Skip to main content

On Painlevé and Darboux-Halphen-Type Equations

  • Chapter
The Painlevé Property

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

It is now well known that a deep connection exists between soliton equations and ODEs of Painlevé type. As a consequence there has been a significant reemergence of interest in the study of such ODEs and related issues. In this paper we demonstrate that a novel class of nonlinear ODEs, Darboux-Halphen (DH) type systems, can be obtained as reductions of the self-dual Yang-Mills (SDYM) equations. We show how to find by reduction from SDYM the associated linear pair for DH. This linear system is found to be monodromy evolving, which is different from the linear systems associated with the Painlevé equations, which are isomonodromy. The solution of the DH system can be obtained in terms of Schwarzian equations, which are themselves linearizable. The DH system has solutions that are related to Painlevé equations, but the solutions can have complicated analytic singularities such as natural boundaries and dense branching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.J. Ablowitz, S. Chakravarty, and B.M. Hcrbst, Integrability, computability and applications, Acta Appl. Math. 39 (1995), 5–37.

    Article  MathSciNet  MATH  Google Scholar 

  2. M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, LMS Lecture Notes 149 (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  3. M.J. Ablowitz and A.S. Fokas, Complex Variables: Introduction and Applications (Cambridge University Press, Cambridge, 1997).

    MATH  Google Scholar 

  4. M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    MATH  Google Scholar 

  5. S. Chakravarty and M.J. Ablowitz, Integrability, monodromy, evolving deformations, and self-dual Bianchi IX systems, Phys. Rev. Lett. 76 (1996), 857 860.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. S. Chakravarty, M.J. Ablowitz, and P.A. Clarkson, Reductions of self-dual Yang-Mills fields and classical systems, Phys. Rev. Lett. 65 (1990), 1085–1087.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S. Chakravarty, M.J. Ablowitz, and P.A. Clarkson, One dimensional reductions of self-dual Yang-Mills fields and classical systems, Recent Advances in General Relativity: Essays in Honor of Ted Newman (Pittsburg, 1990), eds. A.I. Janis and J.R. Porter (Birkhäuser, Boston, Basel, 1991).

    Google Scholar 

  8. S. Chakravarty, M.J. Ablowitz, and L.A. Takhtajan, Self-dual YangMills equation and new special functions in integrable systems, Nonlinear Evolution Equations and Dynamical Systems, eds. M. Boiti, L. Martina, and F. Pcmpinelli (World Scientific, Singapore, 1992).

    Google Scholar 

  9. J. Chazy, Sur les équations différentielles dont l’intégrale générale possède une coupure essentielle mobile, C.R. Acad. Sc. Paris 150 (1910), 456–458.

    MATH  Google Scholar 

  10. J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Acta Math. 34 (1911), 317–385.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Darboux, Sur la théorie des coordonnées curvilignes et les systèmes orthogonaux, Ann. Ec. Normale Supér. 7 (1878), 101–150.

    MathSciNet  Google Scholar 

  12. H. Flaschka and A.C. Newell, Monodromy-and spectrum-preserving deformations. I, Commun. Math. Phys. 76 (1980), 65–116.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. G. Halphen, Sur un syst d’équations différentielles, C. R. Acad Sci. Paris 92 (1881), 1101–1103.

    Google Scholar 

  14. M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II, Phys. D 2 (1981), 407–448.

    Article  MathSciNet  MATH  Google Scholar 

  15. L.J. Mason and N.M.J. Woodhouse, Integrability, Self-Duality, and Twistor Theory, LMS Monograph, New Series 15 (Oxford University Press, Oxford, 1996).

    Google Scholar 

  16. W. Nahm, The algebraic geometry of multimonopoles, Group Theoretical Methods in Physics, eds. M. Serdaroglu and E. Inonu, Lecture Notes in Physics 180 (Springer, Berlin, 1982), pages 456–466.

    Google Scholar 

  17. P. Painlevé, Oeuvres de Paul Painlevé. I, II, III (Éditions du Centre national de la recherche scientifique, Paris, 1973–77).

    Google Scholar 

  18. R. Penrose and W. Rindler, Spinors and Space-Time. vol. 1 (Cambridge University Press, Cambridge, 1987).

    MATH  Google Scholar 

  19. N.J. Vilenkin, Special Functions and the Theory of Group Representations (USSR, 1965); (AMS, Providence RI, 1968).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ablowitz, M.J., Chakravarty, S., Halburd, R. (1999). On Painlevé and Darboux-Halphen-Type Equations. In: Conte, R. (eds) The Painlevé Property. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1532-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1532-5_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98888-7

  • Online ISBN: 978-1-4612-1532-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics