PubMed  CAS  Google Scholar 

  • Feeney-Burns L, Hilderbrand ES, Eldridge S, 1984, Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci. 25:195.

    PubMed  CAS  Google Scholar 

  • Gaillard ER, Zheng L, Merriam JC, Dillon J, 2000, Age-related changes in the absorption characteristics of the primate lens. Invest Ophthalmol Vis Sci. 41:1454.

    PubMed  CAS  Google Scholar 

  • Ham WTJ, Allen RG, Feeney-Burns L, Marmor MF, Parver LM, Proctor PH, Sliney DH, Wolbarsht ML (eds), 1986, The involvement of the retinal pigment epithelium. CRC Press, Inc, Boca Raton.

    Google Scholar 

  • Ham WTJ, Mueller HA, Ruffolo JJJ, Millen JE, S.F. C, Guerry RK, Guerry DI, 1984, Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res. 3:165.

    Article  PubMed  CAS  Google Scholar 

  • Ham WTJ, Ruffolo JJJ, Mueller HA, Clarke AM, Moon ME, 1978, Histologic analysis of photochemical lesions produced in rhesus retina by short-wavelength light. Invest Ophthalmol Vis Sci. 17:1029.

    PubMed  Google Scholar 

  • Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE, 2001, Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci. 42:1051.

    PubMed  CAS  Google Scholar 

  • Holz FG, Bellmann C, Margaritidis M, Schutt F, Otto TP, Volcker HE, 1999, Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration.Graefe’s Arch Clin Exp Ophthalmol. 237:145.

    Article  CAS  Google Scholar 

  • Katz ML, Drea CM, Robison WG, Jr., 1986, Relationship between dietary retinol and lipofuscin in the retinal pigment epithelium. Mech Ageing Dev. 35:291.

    Article  PubMed  CAS  Google Scholar 

  • Katz ML, Norberg M, Stientjes HJ, 1992, Reduced phagosomal content of the retinal pigment epithelium in response to retinoid deprivatioin. Invest Ophthalmol Vis Sci. 33:2612.

    PubMed  CAS  Google Scholar 

  • Katz ML, Redmond TM, 2001, Effect of Rpe65 knockouton accumulation of lipofuscin fluorophores in the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 42:3023.

    PubMed  CAS  Google Scholar 

  • Kennedy CJ, Rakoczy PE, Constable IJ, 1995, Lipofuscin of the retinal pigment epithelium: a review. Eye 9:763.

    Article  PubMed  Google Scholar 

  • Kitagawa K, Nishida S, Ogura Y, 1989, In vivo quantitation of autofluorescence in human retinal pigment epithelium. Ophthalmologica 199:116.

    Article  PubMed  CAS  Google Scholar 

  • Liu IY, White L, LaCroix AZ, 1989, The association of age-related macular degeneration and lens opacities in the aged. Am JPublic Health 79:765.

    Article  CAS  Google Scholar 

  • Liu J, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR, 2000, The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. JBiol Chem. 275:29354.

    Article  CAS  Google Scholar 

  • Lopez PF, Maumenee IH, de la Cruz Z, Green WR, 1990, Autosomal-dominant fundus favimaculatus. Clinicopathologic correlation. Ophthalmol. 97: 798.

    CAS  Google Scholar 

  • Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH, 2001, Delayed dark adaptation and lipofuscin accumulation in abcr+/- mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci. 42:1685.

    PubMed  CAS  Google Scholar 

  • Mata NL, Weng J, Travis GH, 2000, Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA. 97:7154.

    Article  PubMed  CAS  Google Scholar 

  • Okubo A, Rosa RHJ, Bunce CV, Alexander RA, Fan JT, Bird AC, Luthert PJ, 1999, The relationships of age changes in retinal pigment epithelium and Bruch’s membrane. Invest Ophthalmol Vis Sci. 40:443.

    PubMed  CAS  Google Scholar 

  • Parish CA, Hashimoto M, Nakanishi K, Dillon J, Sparrow JR, 1998, Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Nail Acad Sci USA. 95:14609.

    Article  CAS  Google Scholar 

  • Pollack A, Bukelman A, Zalish M, Leiba H, Oliver M, 1998, The course of age-related macular degeneration following bilateral cataract surgery. Ophthalmic Surg Lasers 29:286.

    PubMed  CAS  Google Scholar 

  • Pollack A, Marcovich A, Bukelman A, Oliver M, 1996, Age-related macular degeneration after extracapsular cataract extraction with intraocular lens implantation. Ophthalmology 103:1546.

    PubMed  CAS  Google Scholar 

  • Putting BJ, Van Best JA, Vrensen GFJM, Oosterhuis JA, 1994, Blue-light-induced dysfunction of the blood-retinal barrier at the pigment epithelium in albino versus pigmented rabbits. Exp Eye Res 58:31.

    Article  PubMed  CAS  Google Scholar 

  • Rabb MF, Tso MO, Fishman GA, 1986, Cone-rod dystrophy. A clinical and histopathologic report. Ophthalmology 93:1443.

    PubMed  CAS  Google Scholar 

  • Ren RF, Sakai N, Nakanishi K, 1997, Total synthesis of the ocular age pigment A2E: a convergent pathway. J. Am. Chem. Soc. 119:3619.

    Article  CAS  Google Scholar 

  • Sakai N, Decatur J, Nakanishi K, Eldred GE, 1996, Ocular age pigment “A2E”: An unprecedented pyridinium bisretinoid. J. Am. Chem. Soc. 118:1559.

    Article  CAS  Google Scholar 

  • Schutt F, Davies S, Kopitz J, Holz FG, Boulton ME, 2000, Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci. 41:2303.

    PubMed  CAS  Google Scholar 

  • Sparrow JR, Cai B, 2001, Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bel-2. Invest Ophthalmol Vis Sci 42:1356.

    PubMed  CAS  Google Scholar 

  • Sparrow JR, Nakanishi K, Parish CA, 2000, The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981.

    PubMed  CAS  Google Scholar 

  • Sparrow JR, Parish CA, Hashimoto M, Nakanishi K, 1999, A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 40:2988.

    PubMed  CAS  Google Scholar 

  • Sparrow JR, Zhou J, Ben-Shabat S, Vollmer H, Itagaki Y, Nakanishi K, 2002, Involvement of oxidative mechanisms in blue light induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci. 43: 222.

    Google Scholar 

  • Sparrow Jr, Zhou J, Cai B, 2003, DNA is a target of the photodynamic effects elicited in A2E-laden RPE by blue light illumination. IOVS (in press)

    Google Scholar 

  • Sun H, Molday RS, Nathans J, 1999, Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem. 274:8269.

    Article  PubMed  CAS  Google Scholar 

  • Taylor HR, West S, Munoz B, Rosenthal FS, Bressler SB, Bressler NM, 1992, The long-term effects of visible light on the eye [see comments]. Arch Ophthalmol 110:99.

    Article  PubMed  CAS  Google Scholar 

  • von Rückmann A, Fitzke FW, Bird AC, 1997, Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci. 38:478.

    Google Scholar 

  • Weingeist TA, Kobrin JL, Watzke RC, 1982, Histopathology of Best’s macular dystrophy. Arch Ophthalmol. 100:1108.

    Article  PubMed  CAS  Google Scholar 

  • Weiter JJ, Delori FC, Wing GL, Fitch KA, 1986, Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci. 27:145.

    PubMed  CAS  Google Scholar 

  • Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH, 1999, Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13.

    Article  PubMed  CAS  Google Scholar 

  • West SK, Rosenthal FS, Bressler NM, Bressler SB, Munoz B, Fine SL, Taylor HR, 1989, Exposure to sunlight and other risk factors for age-related macular degeneration [see comments]. Arch Ophthalmol 107: 875

    Article  PubMed  CAS  Google Scholar 

  • Wing GL, Blanchard GC, Weiter JJ, 1978, The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 17:601.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Sparrow, J.R. et al. (2003). A2E, a Fluorophore of RPE Lipofuscin: Can It Cause RPE Degeneration?. In: LaVail, M.M., Hollyfield, J.G., Anderson, R.E. (eds) Retinal Degenerations. Advances in Experimental Medicine and Biology, vol 533. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0067-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0067-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4909-9

  • Online ISBN: 978-1-4615-0067-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics