Skip to main content

Mechanisms of Clinical Resistance to 5-Fluorouracil Chemotherapy

  • Chapter
Drug Resistance

Part of the book series: Cancer Treatment and Research ((CTAR,volume 87))

Abstract

In the late 1950s, the era of fluoropyrimidine antimetabolite chemotherapy was ushered in with the synthesis of 5-fluorouracil (5-FU) by Heidelberger and colleagues [1]. The rationale for the development of this class of compounds arose from studies that showed preferential utilization of the nucleobase uracil for nucleic acid biosynthesis by rat hepatoma cells when compared with normal rat intestinal mucosa [2]. In view of this finding and the fact that profound biological effects had been observed upon substitution of fluorine for hydrogen in several classes of compounds, it was postulated that fluorine-substituted pyrimidine analogs might display selective antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heidelberger C, Chaudhuri NK, Danenberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer RJ, Pleven E, Scheiner J (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179:663–666.

    PubMed  CAS  Google Scholar 

  2. Rutman RJ, Cantarow A, Paschkis KE (1954) Studies on 2-acetylaminofluorene carcinogenesis: II. The utilization of uracil-2-C14 by preneoplastic rat liver. Cancer Res 14:199–126.

    Google Scholar 

  3. Pinedo HM, Peters GFJ (1988) Fluorouracil: Biochemistry and pharmacology. J Clin Oncol 6:1653–1664.

    PubMed  CAS  Google Scholar 

  4. Moertel CG (1994) Chemotherapy for colorectal cancer. N Engl J Med 330:1136–1142.

    PubMed  CAS  Google Scholar 

  5. Petrelli N, Douglass HI, Herrera L, Russell D, Stablein DM, Bruckner HW, Mayer RJ, Schinella R, Green MD, Muggia FM, Megibow A, Greenwald ES, Bukowski RM, Harris J, Levin B, Gaynor E, Loutfi A, Kaiser MH, Barkin JS, Benedetto P, Woolley PV, Nauta R, Weaver DW, Leichman LP (1989) The modulation of fluorouracil with leucovorin in metastatic colorectal carcinoma: A prospective randomized phase III trial. J Clin Oncol 7:1419–1426.

    PubMed  CAS  Google Scholar 

  6. Erlichman C, Fine S, Wong A, Elhakim T (1988) A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma. J Clin Oncol 6:469–475.

    PubMed  CAS  Google Scholar 

  7. Poon MA, O’Connell MJ, Moertel CG, Wieand HS, Cullinan SA, Everson LK, Krook JE, Mailliard JA, Laurie JA, Tschetter LK, Wiesenfeld M (1989) Biochemical modulation of fluorouracil: Evidence of significant improvement of survival and quality of life in patients with advanced colorectal carcinoma. J Clin Oncol 7:1407–1417.

    PubMed  CAS  Google Scholar 

  8. Doroshow JH, Multhauf P, Leong L, Margolin K, Kitchfield T, Akman S, Carr B, Mertrand M, Goldberg D, Blayney D, Odujinrin O, DeLap R, Shuster J, Newman E (1990) Prospective randomized comparison of fluorouracil versus fluorouracil and high-dose continuous infusion leucovorin calcium for the treatment of advanced measurable colorectal cancer in patients previously unexposed to chemotherapy. J Clin Oncol 8:491–501.

    PubMed  CAS  Google Scholar 

  9. Poon MA, O’Connell MJ, Wieand HS, Krook JE, Gerstner JB, Tschetter LK, Levitt R, Kardinal CG, Mailliard JA (1991) Biochemical modulation of fluorouracil with leucovorin: Confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer. J Clin Oncol 9:1967–1972.

    PubMed  CAS  Google Scholar 

  10. Sotos GA, Grogan LM, Allegra CJ (1994) Preclinical and clinical aspects of biomodulation of 5-fluorouracil. Cancer Treat Rev 20:11–49.

    PubMed  CAS  Google Scholar 

  11. Wadler S, Schwartz EL (1990) Antineoplastic activity of the combination of interferon and cytotoxic agents against experimental and human malignancies: A review. Cancer Res 50:3473–3486.

    PubMed  CAS  Google Scholar 

  12. Grem JL, McAtee N, Murphy RF, Balis FM, Steinberg SM, Hamilton JM, Sorensen JM, Sartor I, Kramer BS, Goldstein LJ, Gay LM, Caubo KM, Goldspiel B, Allegra CJ (1991) A pilot study of interferon alfa-2a in combination with 5-fluorouracil plus high-dose leucovorin in metastatic gastrointestinal carcinoma. J Clin Oncol 9:1811–1820.

    PubMed  CAS  Google Scholar 

  13. Grem JL, Jordan E, Robson ME, Binder RA, Hamilton JM, Steinberg SM, Arbuck SG, Beveridge RA, Kales AN, Miller JA, Weiss RB, McAtee N, Chen A, Brewster L, Goldspiel B, Sover E, Bastian A, Allegra CJ (1993) Phase II study of 5-fluorouracil, leucovorin and interferon alfa-2a in metastatic colorectal carcinoma. J Clin Oncol 11:1737–1745.

    PubMed  CAS  Google Scholar 

  14. Kohne-Wompner C-H, Schmoll H-J, Harstrick A, Rustum YM (1992) Chemotherapeutic strategies in metastatic colorectal cancer: An overview of current clinical trials. Semin Oncol 19:105–125.

    PubMed  CAS  Google Scholar 

  15. Heidelberger C (1975) Fluorinated pyrimidines and their nucleosides. In A Sartorelli, D Johns, eds. Antineoplastic and Immunosuppressive Agents. New York: Springer, pp 193–231.

    Google Scholar 

  16. Heidelberger C, Danenberg PV, Moran RG (1989) Fluorinated pyrimidines and their nucleosides. Adv Enzymol Relat Areas Mol Biol 54:57–119.

    Google Scholar 

  17. Santi DV, McHenry CS, Sommer H (1974) Mechanism of interaction of thymidine synthetase with 5-fluorodeoxyuridylate. Biochemistry 13:471–481.

    PubMed  CAS  Google Scholar 

  18. Aschele C, Sobrero A, Faderan MA, Bertino JR (1992) Novel mechanisms of resistance to 5-fluorouracil in human colon cancer (HCT-8) sublines following expsoure to two different clinically relevant dose schedules. Cancer Res 52:1855–1864.

    PubMed  CAS  Google Scholar 

  19. Ardalan B, Cooney DA, Jayaram HN, Carrico CK, Glazar RI, Macdonald J, Schein PS (1980) Mechanisms of sensitivity and resistance of murine tumors to 5-fluorouracil. Cancer Res 40:1431–1437.

    PubMed  CAS  Google Scholar 

  20. Spiegelman S, Sawyer R, Nayak R, Ritzi E, Stolfi R, Martin D (1980) Improving the antitumor activity of 5-fluorouracil by increasing its incorporation into RNA via metabolic modulation. Proc Natl Acad Sci USA 77:4966–4970.

    PubMed  CAS  Google Scholar 

  21. Houghton JA, Maroda SJ, Phillips JO, Houghton PJ (1981) Biochemical determinants of responsiveness to 5-fluorouracil and its derivatives in xenografts of human colorectal adenocarcinomas in mice. Cancer Res 41:144–149.

    PubMed  CAS  Google Scholar 

  22. Mulkins MA, Heidelberger C (1982) Biochemical characterization of fluoropyrimidine-resistant murine leukemic cell lines. Cancer Res 42:965–973.

    PubMed  CAS  Google Scholar 

  23. Yin MB, Zakrzewski SF, Hakala MT (1983) Relationship of cellular folate cofactor pools to the activity of 5-fluorouracil. Mol Pharmacol 23:190–197.

    PubMed  CAS  Google Scholar 

  24. Fernandes DJ, Crawford SK (1985) Resistance to CCRF-CEM cloned sublines to 5-fluorodeoxyuridine associated with enhanced phosphatased activities. Biochem Pharmacol 34:125–132.

    PubMed  CAS  Google Scholar 

  25. Berger SH, Jenh C-H, Johnson LF, Berger F (1985) Thymidylate synthase overproduction and gene amplification in fluorodeoxyuridine-resistant human cells. Mol Pharmacol 28:461–467.

    PubMed  CAS  Google Scholar 

  26. Clark JL, Berger SH, Mittleman A, Berger F (1987) Thymidylate synthase gene amplification in a colon tumor resistant to fluoropyrimidine chemotherapy. Cancer Treat Rep 71:261–265.

    PubMed  CAS  Google Scholar 

  27. Berger SH, Barbour KW, Berger F (1988) A naturally occurring variation in thymidylate synthase structure is associated with a reduced response to 5-fluoro-2’-deoxyuridine in a human colon tumor cell line. Mol Pharmacol 34:480–484.

    PubMed  CAS  Google Scholar 

  28. Kessel D, Hall TC, Wodinsky I (1966) Nucleotide formation as a determinant of 5-fluorouracil response in mouse leukemia. Science 154:911–913.

    PubMed  CAS  Google Scholar 

  29. Chu E, Lai G-M, Zinn S, Allegra CJ (1990) Resistance of a human ovarian cancer line to 5-fluorouracil associated with decreased levels of 5-fluorouracil in DNA. Mol Pharmacol 38:410–417.

    PubMed  CAS  Google Scholar 

  30. Canman CE, Tang H-Y, Normolle DP, Lawrence TS, Maybaum J (1992) Variations in patterns of DNA damage induced in human colorectal tumor cells by 5-fluorodeoxyuridine: Implications for mechanisms of resistance and cytotoxicity. Proc Natl Acad Sci USA 89:10474–10478.

    PubMed  CAS  Google Scholar 

  31. Canman CE, Radany EH, Parsels LA, Davis MA, Lawrence TS, Maybaum J (1994) Induction of resistance to fluorodeoxyuridine cytotoxicity and DNA damage in human tumor cells by expression of Escherichia coli deoxyuridinetriphosphatase. Cancer Res 54:2296–2298.

    PubMed  CAS  Google Scholar 

  32. Danenberg KD, Danenberg PV (1979) Evidence for a sequential interaction of the subunits of thymidylate synthetase. J Biol Chem 254:4345–4348.

    PubMed  CAS  Google Scholar 

  33. Danenberg PV, Lockshin A (1982) Tight-binding complexes of thymidylate synthetase, folate analogs, and deoxyribonucleotides. Adv Enzyme Regul 20:99–101.

    PubMed  CAS  Google Scholar 

  34. Keyomarsi K, Moran RG (1986) Folinic acid augmentation of the effects of fluoropyrimidines on murine and human leukemic cells. Cancer Res 46:5229–5235.

    PubMed  CAS  Google Scholar 

  35. Radparvar S, Houghton PJ, Houghton JA (1989) Effect of polyglutamylation of 5,10-methylenetetrahydrofolate on the binding of 5-fluoro-2′-deoxyuridylate to thymidylate synthase purified from a human colon adenocarcinoma xenograft. Biochem Pharmacol 38:335–342.

    PubMed  CAS  Google Scholar 

  36. Mini E, Mazzei T, Coronnello M, Criscuoli L, Gualtieri M, Periti P, Bertino JR (1987) Effects of 5-methyltetrahydrofolate on the activity of fluoropyrimidines against human leukemia (CCRFCEM) cells. Biochem Pharmacol 36:2905–2911.

    PubMed  CAS  Google Scholar 

  37. Houghton JA, Williams LG, de Graaf SSN, Cheshire PJ, Rodman JH, Maneval DC, Wainer IW, Jadaud P, Houghton PJ (1990) Relationship between dose rate of [6RS] leucovorin administration, plasma concentrations of reduced folates, and pools of 5, 10-methylenetetrahydrofolates and tetrahydrofolates in human colon adenocarcinoma xenografts. Cancer Res 50:3493–3502.

    PubMed  CAS  Google Scholar 

  38. Schimke RT (1984) Gene amplification in cultured animal cells. Cell 37:705–713.

    PubMed  CAS  Google Scholar 

  39. Carman MD, Schornagel JH, Rivest RS, Srimatkandada S, Portlock CS, Duffy T, Bertino JR (1984) Resistance to methotrexate due to gene amplification in a patient with acute leukemia. J Clin Oncol 2:16–20.

    PubMed  CAS  Google Scholar 

  40. Horns CR Jr, Dower WJ, Schimke RT (1984) Gene amplification in a leukemic patient treated with methotrexate. J Clin Oncol 2:2–7.

    PubMed  Google Scholar 

  41. Lesuffleur T, Kornowski A, Luccioni C, Muleris M, Barbat A, Beaumatin J, Dussaulx E, Dutrillaux B, Zweibaum A (1991) Adaptation to 5-fluorouracil of the heterogeneous human colon tumor cell line HT-29 results in the selection of cells committed to differentiation. Int J Cancer 49:721–730.

    PubMed  CAS  Google Scholar 

  42. Jenh C-H, Geyer PK, Baskin F, Johnson LF (1985) Thymidylate synthase gene amplification in fluorodeoxyuridine-resistant mouse cell lines. Mol Pharmacol 28:80–85.

    PubMed  CAS  Google Scholar 

  43. Imam AMA, Crossley PH, Kackman AL, Little PFR (1987) Analysis of thymidylate synthase gene amplification and of mRNA levels in the cell cycle. J Biol Chem 262:7268–7373.

    Google Scholar 

  44. Danenberg KD, Danenberg PV (1989) Activity of thymidylate synthetase and its inhibition by 5-fluorouracil in highly enzyme-overproducing cells resistant to 10-propargyl-5,8-dideazafolate. Mol Pharmacol 36:219–223.

    PubMed  CAS  Google Scholar 

  45. Scanion KJ, Kashani-Saabet M (1988) Elevated expression of thymidylate synthase cycle genes in cisplatin-resistant human ovarian carcinoma A2780 cells. Proc Natl Acad Sci USA 85:650–653.

    Google Scholar 

  46. Chu E, Drake JC, Koeller DM, Zinn S, Jamis-Dow CA, Yeh GC, Allegra CJ (1991) Induction of thymidylate synthase associated with multidrug resistance in human breast and colon cancer cell lines. Mol Pharmacol 39:136–143.

    PubMed  CAS  Google Scholar 

  47. Spears CP, Shahinian AH, Moran RG, Heidelberger C, Corbett TH (1982) In vivo kinetics of thymidylate synthetase inhibition in 5-fluoro-uracil sensitive and resistant murine colon adenocarcinomas. Cancer Res 42:450–456.

    PubMed  CAS  Google Scholar 

  48. Washtein WL (1984) Increased levels of thymidylate synthetase in cells exposed to 5-fluorouracil. Mol Pharmacol 25:171–177.

    Google Scholar 

  49. Berne MHO, Gustavsson BG, Almersjo O, Spears PC, Frosing R (1986) Sequential methotrexate/ 5-FU: FdUMP formation and TS inhibition in a transplantable rodent colon adenocarcinoma. Cancer Chemother Pharmacol 16:237–242.

    PubMed  CAS  Google Scholar 

  50. Berne M, Gustavsson B, Almersjo I, Spears CP, Waldenstrom J (1987) Concurrent allopurinol and 5-fluorouracil: 5-Fluoro-2’-deoxyuridylate formation and thymidylate synthase inhibition in rat colon carcinoma and in regenerating rat liver. Cancer Chemother Pharmacol 20:193–197.

    PubMed  CAS  Google Scholar 

  51. Keyomarsi K, Moran RG (1988) Mechanism of the cytotoxic synergism of fluoropyrimidines and folinic acid in mouse leukemic cells. J Biol Chem 263:14402–14409.

    PubMed  CAS  Google Scholar 

  52. Van der Wilt CL, Pinedo HM, Smit K, Peters GJ (1992) Elevation of thymidylate synthase following 5-fluorouracil treatment is prevented by the addition of leucovorin in murine colon tumors. Cancer Res 52:4922–4928.

    PubMed  Google Scholar 

  53. Swain SM, Lippman ME, Egan EF, Drake JC, Steinberg SM, Allegra CJ (1989) 5-Fluorouracil and high-dose leucovorin in previously treated patients with metastatic breast cancer. J Clin Oncol 7:890–899.

    PubMed  CAS  Google Scholar 

  54. Chu E, Zinn S, Boarman D, Allegra CJ (1990) Interaction of gamma interferon and 5-fluorouracil in the H630 human colon carcinoma cell line. Cancer Res 50:5834–5840.

    PubMed  CAS  Google Scholar 

  55. Chu E, Koeller DM, Johnston PG, Zinn S, Allegra CJ (1993) Regulation of thymidylate synthase in human colon cancer cells treated with 5-fluorouracil and interferon-gamma. Mol Pharmacol 43:527–533.

    PubMed  CAS  Google Scholar 

  56. Belfort M, Maley G, Pedersen-Lane J, Maley F (1983) Primary structure of the Escherichia coli thyA gene and its thymidylate synthase product. Proc Natl Acad Sci USA 80:4914–4918.

    PubMed  CAS  Google Scholar 

  57. Rao KN, Kisliuk RL (1983) Association of RNA with thymidylate synthase from methotrexateresistant Streptococcus faecium. Proc Natl Acad Sci USA 80:916–920.

    PubMed  CAS  Google Scholar 

  58. Thorndike J, Kisliuk RL (1986) Identification of poly G bound to thymidylate synthase. Biochem Biophys Res Commun 139:461–465.

    PubMed  CAS  Google Scholar 

  59. Takeishi K, Kaneda S, Ayusawa D, Shimizu K, Gotoh O, Seno T (1985) Nucleotide sequence of a functional cDNA for human thymidylate synthase. Nucleic Acids Res 13:2035–2043.

    PubMed  CAS  Google Scholar 

  60. Kaneda S, Takeishi K, Ayusawa D, Shimizu K, Seno T, Altman S (1987) Role in translation of a triple tandemly repeated seqduence in the 5’-untranslated region of human thymidylate synthase mRNA. Nucleic Acids Res 15:1259–1270.

    PubMed  CAS  Google Scholar 

  61. Keyomarsi K, Samet J, Molnar G, Pardee AB (1993) The thymidylate synthase inhibitor, ICI D1694, overcomes translational detainment of the enzyme. J Biol Chem 268:15142–15149.

    PubMed  CAS  Google Scholar 

  62. Gold L (1988) Posttranscriptional regulatory mechanisms in Escherichia coli. Ann Rev Biochem 57:199–233.

    PubMed  CAS  Google Scholar 

  63. Hershey JWB (1991) Translational control in mammalian cells. Annu Rev Biochem 60:717–755.

    PubMed  CAS  Google Scholar 

  64. Melefors O, Hentze MW (1993) Translational regulation by mRNA/protein interactions in eukaryotic cells: Ferritin and beyond. Bioessays 15:85–90.

    PubMed  CAS  Google Scholar 

  65. Theil EC (1990) Regulation of ferritin and transferrin receptor mRNAs. J Biol Chem 265:4771–4774.

    PubMed  CAS  Google Scholar 

  66. Klausner RD, Rouault TA, Harford JB (1993) Regulating the fate of mRNA: The control of cellular iron metabolism. Cell 72:19–28.

    PubMed  CAS  Google Scholar 

  67. Chu E, Koeller DM, Casey JL, Drake JC, Chabner BA, Elwood PC, Zinn S, Allegra CJ (1991) Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc Natl Acad Sci USA 88:8977–8981.

    PubMed  CAS  Google Scholar 

  68. Yates JL, Arfsten AE, Nomura M (1980) In vitro expression of Escherichia coli ribosomal protein genes: Autogenous inhibition of translation. Proc Natl Acad Sci USA 77:1837–1841.

    PubMed  CAS  Google Scholar 

  69. Winter RB, Morrissey L, Gauss P, Gold L, Hsu T, Karam J (1987) Bacteriophage T4 regA protein binds to mRNAs and prevents translation initiation. Proc Natl Acad Sci USA 84:7822–7826.

    PubMed  CAS  Google Scholar 

  70. Andrake M, Guild N, Hsu T, Gold L, Tuerk C, Karam J (1988) DNA polymerase of bacteriophage T4 is an autogenous translational repressor. Proc Natl Acad Sci USA 85:7942–7946.

    PubMed  CAS  Google Scholar 

  71. Bernardi A, Spahr P-F (1972) Nucleotide sequence at the binding site for coat protein on RNA of bacteriophage R17. Proc Natl Acad Sci USA 69:3033–3037.

    PubMed  CAS  Google Scholar 

  72. Chu E, Voeller D, Koeller DM, Drake JC, Takimoto CH, Maley GF, Maley F, Allegra CJ (1993) Identification of an RNA binding site for human thymidylate synthase. Proc Natl Acad Sci USA 90:517–521.

    PubMed  CAS  Google Scholar 

  73. Carey J, Cameron V, de Haseth PL, Uhlenbeck OC (1983) Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry 22:2601–2610.

    PubMed  CAS  Google Scholar 

  74. Romaniuk PJ, Uhlenbeck OC (1985) Nucleoside and nucleotide inactivation of the R-17 coat protein: Evidence for a transient covalent RNA-protein bond. Biochemistry 24:4239–4244.

    PubMed  CAS  Google Scholar 

  75. Koontz SW, Schimmel PR (1979) Aminoacyl-tRNA synthetase-catalyzed cleavage of the glycosidic bond of 5-halogenated uridines. J Biol Chem 254:12277–12280.

    PubMed  CAS  Google Scholar 

  76. Starzyk RM, Koontz SW, Schimmel P (1982) A covalent adduct between the uracil ring and the active site of an aminoacyl tRNA synthetase. Nature 298:136–140.

    PubMed  CAS  Google Scholar 

  77. Leary RP, Beaudette N, Kisliuk RL (1975) Interaction of deoxyuridylate with thymidylate synthetase. J Biol Chem 250:4864–4868.

    PubMed  CAS  Google Scholar 

  78. Plese PC, Dunlap RB (1977) Sulfhydryl group modification of thymidylate synthetase and its effect on activity and ternary complex formation. J Biol Chem 252:6139–6144.

    PubMed  CAS  Google Scholar 

  79. Danenberg PV (1977) Thymidylate synthase: A target enzyme in cancer chemotherapy. Biochem Biophys Acta 473:73–97.

    PubMed  CAS  Google Scholar 

  80. Chu E, Voeller DM, Morrison PF, Jones KL, Takechi T, Maley GF, Maley F, Allegra CJ (1994) The effect of reducing reagents on binding of thymidylate synthase protein to thymidylate synthase messenger RNA. J Biol Chem 269:20289–20293.

    PubMed  CAS  Google Scholar 

  81. Bastow KF, Prabhu R, Cheng YC (1984) The intracellular content of dihydrofolate reductase: Possibilities for control and implications for chemotherapy. Adv Enzyme Regul 22:15–26.

    PubMed  CAS  Google Scholar 

  82. Domin BA, Grill SP, Bastow KF, Cheng YC (1982) Effect of methotrexate on dihydrofolate reductase activity in methotrexate-resistant human KB cells. Mol Pharmacol 21:478–482.

    PubMed  CAS  Google Scholar 

  83. Cowan KH, Goldsmith ME, Ricciardone MD, Levine R, Rubalcaba E, Jolivet J (1986) Regulation of dihydrofolate reductase in human breast cancer cells and in mutant hamster cells transfected with a human dihydrofolate reductase minigene. Mol Pharmacol 30:69–76.

    PubMed  CAS  Google Scholar 

  84. Chu E, Takimoto CH, Voeller D, Grem JL, Allegra CJ (1993) Specific binding of human dihydrofolate reductase protein to dihydrofolate reductase messenger RNA in vitro. Biochemistry 32:4756–4760.

    PubMed  CAS  Google Scholar 

  85. Davies JF II, Delcamp TJ, Prendergast NJ, Ashford VA, Freisheim JH, Kraut J (1990) Crystal structures of recombinant human dihydrofolate reductase complexed with folate and 5-deazafolate. Biochemistry 29:9467–9479.

    PubMed  CAS  Google Scholar 

  86. Bystroff C, Kraut J (1991) Crystal structure of unliganded Escherichia coli dihydrofolate reductase ligand-induced conformational changes and cooperativity in binding. Biochemistry 30:2227–2239.

    PubMed  CAS  Google Scholar 

  87. Sherley JL, Kelly TJ (1988) Regulation of human thymidine kinase during the cell cycle. J Biol Chem 263:8350–8358.

    PubMed  CAS  Google Scholar 

  88. Ito M, Contrad SE (1990) Independent regulation of thymidine kinase mRNA and enzyme levels in serum-stimulated cells. J Biol Chem 265:6954–6960.

    PubMed  CAS  Google Scholar 

  89. Knofler M, Waltner C, Wintersberger E, Mullner EW (1993) Translational repression of endogenous thymidine kinase mRNA in differentiating and arresting mouse cells. J Biol Chem 268:11409–11416.

    PubMed  CAS  Google Scholar 

  90. Jones TR, Calvert AH, Jackman AL, Brown SJ, Jones M, Harrap KR (1981) A potent antitumor quinazoline inhibitor of thymidylate synthetase: Synthesis, biological properties and therapeutic results in mice. Eur J Cancer 17:11–19.

    PubMed  CAS  Google Scholar 

  91. Jackson RC, Jackman AL, Calvert AH (1983) Biochemical effects of a quinazoline inhibitor of thymidylate synthetase N-(4-(N-((2-amino-4-hydroxy-6-quinazolinyl)methyl) prop-2-ynylamino)-benzyol)-L-glutamic acid (CB3717), on human lymphoblastoid cells. Biochem Pharmacol 32:3783–3790.

    PubMed  CAS  Google Scholar 

  92. Jackman AL, Taylor GA, Calvert AH, Harrap KR (1984) Modulation of anti-metabolite effects: Effects of thymidine on the efficacy of the quinazoline-based thymidylate synthetase inhibitor, CB3717. Biochem Pharmacol 33:3269–3275.

    PubMed  CAS  Google Scholar 

  93. Jansen G, Schornagel JH, Westerhof GR, Rijksen G, Newell DR, Jackman AL (1990) Multiple membrane transport systems for the uptake of folate-based thymidylate synthase inhibitors. Cancer Res 50:7544–7548.

    PubMed  CAS  Google Scholar 

  94. Alison DL, Newell DR, Sessa C, Harland SJ, Hart LI, Harrap KR, Calvert AH (1985) The clinical pharmacokinetics of the novel antifolate N10-propargyl-5,8-dideazafolic acid (CB3717). Cancer Chemother Pharmacol 14:265–271.

    PubMed  CAS  Google Scholar 

  95. Calvert AH, Harland SJ, Robinson BA, Jackman AL, Jones TR, Newell DR, Siddik ZH, Wiltshaw E, McElwain TJ, Smith IE, Harrap KR (1986) A phase I evaluation of the quinazoline antifolate thymidylate synthase inhibitor N10-propargyl-5,8-dideazafolic acid, CB3717. Clin Oncol 4:1245–1252.

    CAS  Google Scholar 

  96. Cantwell BMJ, MaCaulay V, Harris AL, Kaye SB, Smith IE, Milsted RAV, Calvert AH (1988) Phase II study of the antifolate N10-propargyl-5,8-dideazafolic acid (CB 3717) in advanced breast cancer. Eur J Cancer Clin Oncol 24:733–736.

    PubMed  CAS  Google Scholar 

  97. Jones TR, Thornton TJ, Flinn A, Jackman AL, Newell DR, Calvert AH (1989) Quinazoline antifolates inhibiting thymidylate synthase: 2-Desamino derivatives with enhanced solubility and potency. J Med Chem 32:847–852.

    PubMed  CAS  Google Scholar 

  98. Jackman AL, Taylor GA, Gibson W, Kimbell R, Brown M, Calvert AH, Judson IR, Hughes LR (1991) ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: A new agent for clinical study. Cancer Res 51:5579–5586.

    PubMed  CAS  Google Scholar 

  99. Harrap KR, Jackman AL, Newell DR, Taylor GA, Hughes LR, Calvert AH (1989) Thymidylate synthase: A target for anticancer drug design. Adv Enzyme Regul 29:161–179.

    PubMed  CAS  Google Scholar 

  100. Aherne GW, Farrugia DC, Ward E, Sutcliffe F, Jackman AL (1995) ZD1694 (Tomudex) and polyglutamate levels in mouse plasma and tissues measured by radioimmunoassay (RIA) and the effect of leucovorin (LV) Proc Am Assoc Cancer Res 36:2243.

    Google Scholar 

  101. Jackman AL, Gibson W (1995) Polyglutamation of the thymidylate synthase (TS) inhibitor, ZD1694 (Tomudex), in normal mouse tissues. Proc Am Assoc Cancer Res 36:2245.

    Google Scholar 

  102. Drake JC, Allegra CJ, Moran RG, Johnston PG (1995) The development and characterization of Tomudex (ZD1694) resistant human breast and colon carcinoma cell lines. Proc Am Assoc Cancer Res 36:2271.

    Google Scholar 

  103. Lu K, McGuire JJ, Rustum YM (1995) Characterization of a folylpolyglutamate synthetase deficient, ZD1694-resistant/methotrexate-sensitive HCT-8 human ileocecal adenocarcinoma subline. Proc Am Assoc Cancer Res 36:1895.

    Google Scholar 

  104. Takemura Y, Walton MI, Gibson W, Kimbell R, Miyachi H, Kobayashi H, Jackman AL (1995) The influence of drug exposure manner on the development of ZD1694-resistance in cultured human leukemia cells. Proc Am Assoc Cancer Res 36:1890.

    Google Scholar 

  105. Van der Wilt CL, Pinedo HM, Kuiper CM, Smid K, Peters GJ (1995) Biochemical basis for the combined antiproliferative effect of AG337 or ZD1694 and 5-fluorouracil. Proc Am Assoc Cancer Res 36:2260.

    Google Scholar 

  106. Izzo J, Zielinski Z, Chang YM, Bertino JR (1995) Molecular mechanisms of the synergistic sequential administration of D1694 (Tomudex) followed by Fura in colon carcinoma cells. Proc Am Assoc Cancer Res 36:2272.

    Google Scholar 

  107. Clarke SJ, Ward J, de Boer M, Planting A, Verweij J, Sutcliffe F, Azab M, Judson IR (1994) Phase I study of the new thymidylate synthase inhibitor Tomudex (ZD1694) in patients with advanced malignancy. Ann Oncol 5:240.

    Google Scholar 

  108. Sorensen JM, Jordan E, Grem JL, Arbuck SG, Chen AP, Hamilton JM, Johnston P, Kohler DR, Goldspiel BR, Allegra CJ (1994) Phase I trial of ZD1694 (Tomudex), a direct inhibitor of thymidylate synthase. Ann Oncol 5:241.

    Google Scholar 

  109. Smith IE, Speilmann M, Bonneterre J, Namer M, Green M, Wandar HE, Toussaint C, Azab M (1994) Tomudex (ZD1694), a new thymidylate synthase inhibitor with antitumour activity in breast cancer. Ann Oncol 5:242.

    Google Scholar 

  110. Burris III H, Von Hoff D, Bowen K, Heaven R, Rinaldi D, Eckardt J, Fields S, Campbell L, Robert F, Patton S, Kennealey G (1994) A phase II trial of ZD1694, a novel thymidylate synthase inhibitor, in patients with advanced non-small cell lung cancer. Ann Oncol 5:244.

    Google Scholar 

  111. Gore M, Earl H, Cassidy J, Tattersal M, Mansi J, Azab M (1994) Phase II study of Tomudex (ZD1694) in refractory ovarian cancer. Ann Oncol 5:245.

    Google Scholar 

  112. Pazdur R, Casper ES, Meropol NJ, Fuchs C, Kennealey GT (1995) Phase II trial of Tomudex (ZD1694), a thymidylate synthase inhibitor, in advanced pancreatic cancer. Proc Am Soc Clin Oncol 13:613.

    Google Scholar 

  113. Zalcberg J, Cunningham D, Francois E, van Cutsem E, Schornagel J, Adenis A, Green M, Seymour L, Azab M (1995) The final results of a large phase II study of the potent thymidylate synthase (TS) inhibitor “Tomudex” (ZD1694) in advanced colorectal cancer. Proc Am Soc Clin Oncol 13:494.

    Google Scholar 

  114. Taylor EC, Kuhnt D, Shih C, Rinzel SM, Grindey GB, Barredo J, Jannatipour M, Moran RG (1992) A dideazatetrahydrofolate analogue lacking a chiral center at C-6,N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyal]-L-glutamic acid, is an inhibitor of thymidylate synthase. J Med Chem 35:4450–4454.

    PubMed  CAS  Google Scholar 

  115. Rinaldi DA, Burns HA, Dorr FA, Nelson J, Fields SM, Kuhn JG, Eckardt JR, Lu P, Woodworth JR, Corso SW, Von Hoff DD (1994) A phase I evaluation of the novel thymidylate synthase inhibitor, LY231514, in patients with advanced solid tumors. Proc Am Soc Clin Oncol 13:430.

    Google Scholar 

  116. Vasey PA, Calvert AH, Kaye SB, Cassidy J (1994) Clinical phase I study of LY231514 (an inhibitor of thymidylate synthase) using a daily X5 q21 schedule. Ann Oncol 5:237.

    Google Scholar 

  117. Rinaldi D, Burris H, Dorr F, Eckardt J, Fields S, Langley C, Clark G, Von Hoff D (1995) A phase I evaluation of LY231514 administered every 21 days, utilizing the modified continual reassessment method for dose escalation. Proc Am Soc Clin Oncol 14:1539.

    Google Scholar 

  118. Duch DS, Banks S, Dev IK, Dickerson SH, Ferone R, Health LS, Humphreys J, Knick V, Pendergast W, Singer S, Smith GK, Waters K, Wilson HR (1993) Biochemical and cellular pharmacology of 1843U89, a novel benzoquinazoline inhibitor of thymidylate synthase. Cancer Res 53:810–818.

    PubMed  CAS  Google Scholar 

  119. Walton MI, Gibson W, Aherne GW, Lawrence N, Stephens T, Smith M, Jackman AL (1994) Pharmacokinetics of the potent, non-polyglutamatable thymidylate synthase inhibitors CB 30900 and ZD9331 in mice. Proc Am Assoc Cancer Res 35:1793.

    Google Scholar 

  120. Boyle FT, Wardleworth JM, Hennequin LF, Kimbell R, Marsham PR, Stephens TC, Jackman AL (1994) ZD9331-Design of a novel non-polyglutamatable quinazoline-based inhibitor of thymidylate synthase (TS). Proc Am Assoc Cancer Res 35:1817.

    Google Scholar 

  121. Jackman AL, Aherne GW, Kimbell R, Brunton L, Hardcastle A, Wardleworth JW, Stephens TC, Boyle FT (1994) ZD9331, a non-polyglutamatable quinazoline thymidylate synthase (TS) inhibitor. Proc Am Assoc Cancer Res 35:1791.

    Google Scholar 

  122. Webber SE, Bleckman TM, Attard J, Deal JG, Kathardekar V, Welsch KM, Webber S, Janson CA, Mattews DA, Smith WW, Freer ST, Jordan SR, Bacquet RJ, Howland EF, Booth CLJ, Ward RW, Hermann SM, White J, Morse CA, Hilliard JA, Bartlett CA (1993) Design of thymidylate synthase inhibitors using protein crystal structures: The synthesis and biological evaluation of a novel class of 5-substituted quinazolinones. Med Chem 36:733–746.

    CAS  Google Scholar 

  123. Johnston AL, Sherry BV, Webber S, Welsch KM (1992) Experimental antitumor activity of AG-331, a novel lipophilic thymidylate synthase inhibitor. 7th NCI-EORTC Symposium on New Drugs in Cancer Therapy, Amsterdam, p 131.

    Google Scholar 

  124. Ferone R, Hanlon MH, Waters KA, Dev IK (1993) Influence of intracellular polyglutamation on the cytotoxicity of the thymidylate synthase inhibitor 1843U89. Proc Am Assoc Cancer Res 34:1630.

    Google Scholar 

  125. Humphreys J, Smith G, Waters K, Duch D (1993) Antitumor activity of the novel thymidylate synthase inhibitor 1843U89. Proc Am Assoc Cancer Res 34:1625.

    Google Scholar 

  126. Mitrovski B, Johnston PG, Erlichman C (1994) Cytotoxic and biochemical effects of a lipophilic (AG-331) and a non-lipophilic (D1694) thymidylate synthase inhibitor in MHG-U1 cells. Proc Am Assoc Cancer Res 35:1787.

    Google Scholar 

  127. Calvete JA, Balmanno K, Taylor GA, Rafi I, Newell DR, Lind MJ, Calvert AH (1994) Pre-clinical and clinical studies of prolonged administration of the novel thymidylate synthase inhibitor, AG337. Proc Am Assoc Cancer Res 35:1821.

    Google Scholar 

  128. Clendeninn NJ, Peterkin JJ, Webber S, Shetty BV, Koda RT, Leichman L, Leichman CG, Jeffers S, Muggia FM, O’Dwyer PJ (1994) AG-331, a “non-classical,” lipophilic thymidylate synthase inhibitor for the treatment of solid tumors. Ann Oncol 5:246.

    Google Scholar 

  129. Rafi I, Taylor GA, Calvete JA, Balmanno K, Boddy AV, Bailey NB, Lind MJ, Newell D, Calvert AH (1995) A phase I clinical study of the novel antifolate AG337 given by a 5 day continuous infusion. Proc Am Assoc Cancer Res 36:1433.

    Google Scholar 

  130. Giantonio B, Qian M, Gallo J, DiMaria D, Legerton K, Johnston AL, Clendeninn NJ, O’Dwyer PJ (1995) Phase I trial of AG-331 as a 5-day continuous infusion. Proc Am Soc Clin Oncol 14:1562.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chu, E., Allegra, C.J. (1996). Mechanisms of Clinical Resistance to 5-Fluorouracil Chemotherapy. In: Hait, W.N. (eds) Drug Resistance. Cancer Treatment and Research, vol 87. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1267-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1267-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8540-3

  • Online ISBN: 978-1-4613-1267-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics