1 Introduction

Until now, many geometers have studied noncommutative residues. In [5, 16], authors found noncommutative residues are of great importance to the study of noncommutative geometry. In [2], Connes used the noncommutative residue to derive a conformal 4-dimensional Polyakov action analogy. Connes showed us that the noncommutative residue on a compact manifold M coincided with the Dixmier’s trace on pseudodifferential operators of order-\({{\mathrm{dim}}}M\) in [3]. And Connes claimed the noncommutative residue of the square of the inverse of the Dirac operator was proportioned to the Einstein–Hilbert action. Kastler [7] gave a brute-force proof of this theorem. Kalau and Walze proved this theorem in the normal coordinates system simultaneously in [6]. Ackermann proved that the Wodzicki residue of the square of the inverse of the Dirac operator \({\mathrm{Wres}}(D^{-2})\) in turn is essentially the second coefficient of the heat kernel expansion of \(D^{2}\) in [1].

On the other hand, Wang generalized the Connes’ results to the case of manifolds with boundary in [10, 11], and proved the Kastler–Kalau–Walze type theorem for the Dirac operator and the signature operator on lower-dimensional manifolds with boundary [12]. In [12, 13], Wang computed \(\widetilde{{\mathrm{Wres}}}[\pi ^+D^{-1}\circ \pi ^+D^{-1}]\) and \(\widetilde{{\mathrm{Wres}}}[\pi ^+D^{-2}\circ \pi ^+D^{-2}]\), where two operators are symmetric. And in these cases, the boundary term vanished. But for \(\widetilde{{\mathrm{Wres}}}[\pi ^+D^{-1}\circ \pi ^+D^{-3}]\), Wang got a nonvanishing boundary term [14], and give a theoretical explanation for gravitational action on boundary. And then, Wang provides a kind of method to study the Kastler–Kalau–Walze type theorem for manifolds with boundary. In [8], López and his collaborators introduced an elliptic differential operator, which is called the Novikov operator. In [15], Wei and Wang proved Kastler–Kalau–Walze type theorem for modified Novikov operators on compact manifolds. In [17], in order to prove the nonsymmetric positive mass theorem, Zhang introduced the Dirac–Witten operator. The motivation of this paper is to prove the Kastler–Kalau–Walze type theorem for the Dirac–Witten operators.

The paper is organized in the following way. In Sect. 2, by using the definition of the Dirac–Witten operators, we compute the Lichnerowicz formulas for the Dirac–Witten operators. In Sects. 3 and  4, we prove the Kastler–Kalau–Walze type theorem for 4-dimensional and 6-dimensional manifolds with boundary for the Dirac–Witten operators respectively.

2 The Dirac–Witten Operators and Their Lichnerowicz Formulas

Firstly we introduce some notations about the Dirac–Witten operators. Let M be a n-dimensional (\(n\ge 3\)) oriented compact spin Riemannian manifold with a Riemannian metric \(g^{M}\). And let \(\nabla ^L\) be the Levi-Civita connection about \(g^M\). In the local coordinates \(\{x_i; 1\le i\le n\}\) and the fixed orthonormal frame \(\{e_1,\cdots ,e_n\}\), the connection matrix \((\omega _{s,t})\) is defined by

$$\begin{aligned} \nabla ^L(e_1,\ldots ,e_n)= (e_1,\ldots ,e_n)(\omega _{s,t}). \end{aligned}$$
(2.1)

Let \(c(e_j)\) be the Clifford action. Suppose that \(\partial _{i}\) is a natural local frame on TM and \((g^{ij})_{1\le i,j\le n}\) is the inverse matrix associated to the metric matrix \((g_{ij})_{1\le i,j\le n}\) on M. By [12], we have the Dirac operator

$$\begin{aligned} D&=\sum ^n_{i=1}c(e_i)\bigg [e_i-\frac{1}{4}\sum _{s,t}\omega _{s,t} (e_i)c(e_s)c(e_t)\bigg ] \end{aligned}$$
(2.2)

Then the Dirac–Witten operators \({\widetilde{D}}\) and \({{\widetilde{D}}}^*\) are defined by

$$\begin{aligned} {\widetilde{D}}&=D+f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\nonumber \\&=\sum ^n_{i=1}c(e_i)\bigg [e_i-\frac{1}{4}\sum _{s,t}\omega _{s,t} (e_i)c(e_s)c(e_t)\bigg ]\nonumber \\&\quad +f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2,\nonumber \\ {{\widetilde{D}}}^*&=D-\overline{f_1}\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+\overline{f_2}\nonumber \\&=\sum ^n_{i=1}c(e_i)\bigg [e_i-\frac{1}{4}\sum _{s,t}\omega _{s,t} (e_i)c(e_s)c(e_t)\bigg ]\nonumber \\&\quad -\overline{f_1}\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+\overline{f_2}. \end{aligned}$$
(2.3)

where \(f_1,f_2\) are complex numbers, p is a (0, 2)-tensor and \(p_{uv}=p(e_u,e_v)\). Then when \(f_1=\frac{\sqrt{-1}}{2}\), \(f_2=-\frac{\sqrt{-1}}{2}\sum _{i}p_{ii}\), \({\widetilde{D}}\) is the Dirac–Witten operator defined by [17].

Then, we get the following Lichnerowicz formulas,

Theorem 2.1

The following equalities hold:

$$\begin{aligned} {{\widetilde{D}}}^*{\widetilde{D}}&=-\Big [g^{ij}(\nabla _{\partial _{i}}\nabla _{\partial _{j}}- \nabla _{\nabla ^{L}_{\partial _{i}}\partial _{j}})\Big ]+\frac{1}{4}s +(f_1\overline{f_2}-\overline{f_1}f_2)\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)\nonumber \\&\quad +\frac{1}{4}\sum _{i}\left[ c(e_{i})\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2\right) \right. \nonumber \\&\quad \left. +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +\overline{f_2}\right) c(e_i)\right] ^2\nonumber \\&\quad +\frac{1}{2}\sum _{j}[c(e_{j})e_j\left( f_1\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+f_2\right) \nonumber \\&\quad \left. -e_j\left( -\overline{f_1}\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) c(e_j)\right] \nonumber \\&\quad -f_1\overline{f_1}\left[ \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)\right] ^2+f_2\overline{f_2},\nonumber \\ {{\widetilde{D}}}^2&=-\Big [g^{ij}(\nabla _{\partial _{i}}\nabla _{\partial _{j}}- \nabla _{\nabla ^{L}_{\partial _{i}}\partial _{j}})\Big ]+\frac{1}{4}s +{f_1}^2\left[ \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)\right] ^2\nonumber \\&\quad +\frac{1}{4}\sum _{i}\left[ c(e_{i})\left( f_1\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. +\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) c(e_i)\right] ^2\nonumber \\&\quad -\frac{1}{2}\sum _{j}\left[ e_j\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2\right) c(e_{j})\right. \nonumber \\&\quad \left. -c(e_{j})e_j\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right] \nonumber \\&\quad +2f_1f_2\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+{f_2}^2. \end{aligned}$$
(2.4)

where s is the scalar curvature.

Proof

Let M be a smooth compact oriented spin Riemannian n-dimensional manifolds without boundary and N be a vector bundle on M. If P is a differential operator of Laplace type, then it has locally the form

$$\begin{aligned} P=-(g^{ij}\partial _i\partial _j+A^i\partial _i+B), \end{aligned}$$
(2.5)

where \(\partial _{i}\) is a natural local frame on TM and \((g^{ij})_{1\le i,\,j\le n}\) is the inverse matrix associated to the metric matrix \((g_{ij})_{1\le i,\,j\le n}\) on M, and \(A^{i}\) and B are smooth sections of \(\text {End}(N)\) on M (endomorphism). If a Laplace type operator P satisfies (2.5), then there is a unique connection \(\nabla \) on N and a unique endomorphism E such that

$$\begin{aligned} P=-\Big [g^{ij}(\nabla _{\partial _{i}}\nabla _{\partial _{j}}- \nabla _{\nabla ^{L}_{\partial _{i}}\partial _{j}})+E\Big ], \end{aligned}$$
(2.6)

where \(\nabla ^{L}\) is the Levi-Civita connection on M. Moreover (with local frames of \(T^{*}M\) and N), \(\nabla _{\partial _{i}}=\partial _{i}+\omega _{i} \) and E is related to \(g^{ij}\), \(A^{i}\) and B through

$$\begin{aligned} \omega _{i}= & {} \frac{1}{2}g_{ij}\big (A^{i}+g^{kl}\Gamma _{ kl}^{j} \texttt {id}\big ), \end{aligned}$$
(2.7)
$$\begin{aligned} E\,= & {} B-g^{ij}\big (\partial _{i}(\omega _{j})+\omega _{i}\omega _{j}-\omega _{k}\Gamma _{ ij}^{k} \big ), \end{aligned}$$
(2.8)

where \(\Gamma _{ kl}^{j}\) are the Christoffel coefficients of \(\nabla ^{L}\).

Let \(g^{ij}=g(dx_{i},dx_{j})\), \(\xi =\sum _{k}\xi _{j}dx_{j}\) and \(\nabla ^L_{\partial _{i}}\partial _{j}=\sum _{k}\Gamma _{ij}^{k}\partial _{k}\), we denote that

$$\begin{aligned}&\sigma _{i}=-\frac{1}{4}\sum _{s,t}\omega _{s,t} (e_i)c(e_s)c(e_t);\nonumber \\&\xi ^{j}=g^{ij}\xi _{i};\quad \Gamma ^{k}=g^{ij}\Gamma _{ij}^{k}; \quad \sigma ^{j}=g^{ij}\sigma _{i}. \end{aligned}$$
(2.9)

Then the Dirac–Witten operators \({\widetilde{D}}\) and \({{\widetilde{D}}}^*\) can be written as

$$\begin{aligned} {\widetilde{D}}&=\sum ^n_{i=1}c(e_i)[e_i+\sigma _{i}] +f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2;\nonumber \\ {{\widetilde{D}}}^*&=\sum ^n_{i=1}c(e_i)[e_i+\sigma _{i}] -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}. \end{aligned}$$
(2.10)

By [7], we have

$$\begin{aligned} D^2&=-\Delta _0+\frac{1}{4}s\\&=-g^{ij}(\nabla _i^L\nabla _j^L-\Gamma _{ij}^k\nabla _k^L)+\frac{1}{4}s\nonumber \\&=-\sum _{ij}g^{ij}[\partial _i\partial _j+2\sigma _i\partial _j -\Gamma _{ij}^k\partial _k+\partial _i\sigma _j+\sigma _i\sigma _j -\Gamma _{ij}^k\sigma _k]+\frac{1}{4}s.\nonumber \end{aligned}$$
(2.11)

By (2.10), we have

$$\begin{aligned} {{\widetilde{D}}}^*{\widetilde{D}}&=D^2+D[f_1\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+f_2]\nonumber \\&\quad +\left[ -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+\overline{f_2}\right] D\nonumber \\&\quad +\left[ f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right] \nonumber \\&\quad \left[ -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right] , \end{aligned}$$
(2.12)
$$\begin{aligned}&D\left[ f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right] +\left[ -\overline{f_1} \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right] D\nonumber \\&\quad =\sum _{i,j}g^{i,j}\left[ c(\partial _{i})\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\qquad \left. +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) c(\partial _{i})\right] \partial _{j}\nonumber \\&\qquad -\sum _{i,j}g^{i,j}\left[ \left( \overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u) c(e_v)-\overline{f_2}\right) c(\partial _{i})\sigma _{j}\right. \nonumber \\&\qquad -c(\partial _{i}) \partial _{j}\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \nonumber \\&\qquad \left. -c(\partial _{i})\sigma _j\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right] , \end{aligned}$$
(2.13)

then we obtain

$$\begin{aligned} {{\widetilde{D}}}^*{\widetilde{D}}&=-\sum _{i,j}g^{i,j}\left[ \partial _{i}\partial _{j} +2\sigma _{i}\partial _{j}-\Gamma _{i,j}^{k}\partial _{k}+\partial _{i}\sigma _{j} +\sigma _{i}\sigma _{j} -\Gamma _{i,j}^{k}\sigma _{k}\right] \nonumber \\&\quad +\frac{1}{4}s+\sum _{i,j}g^{i,j}\left[ c(\partial _{i}) \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) c(\partial _{i})\right] \partial _{j}\nonumber \\&\quad -\sum _{i,j}g^{i,j}\left[ \left( \overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u) c(e_v)-\overline{f_2}\right) c(\partial _i)\sigma _j\right. \nonumber \\&\quad -c(\partial _i)\partial _j\left( f_1 \sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+f_2\right) \nonumber \\&\quad \left. -c(\partial _{i})\sigma _{j}\left( f_1\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+f_2\right) \right] \nonumber \\&\quad -f_1\overline{f_1}\left[ \sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)\right] ^2\nonumber \\&\quad +\left( f_1\overline{f_2}-\overline{f_1}f_2\right) \sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+f_2\overline{f_2}. \end{aligned}$$
(2.14)

Similarly, we have

$$\begin{aligned} {{\widetilde{D}}}^2&=-\sum _{i,j}g^{i,j} \left[ \partial _{i}\partial _{j}+2\sigma _{i}\partial _{j} -\Gamma _{i,j}^{k}\partial _{k}+\partial _{i}\sigma _{j} +\sigma _{i}\sigma _{j}-\Gamma _{i,j}^{k}\sigma _{k}\right] \nonumber \\&\quad +\frac{1}{4}s+\sum _{i,j}g^{i,j}\left[ c(\partial _{i}) \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. +\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) c(\partial _{i})\right] \partial _{j}\nonumber \\&\quad +\sum _{i,j}g^{i,j}\left[ (f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2)c(\partial _{i})\sigma _{j}\right. \nonumber \\&\quad +c(\partial _{i})\partial _{j} \left( f_1\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+f_2\right) \nonumber \\&\quad \left. +c(\partial _{i})\sigma _{j} \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right] \nonumber \\&\quad +f_1^2\left[ \sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)\right] ^2\nonumber \\&\quad +2f_1f_2\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2^2. \end{aligned}$$
(2.15)

By (2.6), (2.7), (2.8) and (2.14), we have

$$\begin{aligned} (\omega _{i})_{{{\widetilde{D}}}^*{{\widetilde{D}}}}&=\sigma _{i}-\frac{1}{2} \left[ c(\partial _{i})\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) c(\partial _{i})\right] . \end{aligned}$$
(2.16)
$$\begin{aligned} E_{{{\widetilde{D}}}^*{\widetilde{D}}}&=-c(\partial _{i})\sigma ^{i}\left( f_1 \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \nonumber \\&\quad -\frac{1}{4}s+\left( \overline{f_1} \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)-\overline{f_2}\right) \nonumber \\&\quad c(\partial _i)\sigma ^i+c(\partial _i)\partial ^i\left( f_1\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+f_2\right) \nonumber \\&\quad +\frac{1}{2}\partial ^j\left[ c(\partial _j) \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2\right) \right. \nonumber \\&\quad \left. +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +\overline{f_2}\right) c(\partial _j)\right] \nonumber \\&\quad -\frac{1}{2}\left[ c(\partial _j)\left( f_1\sum _{u<v} (p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2} \right) c(\partial _j)\right] \sigma ^j\nonumber \\&\quad -\frac{g^{ij}}{4}\left[ c(\partial _{i})\left( f_1\sum _{u<v} (p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +\overline{f_2}\right) c(\partial ^i)\right] \nonumber \\&\quad \cdot \left[ c(\partial _{j})\left( f_1\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. -\left( \overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)-\overline{f_2} \right) c(\partial _{j})\right] \nonumber \\&\quad -\frac{1}{2}\Gamma ^{k}\left[ c(\partial _{k})\left( f_1\sum _{u<v} (p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) c(\partial _{k})\right] \nonumber \\&\quad -\frac{1}{2}\sigma ^{j}\left[ c(\partial _{j})\left( f_1\sum _{u<v} (p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) c(\partial _{j})]\nonumber \\&\quad +f_1\overline{f_1}\left[ \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)\right] ^2 -\left( f_1\overline{f_2}-\overline{f_1}f_2\right) \nonumber \\&\quad \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)-f_2\overline{f_2}. \end{aligned}$$
(2.17)

Since E is globally defined on M, taking normal coordinates at \(x_0\), we have \(\sigma ^{i}(x_0)=0\), \(\partial ^{j}[c(\partial _{j})](x_0)=0\), \(\Gamma ^k(x_0)=0\), \(g^{ij}(x_0)=\delta ^j_i\), then

$$\begin{aligned} E_{{{\widetilde{D}}}^*{\widetilde{D}}}(x_0)&=-\frac{1}{4}s-\left( f_1\overline{f_2} -\overline{f_1}f_2\right) \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)\nonumber \\&\quad +f_1\overline{f_1} \left[ \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)\right] ^2\nonumber \\&\quad -f_2\overline{f_2}-\frac{1}{4}\sum _{i}\left[ c(e_{i})\left( f_1\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+\overline{f_2}\right) c(e_i)\right] ^2\nonumber \\&\quad -\frac{1}{2}\left[ c(e_{j}) \nabla ^{\bigwedge ^*T^*M}_{e_j}\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. -\nabla ^{\bigwedge ^*T^*M}_{e_j}\left( -\overline{f_1}\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) c(e_j)\right] . \end{aligned}$$
(2.18)

Similarly, we have

$$\begin{aligned} E_{{{\widetilde{D}}}^2}(x_0)&=-\frac{1}{4}s-f_1^2\left[ \sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)\right] ^2\nonumber \\&\quad -2f_1f_2\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) -f_2^2\nonumber \\&\quad -\frac{1}{4}\sum _{i}\left[ c(e_{i})\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u) c(e_v)+f_2\right) \right. \nonumber \\&\quad \left. +\left( f_1\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+f_2\right) c(e_i)\right] ^2\nonumber \\&\quad +\frac{1}{2}\left[ \nabla ^{\bigwedge ^*T^*M}_{e_j} \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) c(e_j)\right. \nonumber \\&\quad \left. -c(e_{j})\nabla ^{\bigwedge ^*T^*M}_{e_j}\left( f_1\sum _{u<v}(p_{uv}-p_{vu} )c(e_u)c(e_v)+f_2\right) \right] , \end{aligned}$$
(2.19)

by (2.5), we get Theorem 2.1. \(\square \)

From [1], we know that the noncommutative residue of an appropriate power of a generalized laplacian \({\overline{\Delta }}\) is expressed as

$$\begin{aligned} (n-2)\Phi _{2}({\overline{\Delta }})=(4\pi )^{-\frac{n}{2}} \Gamma \left( \frac{n}{2}\right) Wres\left( {\overline{\Delta }}^{-\frac{n}{2}+1}\right) , \end{aligned}$$
(2.20)

where \(\Phi _{2}({\overline{\Delta }})\) denotes the integral over the diagonal part of the second coefficient of the heat kernel expansion of \({\overline{\Delta }}\). Now let \({\overline{\Delta }}={{\widetilde{D}}}^*{{\widetilde{D}}}\) and \({{\widetilde{D}}}^*{{\widetilde{D}}}=\Delta -E\), then we have

$$\begin{aligned} {\mathrm{Wres}}({{{\widetilde{D}}}^{*}}{{\widetilde{D}}})^{-\frac{n-2}{2}}&=\frac{(n-2)(4\pi )^{\frac{n}{2}}}{\left( \frac{n}{2}-1\right) !}\int \limits _{M}{\mathrm{tr}} \left( \frac{1}{6}s+E_{{{\widetilde{D}}^{*}}{\widetilde{D}}}\right) d{\mathrm{Vol}_{\mathrm{M}} }, \end{aligned}$$
(2.21)
$$\begin{aligned} {\mathrm{Wres}}({{\widetilde{D}}}^2)^{-\frac{n-2}{2}}&=\frac{(n-2)(4\pi )^{\frac{n}{2}}}{(\frac{n}{2}-1)!}\int \limits _{M}{\mathrm{tr}} \left( \frac{1}{6}s+E_{{{\widetilde{D}}}^2}\right) d{\mathrm{Vol}_{\mathrm{M}} }, \end{aligned}$$
(2.22)

where \({\mathrm{Wres}}\) denotes the noncommutative residue. Then,

$$\begin{aligned} tr\left[ \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)\right]&= \sum _{u<v}(p_{uv}-p_{vu})tr[c(e_u)c(e_v)]\nonumber \\&=\sum _{u<v}(p_{uv}-p_{vu})tr[c(e_v)c(e_u)]\nonumber \\&=-\sum _{u<v}(p_{uv}-p_{vu})tr[c(e_u)c(e_v)]=0. \end{aligned}$$
(2.23)

By

$$\begin{aligned}&tr\left[ \sum _{u<v}\sum _{s<t}c(e_u)c(e_v)c(e_s)c(e_t)\right] \nonumber \\&\quad =\left\{ \begin{array}{ll} -tr[id], &{}\quad {\mathrm{if }}~u=s,v=t, \\ 0,&{}\quad other~cases.\\ \end{array} \right. \end{aligned}$$
(2.24)
$$\begin{aligned}&tr\left\{ \left[ \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)c(e_u)c(e_v)\right] ^2\right\} \nonumber \\&\quad =tr\left[ \sum _{u<v}\sum _{s<t}(p_{uv}-p_{vu})(p_{st}-p_{ts})c(e_u)c(e_v)c(e_s)c(e_t)\right] \nonumber \\&\quad =-\sum _{u<v}(p_{uv}-p_{vu})^2tr[id]. \end{aligned}$$
(2.25)

Similarly, we have

$$\begin{aligned}&tr\left( \sum _{i}\left[ c(e_{i})\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2\right) \right. \right. \left. \left. +\left( -{\overline{f}}_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +{\overline{f}}_2\right) c(e_i)\right] ^2\right) \nonumber \\&\quad =f_1^2(n-4)\sum _{u<v}(p_{uv}-p_{vu})^2tr[id]-nf_2^2tr[id] +{\overline{f}}_1^2(n-4)\sum _{u<v}(p_{uv}-p_{vu})^2tr[id]\nonumber \\&\qquad -n{\overline{f}}_2^2tr[id]-2nf_1{\overline{f}}_1\sum _{u<v} (p_{uv}-p_{vu})^2tr[id]-2nf_2{\overline{f}}_2\sum _{u<v}(p_{uv}-p_{vu})^2tr[id]\nonumber \\&\quad =\left[ f_1^2(n-4)\sum _{u<v}(p_{uv}-p_{vu})^2-nf_2^2\right] {\mathrm{tr}} [{{\texttt {id}}}];\nonumber \\&tr\left( \sum _{j}c(e_{j})\nabla ^{\bigwedge ^*T^*M}_{e_j} \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right) \nonumber \\&\quad =tr\left( \sum _{j}c(e_{j})\left[ \sum _{u<v}\nabla _{e_j}(f_1 (p_{uv}-p_{vu}))c(e_u)c(e_v)+f_1(p_{uv}-p_{vu})c(\nabla _{e_j}e_u)c(e_v)\right. \right. \nonumber \\&\qquad \left. \left. +f_1(p_{uv}-p_{vu})c(e_u)c(\nabla _{e_j}e_v)\right] +\sum _{j} c(e_j)\nabla _{e_j}(f_2)\right) \nonumber \\&\quad =0. \end{aligned}$$
(2.26)

Then by (2.23)–(2.26), we get

$$\begin{aligned} tr(E_{{{\widetilde{D}}}^*{\widetilde{D}}})&=\bigg [-\frac{s}{4} -\frac{1}{4}\{[(f_1^2+\overline{f_1}^2)(n-4)-2nf_1\overline{f_1}] \sum _{u<v}(p_{uv}-p_{vu})^2\nonumber \\&\quad +2nf_2\overline{f_2}-nf_2^2-n\overline{f_2}\}-f_2\overline{f_2} -f_1\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})^2\bigg ]{\mathrm{tr}}[{{\texttt {id}}}],\nonumber \\ tr(E_{{{\widetilde{D}}}^2})&=\left[ -\frac{s}{4}+(3-n)f_1^2 \sum _{u<v}(p_{uv}-p_{vu})^2+(n-1)f_2^2\right] {\mathrm{tr}}[{{\texttt {id}}}]. \end{aligned}$$
(2.27)

By (2.21), (2.22) and (2.27), we can get the following theorem,

Theorem 2.2

If M is a n-dimensional compact oriented spin manifolds without boundary, and n is even, then we get the following equalities:

$$\begin{aligned} {\mathrm{Wres}}({{\widetilde{D}}}^*{\widetilde{D}})^{-\frac{n-2}{2}}&=\frac{(n-2)(4\pi )^{\frac{n}{2}}}{(\frac{n}{2}-1)!}\int \limits _{M}2^\frac{n}{2}\bigg ( -\frac{1}{12}s-\frac{1}{4}\{[(f_1^2+\overline{f_1}^2)(n-4)-2nf_1\overline{f_1}]\nonumber \\&\sum _{u<v}(p_{uv}-p_{vu})^2+2nf_2\overline{f_2}-nf_2^2 -n\overline{f_2}^2\}-f_2\overline{f_2}-f_1\overline{f_1}\sum _{u<v}(p_{uv} -p_{vu})^2\bigg )d{\mathrm{Vol}_{\mathrm{M}}}. \end{aligned}$$
(2.28)
$$\begin{aligned} {\mathrm{Wres}}({{\widetilde{D}}}^2)^{-\frac{n-2}{2}}&=\frac{(n-2)(4\pi )^{\frac{n}{2}}}{(\frac{n}{2}-1)!}\int \limits _{M}2^\frac{n}{2}\bigg ( -\frac{1}{12}s+(3-n)f_1^2\sum _{u<v}(p_{uv}-p_{vu})^2 +(n-1)f_2^2\bigg )d{\mathrm{Vol}_{\mathrm{M}}}. \end{aligned}$$
(2.29)

where s is the scalar curvature.

3 A Kastler–Kalau–Walze Type Theorem for 4-Dimensional Manifolds with Boundary

We firstly recall some basic facts and formulas about Boutet de Monvel’s calculus and the definition of the noncommutative residue for manifolds with boundary which will be used in the following. For more details (see in Sect. 2 in [12]).

Let \(U\subset M\) be a collar neighborhood of \(\partial M\) which is diffeomorphic with \(\partial M\times [0,1)\). By the definition of \(h(x_n)\in C^{\infty }([0,1))\) and \(h(x_n)>0\), there exists \({\widehat{h}}\in C^{\infty }((-\varepsilon ,1))\) such that \({\widehat{h}}|_{[0,1)}=h\) and \({\widehat{h}}>0\) for some sufficiently small \(\varepsilon >0\). Then there exists a metric \(g'\) on \({\widetilde{M}}=M\bigcup _{\partial M}\partial M\times (-\varepsilon ,0]\) which has the form on \(U\bigcup _{\partial M}\partial M\times (-\varepsilon ,0 ]\)

$$\begin{aligned} g'=\frac{1}{{\widehat{h}}(x_{n})}g^{\partial M}+dx _{n}^{2} , \end{aligned}$$
(3.1)

such that \(g'|_{M}=g\). We fix a metric \(g'\) on the \({\widetilde{M}}\) such that \(g'|_{M}=g\).

Let Fourier transformation \(F'\) be

$$\begin{aligned} F':L^2(\mathbf{R}_t)\rightarrow L^2(\mathbf{R}_v);~F'(u)(v)=\int e^{-ivt}u(t)dt \end{aligned}$$
(3.2)

and let

$$\begin{aligned} r^{+}:C^\infty (\mathbf{R})\rightarrow C^\infty (\widetilde{\mathbf{R}^+});~ f\rightarrow f|\widetilde{\mathbf{R}^+};~ \widetilde{\mathbf{R}^+}=\{x\ge 0;\,x\in \mathbf{R}\}. \end{aligned}$$
(3.3)

where \(\Phi (\mathbf{R})\) denotes the Schwartz space and \(\Phi (\widetilde{\mathbf{R}^+}) =r^+\Phi (\mathbf{R})\), \(\Phi (\widetilde{\mathbf{R}^-}) =r^-\Phi (\mathbf{R})\).

We define \(H^+=F'(\Phi (\widetilde{\mathbf{R}^+}));~ H^-_0=F'(\Phi (\widetilde{\mathbf{R}^-}))\) which satisfies \(H^+\bot H^-_0\). We have the following property: \(h\in H^+~(H^-_0)\) if and only if \(h\in C^\infty (\mathbf{R})\) which has an analytic extension to the lower (upper) complex half-plane \(\{{\mathrm{Im}}\xi <0\}~(\{{\mathrm{Im}}\xi >0\})\) such that for all nonnegative integer l,

$$\begin{aligned} \frac{d^{l}h}{d\xi ^l}(\xi )\sim \sum ^{\infty }_{k=1} \frac{d^l}{d\xi ^l}\left( \frac{c_k}{\xi ^k}\right) , \end{aligned}$$
(3.4)

as \(|\xi |\rightarrow +\infty ,{\mathrm{Im}}\xi \le 0~({\mathrm{Im}}\xi \ge 0)\). Let \(H'\) be the space of all polynomials and \(H^-=H^-_0\bigoplus H';~H=H^+\bigoplus H^-.\) Denote by \(\pi ^+~(\pi ^-)\) respectively the projection on \(H^+~(H^-)\). For calculations, we take \(H={{\widetilde{H}}}=\{\)rational functions having no poles on the real axis\(\}\) (\({\tilde{H}}\) is a dense set in the topology of H). Then on \({\tilde{H}}\),

$$\begin{aligned} \pi ^+h(\xi _0)=\frac{1}{2\pi i}\lim _{u\rightarrow 0^{-}} \int \limits _{\Gamma ^+}\frac{h(\xi )}{\xi _0+iu-\xi }d\xi , \end{aligned}$$
(3.5)

where \(\Gamma ^+\) is a Jordan close curve included \({\mathrm{Im}}(\xi )>0\) surrounding all the singularities of h in the upper half-plane and \(\xi _0\in \mathbf{R}\). Similarly, define \(\pi '\) on \({\tilde{H}}\),

$$\begin{aligned} \pi 'h=\frac{1}{2\pi }\int \limits _{\Gamma ^+}h(\xi )d\xi . \end{aligned}$$
(3.6)

So, \(\pi '(H^-)=0\). For \(h\in H\bigcap L^1(\mathbf{R})\), \(\pi 'h=\frac{1}{2\pi }\int_{\mathbf{R}}h(v)dv\) and for \(h\in H^+\bigcap L^1(\mathbf{R})\), \(\pi 'h=0\).

Let M be a n-dimensional compact oriented spin manifold with boundary \(\partial M\). Denote by \({\mathcal {B}}\) Boutet de Monvel’s algebra, we recall the main theorem in [4, 12].

Theorem 3.1

[4] (Fedosov–Golse–Leichtnam–Schrohe) Let X and \(\partial X\) be connected, \({\mathrm{dim}}X=n\ge 3\), \(A=\left( \begin{array}{lcr}\pi ^+P+G &{} K \\ T &{} S \end{array}\right) \) \(\in {\mathcal {B}}\), and denote by p, b and s the local symbols of PG and S respectively. Define:

$$\begin{aligned} {{{\widetilde{{{\mathrm{Wres}}}}}}}(A)&=\int \limits _X\int \limits _\mathbf{S}\mathrm{{tr}}_E \left[ p_{-n}(x,\xi )\right] \sigma (\xi )dx \nonumber \\&\quad +2\pi \int \limits _ {\partial X}\int \limits _\mathbf{S'}\left\{ {\mathrm{tr}}_E \left[ (\mathrm{{tr}}b_{-n})(x',\xi ')\right] +\mathrm{{tr}} _F\left[ s_{1-n}(x',\xi ')\right] \right\} \sigma (\xi ')dx', \end{aligned}$$
(3.7)

where \({{{\widetilde{{\mathrm{Wres}}}}}}\) denotes the noncommutative residue of an operator in the Boutet de Monvel’s algebra.

Then a) \({{{\widetilde{{\mathrm{Wres}}}}}}([A,B])=0 \), for any \(A,B\in {\mathcal {B}}\); b) It is a unique continuous trace on \({\mathcal {B}}/{\mathcal {B}}^{-\infty }\).

Definition 3.2

[12] Lower dimensional volumes of spin manifolds with boundary are defined by

$$\begin{aligned} {\mathrm{Vol}}^{(p_1,p_2)}_nM:= \widetilde{{\mathrm{Wres}}}[\pi ^+D^{-p_1}\circ \pi ^+D^{-p_2}], \end{aligned}$$
(3.8)

By [12], we get

$$\begin{aligned} \widetilde{{\mathrm{Wres}}}[\pi ^+D^{-p_1}\circ \pi ^+D^{-p_2}]= & {} \int \limits _M\int \limits _{|\xi |=1}\mathrm{trace}_{\wedge ^*T^*M\bigotimes {\mathbb {C}}}[\sigma _{-n} (D^{-p_1-p_2})]\sigma (\xi )dx\nonumber \\&+\int \limits _{\partial M}\Phi , \end{aligned}$$
(3.9)

and

$$\begin{aligned} \Phi&=\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\sum \limits ^{\infty }_{j, k=0}\sum \frac{(-i)^{|\alpha |+j+k+1}}{\alpha !(j+k+1)!} \times {\mathrm{trace}}_{\wedge ^*T^*M\bigotimes {\mathbb {C}}}[\partial ^j_{x_n} \partial ^\alpha _{\xi '}\partial ^k_{\xi _n}\sigma ^+_{r}(D^{-p_1})(x',0,\xi ',\xi _n) \nonumber \\&\quad \times \partial ^\alpha _{x'}\partial ^{j+1}_{\xi _n}\partial ^k_{x_n} \sigma _{l}(D^{-p_2})(x',0,\xi ',\xi _n)]d\xi _n\sigma (\xi ')dx', \end{aligned}$$
(3.10)

where the sum is taken over \(r+l-k-|\alpha |-j-1=-n,~~r\le -p_1,l\le -p_2\) and \(\widetilde{{\mathrm{Wres}}}\) denotes the noncommutative residue for manifolds with boundary.

Since \([\sigma _{-n}(D^{-p_1-p_2})]|_M\) has the same expression as \(\sigma _{-n}(D^{-p_1-p_2})\) in the case of manifolds without boundary, so locally we can compute the first term by [6, 7, 9, 12].

For any fixed point \(x_0\in \partial M\), we choose the normal coordinates U of \(x_0\) in \(\partial M\) (not in M) and compute \(\Phi (x_0)\) in the coordinates \({\widetilde{U}}=U\times [0,1)\subset M\) and the metric \(\frac{1}{h(x_n)}g^{\partial M}+dx_n^2.\) The dual metric of \(g^M\) on \({\widetilde{U}}\) is \({h(x_n)}g^{\partial M}+dx_n^2.\) Write \(g^M_{ij}=g^M(\frac{\partial }{\partial x_i},\frac{\partial }{\partial x_j});~ g_M^{ij}=g^M(dx_i,dx_j)\), then

$$\begin{aligned} {[}g^M_{i,j}]= \left[ \begin{array}{lcr} \frac{1}{h(x_n)}[g_{i,j}^{\partial M}] &{} 0 \\ 0 &{} 1 \end{array}\right] ;~~~ [g_M^{i,j}]= \left[ \begin{array}{lcr} h(x_n)[g^{i,j}_{\partial M}] &{} 0 \\ 0 &{} 1 \end{array}\right] , \end{aligned}$$
(3.11)

and

$$\begin{aligned} \partial _{x_s}g_{ij}^{\partial M}(x_0)=0, 1\le i,j\le n-1; ~~~g_{ij}^M(x_0)=\delta _{ij}. \end{aligned}$$
(3.12)

From [12], we can get three lemmas.

Lemma 3.3

[12] With the metric \(g^{M}\) on M near the boundary

$$\begin{aligned} \partial _{x_j}(|\xi |_{g^M}^2)(x_0)= & {} \left\{ \begin{array}{ll} 0, &{}\quad {\mathrm{if }}~j<n, \\ h'(0)|\xi '|^{2}_{g^{\partial M}}, &{}\quad {\mathrm{if }}~j=n; \end{array} \right. \end{aligned}$$
(3.13)
$$\begin{aligned} \partial _{x_j}[c(\xi )](x_0)= & {} \left\{ \begin{array}{ll} 0, &{}\quad {\mathrm{if }}~j<n,\\ \partial x_{n}(c(\xi '))(x_{0}), &{}\quad {\mathrm{if }}~j=n, \end{array} \right. \end{aligned}$$
(3.14)

where \(\xi =\xi '+\xi _{n}dx_{n}\).

Lemma 3.4

[12] With the metric \(g^{M}\) on M near the boundary

$$\begin{aligned} \omega _{s,t}(e_i)(x_0)&=\left\{ \begin{array}{ll} \omega _{n,i}(e_i)(x_0)=\frac{1}{2}h'(0), &{}\quad {\mathrm{if }}~s=n,t=i,i<n, \\ \omega _{i,n}(e_i)(x_0)=-\frac{1}{2}h'(0), &{}\quad {\mathrm{if }}~s=i,t=n,i<n,\\ \omega _{s,t}(e_i)(x_0)=0, &{}\quad other~cases,\\ \end{array} \right. \end{aligned}$$
(3.15)

where \((\omega _{s,t})\) denotes the connection matrix of Levi-Civita connection \(\nabla ^L\).

Lemma 3.5

[12]

$$\begin{aligned} \Gamma _{st}^k(x_0)&=\left\{ \begin{array}{ll} \Gamma ^n_{ii}(x_0)=\frac{1}{2}h'(0) &{}\quad {\mathrm{if }}~s=t=i,k=n,i<n, \\ \Gamma ^i_{ni}(x_0)=-\frac{1}{2}h'(0),&{}\quad {\mathrm{if }}~s=n,t=i,k=i,i<n,\\ \Gamma ^i_{in}(x_0)=-\frac{1}{2}h'(0),&{}\quad {\mathrm{if }}~s=i,t=n,k=i,i<n,\\ \Gamma _{st}^i(x_0)=0,&{}\quad other~cases. \end{array} \right. \end{aligned}$$
(3.16)

By (3.6) and (3.7), we firstly compute

$$\begin{aligned} \widetilde{{\mathrm{Wres}}}[\pi ^+{{\widetilde{D}}}^{-1}\circ \pi ^+ ({{\widetilde{D}}}^*)^{-1}]= & {} \int \limits _M\int \limits _{|\xi |=1}\mathrm{trace}_{\wedge ^*T^*M\bigotimes {\mathbb {C}}}[\sigma _{-4} (({{\widetilde{D}}}^*{{\widetilde{D}}})^{-1})]\sigma (\xi )dx\nonumber \\&+\int \limits _{\partial M}\Phi , \end{aligned}$$
(3.17)

where

$$\begin{aligned} \Phi&=\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\sum ^{\infty }_{j, k=0} \sum \frac{(-i)^{|\alpha |+j+k+1}}{\alpha !(j+k+1)!} \times {\mathrm{trace}}_{\wedge ^*T^*M \bigotimes {\mathbb {C}}} [\partial ^j_{x_n}\partial ^\alpha _{\xi '}\partial ^k_{\xi _n}\sigma ^+_{r} ({{\widetilde{D}}}^{-1}) (x',0,\xi ',\xi _n)\nonumber \\&\quad \times \partial ^\alpha _{x'}\partial ^{j+1}_{\xi _n} \partial ^k_{x_n}\sigma _{l}(({{\widetilde{D}}}^*)^{-1})(x',0,\xi ', \xi _n)]d\xi _n\sigma (\xi ')dx', \end{aligned}$$
(3.18)

the sum is taken over \(r+l-k-j-|\alpha |=-3,~~r\le -1,l\le -1\) and \(\widetilde{{\mathrm{Wres}}}\) denotes the noncommutative residue for manifolds with boundary.

By Theorem 2.2, we can compute the interior of \(\widetilde{{\mathrm{Wres}}}[\pi ^+{{\widetilde{D}}}^{-1}\circ \pi ^+({{\widetilde{D}}}^*)^{-1}]\), so

$$\begin{aligned}&\int \limits _M\int \limits _{|\xi |=1}\mathrm{trace}_{\wedge ^*T^*M}[\sigma _{-4} (({{\widetilde{D}}}^*{\widetilde{D}})^{-1})]\sigma (\xi )dx\nonumber \\&\quad =32\pi ^2\int \limits _{M}\bigg \{-\frac{1}{3}s-12f_2\overline{f_2}+4f_2^2 +4\overline{f_2}^2+4f_1\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})^2\bigg \}d{\mathrm{Vol}_{\mathrm{M}}}. \end{aligned}$$
(3.19)

Now we need to compute \(\int _{\partial M} \Phi \). Since, some operators have the following symbols.

Lemma 3.6

The following identities hold:

$$\begin{aligned} \sigma _1({{\widetilde{D}}})&=\sigma _1({{\widetilde{D}}}^*)=ic(\xi ); \nonumber \\ \sigma _0({{\widetilde{D}}})&= -\frac{1}{4}\sum _{i,s,t}\omega _{s,t}(e_i)c(e_i)c(e_s)c(e_t) +\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) ; \nonumber \\ \sigma _0({{\widetilde{D}}}^*)&= -\frac{1}{4}\sum _{i,s,t}\omega _{s,t}(e_i)c(e_i)c(e_s)c(e_t) +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) ; \end{aligned}$$
(3.20)

where \(\xi =\Sigma _{i=1}^n\xi _id_{x_i}\) denotes the cotangent vector.

Write

$$\begin{aligned} D_x^{\alpha }&=(-i)^{|\alpha |}\partial _x^{\alpha }; ~\sigma ({\widetilde{D}})=p_1+p_0; ~\sigma ({\widetilde{D}})^{-1}=\sum \limits ^{\infty }_{j=1}q_{-j}. \end{aligned}$$
(3.21)

By the composition formula of pseudodifferential operators, we have

$$\begin{aligned} 1=\sigma ({\widetilde{D}}\circ {{\widetilde{D}}}^{-1})&=\sum _{\alpha }\frac{1}{\alpha !}\partial ^{\alpha }_{\xi }[\sigma ({{\widetilde{D}}})] {{\widetilde{D}}}_x^{\alpha }[\sigma ({{\widetilde{D}}}^{-1})]\nonumber \\&=(p_1+p_0)(q_{-1}+q_{-2}+q_{-3}+\cdots )\nonumber \\&\quad +\sum _j(\partial _{\xi _j}p_1+\partial _{\xi _j}p_0)( D_{x_j}q_{-1}+D_{x_j}q_{-2}+D_{x_j}q_{-3}+\cdots )\nonumber \\&=p_1q_{-1}+(p_1q_{-2}+p_0q_{-1}+\sum _j\partial _{\xi _j}p_1D_{x_j}q_{-1})+\cdots , \end{aligned}$$
(3.22)

so

$$\begin{aligned} q_{-1}=p_1^{-1};~q_{-2}=-p_1^{-1}\left[ p_0p_1^{-1}+\sum _j\partial _{\xi _j}p_1D_{x_j}(p_1^{-1})\right] . \end{aligned}$$
(3.23)

Lemma 3.7

The following identities hold:

$$\begin{aligned} \sigma _{-1}({{\widetilde{D}}}^{-1})&=\sigma _{-1}(({{\widetilde{D}}}^*)^{-1}) =\frac{ic(\xi )}{|\xi |^2};\nonumber \\ \sigma _{-2}({{\widetilde{D}}}^{-1})&=\frac{c(\xi )\sigma _{0} ({{\widetilde{D}}})c(\xi )}{|\xi |^4}+\frac{c(\xi )}{|\xi |^6}\sum _jc(dx_j) \Big [\partial _{x_j}(c(\xi ))|\xi |^2-c(\xi )\partial _{x_j}(|\xi |^2)\Big ] ;\nonumber \\ \sigma _{-2}(({{\widetilde{D}}}^*)^{-1})&=\frac{c(\xi )\sigma _{0} ({{\widetilde{D}}}^*)c(\xi )}{|\xi |^4}+\frac{c(\xi )}{|\xi |^6}\sum _jc(dx_j) \Big [\partial _{x_j}(c(\xi ))|\xi |^2-c(\xi )\partial _{x_j}(|\xi |^2)\Big ]. \end{aligned}$$
(3.24)

When \(n=4\), then \({\mathrm{tr}}_{\wedge ^*T^*M}[{{ \texttt {id}}}]={\mathrm{dim}}(\wedge ^*(4))=4\), where \({\mathrm{tr}}\) as shorthand of \({\mathrm{trace}}\), the sum is taken over \( r+l-k-j-|\alpha |=-3,~~r\le -1,l\le -1,\) then we have the following five cases:

Case (a) (I) \(r=-1,~l=-1,~k=j=0,~|\alpha |=1\)

By (3.18), we get

$$\begin{aligned} \Phi _1= & {} -\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\sum _{|\alpha |=1} {\mathrm{tr}}[\partial ^\alpha _{\xi '}\pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1})\nonumber \\&\times \partial ^\alpha _{x'}\partial _{\xi _n}\sigma _{-1}(({{\widetilde{D}}}^* )^{-1})](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(3.25)

By Lemma 3.3, for \(i<n\), then

$$\begin{aligned} \partial _{x_i}\left( \frac{ic(\xi )}{|\xi |^2}\right) (x_0)= \frac{i\partial _{x_i}[c(\xi )](x_0)}{|\xi |^2} -\frac{ic(\xi )\partial _{x_i}(|\xi |^2)(x_0)}{|\xi |^4}=0, \end{aligned}$$
(3.26)

so \(\Phi _1=0\).

Case (a) (II) \(r=-1,~l=-1,~k=|\alpha |=0,~j=1\)

By (3.18), we get

$$\begin{aligned} \Phi _2= & {} -\frac{1}{2}\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty } \mathrm{trace} [\partial _{x_n}\pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1})\nonumber \\&\times \partial _{\xi _n}^2\sigma _{-1}(({{\widetilde{D}}}^*)^{-1})](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(3.27)

By Lemma 3.7, we have

$$\begin{aligned} \partial ^2_{\xi _n}\sigma _{-1}(({{\widetilde{D}}}^*)^{-1})(x_0)= & {} i\left( -\frac{6\xi _nc(dx_n)+2c(\xi ')}{|\xi |^4}+\frac{8\xi _n^2c(\xi )}{|\xi |^6}\right) ; \end{aligned}$$
(3.28)
$$\begin{aligned} \partial _{x_n}\sigma _{-1}({{\widetilde{D}}}^{-1})(x_0)= & {} \frac{i\partial _{x_n}c(\xi ')(x_0)}{|\xi |^2}-\frac{ic(\xi )|\xi '|^2h'(0)}{|\xi |^4}. \end{aligned}$$
(3.29)

By (3.5), (3.6), we get

$$\begin{aligned} \pi ^+_{\xi _n}\left[ \frac{c(\xi )}{|\xi |^4}\right] (x_0)|_{|\xi '|=1}&=\pi ^+_{\xi _n}\left[ \frac{c(\xi ')+\xi _nc(dx_n)}{(1+\xi _n^2)^2}\right] \nonumber \\&=\frac{1}{2\pi i}{\mathrm{lim}}_{u\rightarrow 0^-}\int \limits _{\Gamma ^+}\frac{\frac{c(\xi ')+\eta _nc(dx_n)}{(\eta _n+i)^2(\xi _n+iu-\eta _n)}}{(\eta _n-i)^2}d\eta _n\nonumber \\&=-\frac{(i\xi _n+2)c(\xi ')+ic(dx_n)}{4(\xi _n-i)^2}. \end{aligned}$$
(3.30)

Similarly we have,

$$\begin{aligned} \pi ^+_{\xi _n}\left[ \frac{i\partial _{x_n}c(\xi ')}{|\xi |^2} \right] (x_0)|_{|\xi '|=1}=\frac{\partial _{x_n}[c(\xi ')](x_0)}{2(\xi _n-i)}. \end{aligned}$$
(3.31)

By (3.29), then

$$\begin{aligned} \pi ^+_{\xi _n}\partial _{x_n}\sigma _{-1}({{\widetilde{D}}}^{-1})|_{|\xi '|=1} =\frac{\partial _{x_n}[c(\xi ')](x_0)}{2(\xi _n-i)}+ih'(0) \left[ \frac{(i\xi _n+2)c(\xi ')+ic(dx_n)}{4(\xi _n-i)^2}\right] . \end{aligned}$$
(3.32)

By the relation of the Clifford action and \({\mathrm{tr}}{AB}={\mathrm{tr }}{BA}\), we have the equalities:

$$\begin{aligned}&{\mathrm{tr}}[c(\xi ')c(dx_n)]=0;~~{\mathrm{tr}}[c(dx_n)^2] =-4;~~{\mathrm{tr}}[c(\xi ')^2](x_0)|_{|\xi '|=1}=-4;\nonumber \\&{\mathrm{tr}}[\partial _{x_n}c(\xi ')c(dx_n)] =0;~~{\mathrm{tr}}[\partial _{x_n}c(\xi ')c(\xi ')](x_0)|_{|\xi '|=1}=-2h'(0). \end{aligned}$$
(3.33)

By (3.31), we have

$$\begin{aligned}&h'(0){\mathrm{tr}}\bigg [\frac{(i\xi _n+2)c(\xi ')+ic(dx_n)}{4(\xi _n-i)^2}\times \bigg (\frac{6\xi _nc(dx_n)+2c(\xi ')}{(1+\xi _n^2)^2} -\frac{8\xi _n^2[c(\xi ')+\xi _nc(dx_n)]}{(1+\xi _n^2)^3}\bigg ) \bigg ](x_0)|_{|\xi '|=1}\nonumber \\&\quad =-4h'(0)\frac{-2i\xi _n^2-\xi _n+i}{(\xi _n-i)^4(\xi _n+i)^3}. \end{aligned}$$
(3.34)

Similarly, we have

$$\begin{aligned}&-i\mathrm{tr}\bigg [\bigg (\frac{\partial _{x_n}[c(\xi ')](x_0)}{2(\xi _n-i)}\bigg ) \times \bigg (\frac{6\xi _nc(dx_n)+2c(\xi ')}{(1+\xi _n^2)^2} -\frac{8\xi _n^2[c(\xi ')+\xi _nc(dx_n)]}{(1+\xi _n^2)^3}\bigg )\bigg ](x_0)|_{|\xi '|=1}\nonumber \\&\quad =-2ih'(0)\frac{3\xi _n^2-1}{(\xi _n-i)^4(\xi _n+i)^3}. \end{aligned}$$
(3.35)

Then

$$\begin{aligned} \Phi _2&=-\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\frac{ih'(0)(\xi _n-i)^2}{(\xi _n-i)^4(\xi _n+i)^3}d\xi _n\sigma (\xi ')dx'\\&=-ih'(0)\Omega _3\int \limits _{\Gamma ^+}\frac{1}{(\xi _n-i)^2(\xi _n+i)^3}d\xi _ndx'\nonumber \\&=-ih'(0)\Omega _32\pi i\left[ \frac{1}{(\xi _n+i)^3}\right] ^{(1)}|_{\xi _n=i}dx'\nonumber \\&=-\frac{3}{8}\pi h'(0)\Omega _3dx',\nonumber \end{aligned}$$
(3.36)

where \({{\Omega _{3}}}\) is the canonical volume of \(S^{3}\).

Case (a) (III) \(r=-1,~l=-1,~j=|\alpha |=0,~k=1\)

By (3.18), we get

$$\begin{aligned} \Phi _3= & {} -\frac{1}{2}\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty } {\mathrm{trace}}[\partial _{\xi _n}\pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1})\nonumber \\&\times \partial _{\xi _n}\partial _{x_n}\sigma _{-1}(({{\widetilde{D}}}^*)^{-1}) ](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(3.37)

By Lemma 3.7, we have

$$\begin{aligned} \partial _{\xi _n}\partial _{x_n}\sigma _{-1}(({{\widetilde{D}}}^*)^{-1})(x_0)|_{|\xi '|=1}= & {} -ih'(0)\left[ \frac{c(dx_n)}{|\xi |^4}-4\xi _n\frac{c(\xi ') +\xi _nc(dx_n)}{|\xi |^6}\right] \nonumber \\&-\frac{2\xi _ni\partial _{x_n}c(\xi ')(x_0)}{|\xi |^4}; \end{aligned}$$
(3.38)
$$\begin{aligned} \partial _{\xi _n}\pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1}) (x_0)|_{|\xi '|=1}= & {} -\frac{c(\xi ')+ic(dx_n)}{2(\xi _n-i)^2}. \end{aligned}$$
(3.39)

Similar to case a) II), we have

$$\begin{aligned}&{\mathrm{tr}}\left\{ \frac{c(\xi ')+ic(dx_n)}{2(\xi _n-i)^2}\times ih'(0)\left[ \frac{c(dx_n)}{|\xi |^4}-4\xi _n\frac{c(\xi ') +\xi _nc(dx_n)}{|\xi |^6}\right] \right\} \nonumber \\&\quad =2h'(0)\frac{i-3\xi _n}{(\xi _n-i)^4(\xi _n+i)^3} \end{aligned}$$
(3.40)

and

$$\begin{aligned} {\mathrm{tr}}\left[ \frac{c(\xi ')+ic(dx_n)}{2(\xi _n-i)^2}\times \frac{2\xi _ni\partial _{x_n}c(\xi ')(x_0)}{|\xi |^4}\right] =\frac{-2ih'(0)\xi _n}{(\xi _n-i)^4(\xi _n+i)^2}. \end{aligned}$$
(3.41)

So we have

$$\begin{aligned} \Phi _3&=-\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\frac{h'(0)(i-3\xi _n)}{(\xi _n-i)^4(\xi _n+i)^3}d\xi _n\sigma (\xi ')dx'\nonumber \\&\quad -\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\frac{h'(0)i\xi _n}{(\xi _n-i)^4(\xi _n+i)^2}d\xi _n\sigma (\xi ')dx'\nonumber \\&=-h'(0)\Omega _3\frac{2\pi i}{3!}\left[ \frac{(i-3\xi _n)}{(\xi _n+i)^3} \right] ^{(3)}|_{\xi _n=i}dx'+h'(0)\Omega _3\frac{2\pi i}{3!}\left[ \frac{i\xi _n}{(\xi _n+i)^2}\right] ^{(3)}|_{\xi _n=i}dx'\nonumber \\&=\frac{3}{8}\pi h'(0)\Omega _3dx'. \end{aligned}$$
(3.42)

Case (b) \(r=-2,~l=-1,~k=j=|\alpha |=0\)

By (3.18), we get

$$\begin{aligned} \Phi _4&=-i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} [\pi ^+_{\xi _n}\sigma _{-2}({{\widetilde{D}}}^{-1})\times \partial _{\xi _n}\sigma _{-1}(({{\widetilde{D}}}^*)^{-1})](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(3.43)

By Lemma 3.7 we have

$$\begin{aligned} \sigma _{-2}({{\widetilde{D}}}^{-1})(x_0)=\frac{c(\xi ) \sigma _{0}({{\widetilde{D}}})(x_0)c(\xi )}{|\xi |^4}+\frac{c(\xi )}{|\xi |^6}c(dx_n) [\partial _{x_n}[c(\xi ')](x_0)|\xi |^2-c(\xi )h'(0)|\xi |^2_{\partial M}], \end{aligned}$$
(3.44)

where

$$\begin{aligned} \sigma _{0}({{\widetilde{D}}})(x_0)&=-\frac{1}{4}\sum _{s,t,i}\omega _{s,t}(e_i) (x_{0})c(e_i)c(e_s)c(e_t)\nonumber \\&\quad +f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2. \end{aligned}$$
(3.45)

We denote

$$\begin{aligned} Q(x_0)&=-\frac{1}{4}\sum _{s,t,i}\omega _{s,t}(e_i) (x_{0})c(e_i)c(e_s)c(e_t). \end{aligned}$$
(3.46)

Then

$$\begin{aligned}&\pi ^+_{\xi _n}\sigma _{-2}({{\widetilde{D}}}^{-1}(x_0))|_{|\xi '|=1}\nonumber \\&\quad =\pi ^+_{\xi _n} \Big [\frac{c(\xi )(f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2) (x_0)c(\xi )}{(1+\xi _n^2)^2}\Big ] \nonumber \\&\qquad +\pi ^+_{\xi _n}\Big [\frac{c(\xi )Q(x_0)c(\xi )+c(\xi )c(dx_n) \partial _{x_n}[c(\xi ')](x_0)}{(1+\xi _n^2)^2}-h'(0)\frac{c(\xi ) c(dx_n)c(\xi )}{(1+\xi _n^{2})^3}\Big ]. \end{aligned}$$
(3.47)

And

$$\begin{aligned}&{\mathrm{tr}}\left[ \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) c(dx_n)\right] \nonumber \\&\quad =f_1\sum _{u<v}(p_{uv}-p_{vu}){\mathrm{tr}}[c(e_u)c(e_v)c(dx_n)]\nonumber \\&\quad =0;\nonumber \\&{\mathrm{tr}}\left[ \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) c(\xi ')\right] \nonumber \\&\quad ={\mathrm{tr}}\left[ \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2\right) \sum _{j=1}^{n-1}\xi _jc(e_j)\right] \nonumber \\&\quad =0. \end{aligned}$$
(3.48)

Since

$$\begin{aligned} \partial _{\xi _n}\sigma _{-1}(({{\widetilde{D}}}^*)^{-1})= \partial _{\xi _n}q_{-1}(x_0)|_{|\xi '|=1}=i\left[ \frac{c(dx_n)}{1+\xi _n^2} -\frac{2\xi _nc(\xi ')+2\xi _n^2c(dx_n)}{(1+\xi _n^2)^2}\right] . \end{aligned}$$
(3.49)

Then, we have

$$\begin{aligned}&\pi ^+_{\xi _n}\Big [\frac{c(\xi )Q(x_0)c(\xi )+c(\xi )c(dx_n)\partial _{x_n} [c(\xi ')](x_0)}{(1+\xi _n^2)^2}\Big ]-h'(0)\pi ^+_{\xi _n} \Big [\frac{c(\xi )c(dx_n)c(\xi )}{(1+\xi _n)^3}\Big ]\nonumber \\&\quad := C_1-C_2, \end{aligned}$$
(3.50)

where

$$\begin{aligned} C_1&=\frac{-1}{4(\xi _n-i)^2}[(2+i\xi _n)c(\xi ')Q(x_0)c(\xi ') +i\xi _nc(dx_n)Q(x_0)c(dx_n)\nonumber \\&\quad +(2+i\xi _n)c(\xi ')c(dx_n)\partial _{x_n}c(\xi ')+ic(dx_n)Q(x_0)c(\xi ') +ic(\xi ')Q(x_0)c(dx_n)-i\partial _{x_n}c(\xi ')] \end{aligned}$$
(3.51)

and

$$\begin{aligned} C_2&=\frac{h'(0)}{2}\left[ \frac{c(dx_n)}{4i(\xi _n-i)} +\frac{c(dx_n)-ic(\xi ')}{8(\xi _n-i)^2} +\frac{3\xi _n-7i}{8(\xi _n-i)^3}[ic(\xi ')-c(dx_n)]\right] . \end{aligned}$$
(3.52)

By (3.50) and (3.52), we have

$$\begin{aligned} {\mathrm{tr }}[C_2\times \partial _{\xi _n}\sigma _{-1}(({{\widetilde{D}}}^*)^{-1})]|_{|\xi '|=1}= & {} \frac{i}{2}h'(0)\frac{-i\xi _n^2-\xi _n+4i}{4(\xi _n-i)^3 (\xi _n+i)^2}{\mathrm{tr}}[ \texttt {id}]\nonumber \\= & {} 2ih'(0)\frac{-i\xi _n^2-\xi _n+4i}{4(\xi _n-i)^3(\xi _n+i)^2}. \end{aligned}$$
(3.53)

By (3.50) and (3.51), we have

$$\begin{aligned} {\mathrm{tr }}[C_1\times \partial _{\xi _n}\sigma _{-1} (({{\widetilde{D}}}^*)^{-1})]|_{|\xi '|=1}= \frac{-2ic_0}{(1+\xi _n^2)^2}+h'(0)\frac{\xi _n^2 -i\xi _n-2}{2(\xi _n-i)(1+\xi _n^2)^2}, \end{aligned}$$
(3.54)

where \(Q=c_0c(dx_n)\) and \(c_0=-\frac{3}{4}h'(0)\).

By (3.53) and (3.54), we have

$$\begin{aligned}&-i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} [(C_1-C_2)\times \partial _{\xi _n}\sigma _{-1}(({{\widetilde{D}}}^*)^{-1})](x_0)d\xi _n\sigma (\xi ')dx'\nonumber \\&\quad =-\Omega _3\int \limits _{\Gamma ^+}\frac{2c_0(\xi _n-i)+ih'(0)}{(\xi _n-i)^3 (\xi _n+i)^2}d\xi _ndx'\nonumber \\&\quad =\frac{9}{8}\pi h'(0)\Omega _3dx'. \end{aligned}$$
(3.55)

Then, we have

$$\begin{aligned}&-i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} \left[ \pi ^+_{\xi _n} \Big [\frac{c(\xi )(f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2)c(\xi )}{(1+\xi _n^2)^2}\Big ]\right. \nonumber \\&\quad \left. \times \partial _{\xi _n}\sigma _{-1}(({{\widetilde{D}}}^*)^{-1})\right] (x_0)d\xi _n\sigma (\xi ')dx'\nonumber \\&\quad =\frac{\pi }{4}{\mathrm{tr}}\left[ c(dx_n)\left( f_1\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+f_2\right) \right] \Omega _3dx'\nonumber \\&\quad =0. \end{aligned}$$
(3.56)

Then, we have

$$\begin{aligned} \Phi _4=\frac{9}{8}\pi h'(0)\Omega _3dx'. \end{aligned}$$
(3.57)

Case (c) \(r=-1,~l=-2,~k=j=|\alpha |=0\)

By (3.18), we get

$$\begin{aligned} \Phi _5=-i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} [\pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1})\times \partial _{\xi _n}\sigma _{-2}(({{\widetilde{D}}}^*)^{-1})](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(3.58)

By (3.5) and (3.6), Lemma 3.7, we have

$$\begin{aligned} \pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1})|_{|\xi '|=1}= \frac{c(\xi ')+ic(dx_n)}{2(\xi _n-i)}. \end{aligned}$$
(3.59)

Since

$$\begin{aligned} \sigma _{-2}(({{\widetilde{D}}}^*)^{-1})(x_0)= & {} \frac{c(\xi ) \sigma _{0}({{\widetilde{D}}}^*)(x_0)c(\xi )}{|\xi |^4}\nonumber \\&+\frac{c(\xi )}{|\xi |^6}c(dx_n) \bigg [\partial _{x_n}[c(\xi ')](x_0)|\xi |^2-c(\xi )h'(0)|\xi |^2_{\partial _ M}\bigg ], \end{aligned}$$
(3.60)

where

$$\begin{aligned} \sigma _{0}({{\widetilde{D}}}^*)(x_0)&= -\frac{1}{4}\sum _{s,t,i}\omega _{s,t}(e_i)(x_{0})c(e_i)c(e_s)c(e_t)\nonumber \\&\quad +\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) (x_{0})\nonumber \\&=Q(x_0)+\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) (x_{0}), \end{aligned}$$
(3.61)

then

$$\begin{aligned}&\partial _{\xi _n}\sigma _{-2}(({{\widetilde{D}}}^*)^{-1})(x_0)|_{|\xi '|=1}\nonumber \\&\quad = \partial _{\xi _n}\bigg \{\frac{c(\xi )[Q(x_0) +(-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2})(x_{0}) ]c(\xi )}{|\xi |^4}\nonumber \\&\qquad +\frac{c(\xi )}{|\xi |^6}c(dx_n)[\partial _{x_n}[c(\xi ')](x_0)|\xi |^2-c(\xi )h'(0) ]\bigg \}\nonumber \\&\quad =\partial _{\xi _n}\bigg \{\frac{c(\xi )}{|\xi |^6}c(dx_n)[\partial _{x_n}[c(\xi ') ](x_0)|\xi |^2-c(\xi )h'(0)]\bigg \}+\partial _{\xi _n}\frac{c(\xi )Q(x_0)c(\xi )}{|\xi |^4}\nonumber \\&\qquad +\partial _{\xi _n}\frac{c(\xi )(-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+\overline{f_2})(x_{0})c(\xi )}{|\xi |^4}. \end{aligned}$$
(3.62)

by \(c(\xi )=c(\xi ')+\xi _nc(dx_n)\), \(|\xi |^2=1+\xi _n^2\) and direct derivation, we get

$$\begin{aligned}&\partial _{\xi _n}\frac{c(\xi )(-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2})(x_{0})c(\xi )}{|\xi |^4}\nonumber \\&\quad =\partial _{\xi _n}\frac{(c(\xi ')+\xi _nc(dx_n))(-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2})(x_{0})(c(\xi ')+\xi _nc(dx_n))}{|\xi |^4}\nonumber \\&\quad =\frac{c(dx_n)(-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2})(x_{0})c(\xi )}{|\xi |^4}\nonumber \\&\qquad +\frac{c(\xi )(-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2})(x_{0})c(dx_n)}{|\xi |^4}\nonumber \\&\qquad -\frac{4\xi _n c(\xi )(-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2})(x_{0})c(\xi )}{|\xi |^4}.\nonumber \\ \end{aligned}$$
(3.63)

We denote

$$\begin{aligned} q_{-2}^{1}=\frac{c(\xi )Q(x_0)c(\xi )}{|\xi |^4}+\frac{c(\xi )}{|\xi |^6} c(dx_n)[\partial _{x_n}[c(\xi ')](x_0)|\xi |^2-c(\xi )h'(0)], \end{aligned}$$

then

$$\begin{aligned} \partial _{\xi _n}(q_{-2}^{1})&=\frac{1}{(1+\xi _n^2)^3} \bigg [(2\xi _n-2\xi _n^3)c(dx_n)Q(x_0)c(dx_n) +(1-3\xi _n^2)c(dx_n)Q(x_0)c(\xi ')\nonumber \\&\quad +(1-3\xi _n^2)c(\xi ')Q(x_0)c(dx_n) -4\xi _nc(\xi ')Q(x_0)c(\xi ') +(3\xi _n^2-1)\partial _{x_n}c(\xi ')\nonumber \\&\quad -4\xi _nc(\xi ')c(dx_n)\partial _{x_n}c(\xi ') +2h'(0)c(\xi ')+2h'(0)\xi _nc(dx_n)\bigg ]\nonumber \\&\quad +6\xi _nh'(0)\frac{c(\xi )c(dx_n)c(\xi )}{(1+\xi ^2_n)^4}. \end{aligned}$$
(3.64)

By (3.59) and (3.64), we have

$$\begin{aligned} {\mathrm{tr}}[\pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1})\times \partial _{\xi _n}(q^1_{-2})](x_0)|_{|\xi '|=1}= & {} \frac{3h'(0)(i\xi ^2_n+\xi _n-2i)}{(\xi -i)^3(\xi +i)^3}\nonumber \\&+\frac{12h'(0)i\xi _n}{(\xi -i)^3(\xi +i)^4}, \end{aligned}$$
(3.65)

then

$$\begin{aligned}&-i\Omega _3\int \limits _{\Gamma _+}\left[ \frac{3h'(0)(i\xi _n^2+\xi _n-2i)}{(\xi _n-i)^3(\xi _n+i)^3}+\frac{12h'(0)i\xi _n}{(\xi _n-i)^3(\xi _n+i)^4}\right] d\xi _ndx'\nonumber \\&\quad = -\frac{9}{8}\pi h'(0)\Omega _3dx'. \end{aligned}$$
(3.66)

By \(\int _{|\xi '|=1}\xi _{1}\cdot \cdot \cdot \xi _{2d+1}\sigma (\xi ')=0\), (3.59) and (3.62), we have

$$\begin{aligned}&-i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{tr}}\left[ \pi ^+_{\xi _n} \sigma _{-1}({{\widetilde{D}}}^{-1})\times \partial _{\xi _n}\frac{c(\xi )(-\overline{f_1}\sum _{u<v}(p_{uv }-p_{vu})c(e_u)c(e_v)+\overline{f_2})c(\xi )}{|\xi |^4}\right] \nonumber \\&(x_0)d\xi _n\sigma (\xi ')dx'\nonumber \\&\quad =-i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\frac{i}{(\xi -i)(\xi +i)^3} {\mathrm{tr}}\left[ c(dx_n)\left( -\overline{f_1}\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) \right] \nonumber \\&(x_0)d\xi _n\sigma (\xi ')dx'\nonumber \\&\quad =-\frac{\pi }{4}{\mathrm{tr}}\left[ c(dx_n)\left( -\overline{f_1}\sum _{u<v} (p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) \right] \Omega _3dx'\nonumber \\&\quad =0. \end{aligned}$$
(3.67)

Then,

$$\begin{aligned} \Phi _5=-\frac{9}{8}\pi h'(0)\Omega _3dx'. \end{aligned}$$
(3.68)

So \(\Phi =\sum _{i=1}^5\Phi _i=0\).

By (3.17), (3.19) and (3.68), we can get

Theorem 3.8

Let M be a 4-dimensional compact oriented spin manifolds with the boundary \(\partial M\) and the metric \(g^M\) as above, \({{\widetilde{D}}}\) and \({{\widetilde{D}}}^*\) be the Dirac–Witten operators on \({\widetilde{M}}\) , then

$$\begin{aligned}&\widetilde{{\mathrm{Wres}}}[\pi ^+{{\widetilde{D}}}^{-1}\circ \pi ^+ ({{\widetilde{D}}}^*)^{-1}]\nonumber \\&\quad =32\pi ^2\int \limits _{M}\bigg \{-\frac{1}{3}s-12f_2\overline{f_2}+4f_2^2 +4\overline{f_2}^2+4f_1\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})^2 \bigg \}d{\mathrm{Vol}_{\mathrm{M}}}. \end{aligned}$$
(3.69)

where s is the scalar curvature.

4 A Kastler–Kalau–Walze type theorem for 6-dimensional manifolds with boundary

Firstly, we prove the Kastler–Kalau–Walze type theorems for 6-dimensional manifolds with boundary. From [14], we know that

$$\begin{aligned} \widetilde{{\mathrm{Wres}}}[\pi ^+{{\widetilde{D}}}^{-1}\circ \pi ^+ ({{\widetilde{D}}}^{*}{{\widetilde{D}}} {{\widetilde{D}}}^{*})^{-1}]= & {} \int \limits _M\int \limits _{|\xi |=1}\mathrm{trace}_{\wedge ^*T^*M\bigotimes {\mathbb {C}}}[\sigma _{-4}( ({{\widetilde{D}}}^*{{\widetilde{D}}})^{-2})]\sigma (\xi )dx\nonumber \\&+\int \limits _{{\partial _t}M}\Psi , \end{aligned}$$
(4.1)

where

$$\begin{aligned} \Psi&=\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\sum ^{\infty }_{j, k=0} \sum \frac{(-i)^{|\alpha |+j+k+1}}{\alpha !(j+k+1)!} \times {\mathrm{trace}}_{\wedge ^*T^*M\bigotimes {\mathbb {C}}}[\partial ^j_{x_n} \partial ^\alpha _{\xi '}{\partial _t}^k_{\xi _n}\sigma ^+_{r}({{\widetilde{D}}}^{-1})(x',0,\xi ',\xi _n) \nonumber \\&\quad \times \partial ^\alpha _{x'}\partial ^{j+1}_{\xi _n}\partial ^k_{x_n}\sigma _{l} (({{\widetilde{D}}}^{*}{{\widetilde{D}}} {{\widetilde{D}}}^{*})^{-1})(x',0,\xi ',\xi _n)]d\xi _n\sigma (\xi ')dx', \end{aligned}$$
(4.2)

and the sum is taken over \(r+\ell -k-j-|\alpha |-1=-6, \ r\le -1, \ell \le -3\).

By Theorem 2.2, we compute the interior term of (4.1), then

$$\begin{aligned}&\int \limits _M\int \limits _{|\xi |=1}\mathrm{trace}_{\wedge ^*T^*M\bigotimes {\mathbb {C}}}[\sigma _{-4}(({{\widetilde{D} }}^*{{\widetilde{D}}})^{-2})]\sigma (\xi )dx\nonumber \\&\quad =128\pi ^3\int \limits _{M}\bigg ( -\frac{2}{3}s-4(f_1^2+\overline{f_1}^2-4f_1\overline{f_1}) \sum _{u<v}(p_{uv}-p_{vu})^2-32f_2\overline{f_2}+12f_2^2 +12\overline{f_2}^2\bigg )d{\mathrm{Vol}_{\mathrm{M}}}. \end{aligned}$$
(4.3)

Next, we compute \(\int _{\partial M} \Psi \). By (2.12), we get

$$\begin{aligned} {{\widetilde{D}}}^*{\widetilde{D}}&=D^2+D\left[ -\overline{f_1}\sum _{u<v} (p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\right] \nonumber \\&\quad +\left[ f_1\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+f_2\right] D\nonumber \\&\quad +\left[ -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +\overline{f_2}\right] \nonumber \\&\quad \left[ f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right] , \end{aligned}$$
(4.4)

Then,

$$\begin{aligned} {{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*&=\sum ^{n}_{i=1}c(e_{i})\langle e_{i},dx_{l}\rangle (-g^{ij}\partial _{l}\partial _{i}\partial _{j})\nonumber \\&\quad +\sum ^{n}_{i=1}c(e_{i})\langle e_{i},dx_{l}\rangle \bigg \{-(\partial _{l}g^{ij})\partial _{i}\partial _{j}-g^{ij}\bigg (4\sigma _{i} \partial _{j}-2\Gamma ^{k}_{ij}\partial _{k}\bigg )\partial _{l}\bigg \}\nonumber \\&\quad +\sum ^{n}_{i=1}c(e_{i})\langle e_{i},dx_{l}\rangle \left\{ -2(\partial _{l}g^{ij})\sigma _{i}\partial _{j}+g^{ij} (\partial _{l}\Gamma ^{k}_{ij})\partial _{k}\right. \nonumber \\&\quad -2g^{ij}\partial _{l}\sigma _{i}\partial _{j} +(\partial _{l}g^{ij})\Gamma ^{k}_{ij}\partial _{k}\nonumber \\&\quad +\sum _{j,k} \left[ \partial _{l}\left( \left( f_1 \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) c(e_{j})\right. \right. \nonumber \\&\quad \left. \left. +c(e_{j})\left( \overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) -\overline{f_2}\right) \right) \right] \langle e_{j},dx^{k}\rangle \partial _{k}\nonumber \\&\quad +\sum _{j,k}\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2\right) c(e_{j})\nonumber \\&\quad \left. \left. +c(e_{j})\left( \overline{f_1}\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)-\overline{f_2}\right) \right) \Big [\partial _{l}\langle e_{j},dx^{k}\rangle \Big ]\partial _{k} \right\} \nonumber \\&\quad +\sum ^{n}_{i=1}c(e_{i})\langle e_{i},dx_{l}\rangle \partial _{l} \left\{ -g^{ij}\Big [(\partial _{i}\sigma _{j})+\sigma _{i}\sigma _{j} -\Gamma _{i,j}^{k}\sigma _{k}\right. \nonumber \\&\quad +\sum _{i,j}g^{i,j}\left[ \Bigg (f_1\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+f_2\Bigg )c(\partial _{i})\sigma _{i}\right. \nonumber \\&\left. \quad +c(\partial _{i}) \partial _{i}\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +\overline{f_2}\right) \right. \nonumber \\&\quad \left. +c(\partial _{i})\sigma _{i}\left( -\overline{f_1}\sum _{u<v} (p_{uv}-p_{vu}) c(e_u)c(e_v)+\overline{f_2}\right) \right] \nonumber \\&\quad \left. +\frac{1}{4}s +\left( \overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) -\overline{f_2}\right) ^2\right\} \nonumber \\&\quad +\left[ \sigma _{i}-(\overline{f_1} \sum _{u<v}(p_{uv}-p_{vu})c(e_u) c(e_v)-\overline{f_2})\right] (-g^{ij}\partial _{i}\partial _{j})\nonumber \\&\quad +\sum ^{n}_{i=1}c(e_{i})\langle e_{i},dx_{l}\rangle \left\{ 2\sum _{j,k} \left[ \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) c(e_{j})+c(e_{j})\right. \right. \nonumber \\&\quad \left. \left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +\overline{f_2}\right) \right] \nonumber \\&\quad \left. \times \langle e_{i},dx_{k}\rangle \right\} _{l}\partial _{k} +\left[ \sigma _{i}+\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +\overline{f_2}\right) \right] \nonumber \\&\quad \bigg \{-\sum _{i,j}g^{i,j}\Big [2\sigma _{i}\partial _{j} -\Gamma _{i,j}^{k}\partial _{k}+(\partial _{i}\sigma _{j})+\sigma _{i}\sigma _{j} -\Gamma _{i,j}^{k}\sigma _{k}\Big ]\nonumber \\&\quad -\sum _{i,j}g^{i,j}\Bigg [c(\partial _{i}) \Bigg (-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)\nonumber \\&\quad +\overline{f_2}\Bigg )+\Big (f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2\Big )c(\partial _{i})\Bigg ]\partial _{j}\nonumber \\&\quad +\sum _{i,j}g^{i,j}\left[ \Bigg (f_1\sum _{u<v} (p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\Bigg )c(\partial _{i})\right. \nonumber \\&\quad \sigma _{i}+c(\partial _{i})\partial _{i}\Bigg (-\overline{f_1} \sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\Bigg )\nonumber \\&\quad -c(\partial _{i}) \sigma _{i}\Bigg (-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +\overline{f_2}\Bigg )+c(\partial _{i})\nonumber \\&\quad \partial _{i}\Bigg (-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v )+\overline{f_2}\Bigg )c(\partial _{i})\sigma _{i}\nonumber \\&\quad \left. \left( -\overline{f_1}\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+\overline{f_2}\right) \right] \nonumber \\&\quad \left. +\frac{1}{4}s-\left( f_1\sum _{u<v} (p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) ^2\right\} . \end{aligned}$$
(4.5)

Then, by (4.5), we obtain

Lemma 4.1

The following identities hold:

$$\begin{aligned} \sigma _2({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*)&=\sum _{i,j,l}c(dx_{l})\partial _{l}(g^{i,j})\xi _{i}\xi _{j} +c(\xi ) (4\sigma ^k-2\Gamma ^k)\xi _{k}\nonumber \\&\quad +2\left[ |\xi |^2\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+\overline{f_2}\right) \right. \nonumber \\&\quad \left. -c(\xi )\left( f_1\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+f_2\right) c(\xi )\right] \nonumber \\&\quad -\frac{1}{4}|\xi |^2\sum _{s,t,l}\omega _{s,t} c(e_l)c(e_s)c(e_t)\nonumber \\&\quad +|\xi |^2\left( -\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+\overline{f_2}\right) ^2;\nonumber \\ \sigma _{3}({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*)&=ic(\xi )|\xi |^{2};\nonumber \\ \end{aligned}$$
(4.6)

where \(\xi =\Sigma _{i=1}^n\xi _id_{x_i}\) denotes the cotangent vector.

Write

$$\begin{aligned} \sigma ({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*)&=p_3+p_2+p_1+p_0; ~\sigma (({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^* )^{-1})=\sum ^{\infty }_{j=3}q_{-j}. \end{aligned}$$
(4.7)

By the composition formula of pseudodifferential operators, we have

$$\begin{aligned} 1=\sigma (({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*) \circ ({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*)^{-1})&= \sum _{\alpha }\frac{1}{\alpha !}\partial ^{\alpha }_{\xi } [\sigma ({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*)]D^{\alpha }_{x} [({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*)^{-1}] \nonumber \\&=(p_3+p_2+p_1+p_0)(q_{-3}+q_{-4}+q_{-5}+\cdots )\nonumber \\&\quad +\sum _j(\partial _{\xi _j}p_3+\partial _{\xi _j}p_2+\partial _{\xi _j}p_1 +\partial _{\xi _j}p_0)\nonumber \\ (D_{x_j}q_{-3}+D_{x_j}q_{-4}+D_{x_j}q_{-5}+\cdots )&=p_3q_{-3}+(p_3q_{-4}+p_2q_{-3}\nonumber \\&\quad +\sum _j\partial _{\xi _j}p_3D_{x_j}q_{-3})+\cdots , \end{aligned}$$
(4.8)

by (4.8), we have

$$\begin{aligned} q_{-3}=p_3^{-1};~q_{-4}=-p_3^{-1} \left[ p_2p_3^{-1}+\sum _j\partial _{\xi _j}p_3D_{x_j}(p_3^{-1})\right] . \end{aligned}$$
(4.9)

By Lemma 4.1, we have some symbols of operators.

Lemma 4.2

The following identities hold:

$$\begin{aligned} \sigma _{-3}(({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*)^{-1})&=\frac{ic(\xi )}{|\xi |^{4}};\nonumber \\ \sigma _{-4}(({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*)^{-1})&= \frac{c(\xi )\sigma _{2}({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*) c(\xi )}{|\xi |^8}\nonumber \\&\quad +\frac{ic(\xi )}{|\xi |^8}\Big (|\xi |^4c(dx_n)\partial _{x_n}c(\xi ') -2h'(0)c(dx_n)c(\xi )\nonumber \\&\quad +2\xi _{n}c(\xi )\partial _{x_n}c(\xi ')+4\xi _{n}h'(0)\Big ). \end{aligned}$$
(4.10)

When \(n=6\), then \({\mathrm{tr}}_{\wedge ^*T^*M}[\texttt {id}]=8\), where \({\mathrm{tr}}\) as shorthand of \({\mathrm{trace}}\). Since the sum is taken over \(r+\ell -k-j-|\alpha |-1=-6, \ r\le -1, \ell \le -3\), then we have the sum of the following five cases:

Case (a) (I) \(r=-1, l=-3, j=k=0, |\alpha |=1\).

By (4.2), we get

$$\begin{aligned} \Psi _1= & {} -\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\sum _{|\alpha |=1}{\mathrm{trace}}\Big [\partial ^{\alpha }_{\xi '}\pi ^{+}_{\xi _{n}}\sigma _{-1}({{\widetilde{D}}}^{-1}) \times \partial ^{\alpha }_{x'}\partial _{\xi _{n}}\sigma _{-3} (({{\widetilde{D}}}^{*}{{\widetilde{D}}} {{\widetilde{D}}}^{*})^{-1})\Big ]\nonumber \\&(x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(4.11)

By Lemma 4.2, for \(i<n\), we have

$$\begin{aligned} \partial _{x_{i}}\sigma _{-3}(({{\widetilde{D}}}^{*}{{\widetilde{D}}} {{\widetilde{D}}}^{*})^{-1})(x_0)\,= \,& {} \partial _{x_{i}}\Big [\frac{ic(\xi )}{|\xi |^{4}}\Big ](x_{0})\nonumber \\=\, & {} i\partial _{x_{i}}[c(\xi )]|\xi |^{-4}(x_{0})-2ic(\xi )\partial _{x_{i}} [|\xi |^{2}]|\xi |^{-6}(x_{0})=0, \end{aligned}$$
(4.12)

so \(\Psi _1=0\).

Case (a) (II) \(r=-1, l=-3, |\alpha |=k=0, j=1\).

By (4.2), we have

$$\begin{aligned} \Psi _2=-\frac{1}{2}\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty } \mathrm{trace} \Big [\partial _{x_{n}}\pi ^{+}_{\xi _{n}}\sigma _{-1}({{\widetilde{D}}}^{-1}) \times \partial ^{2}_{\xi _{n}}\sigma _{-3}(({{\widetilde{D}}}^{*}{{\widetilde{D}}} {{\widetilde{D}}}^{*})^{-1})\Big ](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(4.13)

By direct derivation, we have

$$\begin{aligned} \partial ^{2}_{\xi _{n}}\sigma _{-3}(({{\widetilde{D}}}^{*}{{\widetilde{D}}} {{\widetilde{D}}}^{*})^{-1})&=\partial _{\xi _n}\left[ \frac{-4 i \xi _{n} c(\xi ')}{(1+\xi _{n}^{2})^{3}}+\frac{i(1- 3\xi _{n}^{2})c(\texttt {d}x_{n})}{(1+\xi _{n}^{2})^{3}}\right] \nonumber \\&=i\bigg [\frac{(20\xi ^{2}_{n}-4)c(\xi ')+ 12(\xi ^{3}_{n}-\xi _{n})c(dx_{n})}{(1+\xi _{n}^{2})^{4}}\bigg ]. \end{aligned}$$
(4.14)

Since \(n=6\), \({\mathrm{tr}}[-\texttt {id}]=-8\). By the relation of the Clifford action and \({\mathrm{tr}}AB={\mathrm{tr}}BA\), then

$$\begin{aligned}&{\mathrm{tr}}[c(\xi ')c(dx_{n})]=0; \ {\mathrm{tr}}[c(dx_{n})^{2}]=-8;\ {\mathrm{tr}}[c(\xi ')^{2}](x_{0})|_{|\xi '|=1}=-8;\nonumber \\&{\mathrm{tr}}[\partial _{x_{n}}[c(\xi ')]c(\texttt {d}x_{n})]=0; \ {\mathrm{tr}}[\partial _{x_{n}}c(\xi ')c(\xi ')](x_{0})|_{|\xi '|=1}=-4h'(0). \end{aligned}$$
(4.15)

By (3.29), (4.13) and (4.15), we get

$$\begin{aligned}&{\mathrm{trace}} \Big [\partial _{x_{n}}\pi ^{+}_{\xi _{n}}\sigma _{-1}({{\widetilde{D}}}^{-1}) \times \partial ^{2}_{\xi _{n}}\sigma _{-3}(({{\widetilde{D}}}^{*} {{\widetilde{D}}}{{\widetilde{D}}}^{*})^{-1})\Big ](x_0)\nonumber \\&\quad =8 h'(0)\frac{-1-3\xi _{n}i+5\xi ^{2}_{n} +3i\xi ^{3}_{n}}{(\xi _{n}-i)^{6}(\xi _{n}+i)^{4}}. \end{aligned}$$
(4.16)

Then we obtain

$$\begin{aligned} \Psi _2&=-\frac{1}{2}\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty } h'(0) dimF\frac{-1-3\xi _{n}i+5\xi ^{2}_{n}+3i\xi ^{3}_{n}}{(\xi _{n}-i)^{6} (\xi _{n}+i)^{4}}d\xi _n\sigma (\xi ')dx'\nonumber \\&=h'(0)\Omega _{4}\int \limits _{\Gamma ^{+}}\frac{4+12\xi _{n}i-20\xi ^{2}_{n} -122i\xi ^{3}_{n}}{(\xi _{n}-i)^{6}(\xi _{n}+i)^{4}}d\xi _{n}dx'\nonumber \\&=h'(0)\Omega _{4}\frac{\pi i}{5!}\Big [\frac{1+3\xi _{n}i-5\xi ^{2}_{n} -3i\xi ^{3}_{n}}{(\xi _{n}+i)^{4}}\Big ]^{(5)}|_{\xi _{n}=i}dx'\nonumber \\&=-\frac{15}{16}\pi h'(0)\Omega _{4}dx', \end{aligned}$$
(4.17)

where \({{\Omega _{4}}}\) is the canonical volume of \(S^{4}\).

Case (a) (III) \(r=-1,l=-3,|\alpha |=j=0,k=1\).

By (4.2), we have

$$\begin{aligned} \Psi _3=-\frac{1}{2}\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} \Big [\partial _{\xi _{n}}\pi ^{+}_{\xi _{n}}\sigma _{-1}({{\widetilde{D}}}^{-1}) \times \partial _{\xi _{n}}\partial _{x_{n}}\sigma _{-3}(({{\widetilde{D}}}^{*} {{\widetilde{D}}}{{\widetilde{D}}}^{*})^{-1})\Big ](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(4.18)

By direct derivation, we have

$$\begin{aligned} \partial _{\xi _{n}}\partial _{x_{n}}\sigma _{-3}(({{\widetilde{D}}}^{*} {{\widetilde{D}}}{{\widetilde{D}}}^{*})^{-1})&=\partial _{\xi _{n}} \frac{i\partial _{x_{n}}c(\xi ')(x_0)|\xi |^2-ic(\xi )|\xi '|^2h'(0)}{|\xi |^4}\nonumber \\&=-\frac{4 i\xi _{n}\partial _{x_{n}}c(\xi ')(x_{0})}{(1+\xi _{n}^{2})^{3}} + i\frac{12h'(0)\xi _{n}c(\xi ')}{(1+\xi _{n}^{2})^{4}} -i\frac{(2-10\xi ^{2}_{n})h'(0)c(dx_{n})}{(1+\xi _{n}^{2})^{4}}. \end{aligned}$$
(4.19)

Combining (3.36) and (4.19), we have

$$\begin{aligned}&{\mathrm{trace}} \Big [\partial _{\xi _{n}}\pi ^{+}_{\xi _{n}}\sigma _{-1}({{\widetilde{D}}}^{-1}) \times \partial _{\xi _{n}}\partial _{x_{n}}\sigma _{-3}(({{\widetilde{D}} }^{*}{{\widetilde{D}}}{{\widetilde{D}}}^{*})^{-1})\Big ](x_{0})|_{|\xi '|=1}\nonumber \\&\quad =h'(0)\frac{8i-32\xi _{n}-8i\xi ^{2}_{n}}{(\xi _{n}-i)^{5}(\xi +i)^{4}}. \end{aligned}$$
(4.20)

Then

$$\begin{aligned} \Psi _3&=-\frac{1}{2}\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty } h'(0) \frac{8i-32\xi _{n}-8i\xi ^{2}_{n}}{(\xi _{n}-i)^{5}(\xi +i)^{4}}d\xi _n\sigma (\xi ')dx'\nonumber \\&=-\frac{1}{2}h'(0)\Omega _{4}\int \limits _{\Gamma ^{+}}\frac{8i-32\xi _{n} -8i\xi ^{2}_{n}}{(\xi _{n}-i)^{5}(\xi +i)^{4}}d\xi _{n}dx'\nonumber \\&=-h'(0)\Omega _{4}\frac{\pi i}{4!}\Big [\frac{8i-32\xi _{n} -8i\xi ^{2}_{n}}{(\xi +i)^{4}}\Big ]^{(4)}|_{\xi _{n}=i}dx'\nonumber \\&=\frac{25}{16}\pi h'(0)\Omega _{4}dx'. \end{aligned}$$
(4.21)

Case (b) \(r=-1,l=-4,|\alpha |=j=k=0\).

By (4.2), we have

$$\begin{aligned} \Psi _4&=-i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} \Big [\pi ^{+}_{\xi _{n}}\sigma _{-1}({{\widetilde{D}}}^{-1}) \times \partial _{\xi _{n}}\sigma _{-4}(({{\widetilde{D}}}^{*}{{\widetilde{D}}} {{\widetilde{D}}}^{*})^{-1})\Big ](x_0)d\xi _n\sigma (\xi ')dx'\nonumber \\&=i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} [\partial _{\xi _n} \pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1})\times \sigma _{-4}(({{\widetilde{D}}}^{*}{{\widetilde{D}}} {{\widetilde{D}}}^{*})^{-1})](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(4.22)

In the normal coordinate, \(g^{ij}(x_{0})=\delta ^{j}_{i}\) and \(\partial _{x_{j}}(g^{\alpha \beta })(x_{0})=0\), if \(j<n\); \(\partial _{x_{j}}(g^{\alpha \beta })(x_{0})=h'(0)\delta ^{\alpha }_{\beta }\), if \(j=n\). So by [12], when \(k<n\), we have \(\Gamma ^{n}(x_{0})=\frac{5}{2}h'(0)\), \(\Gamma ^{k}(x_{0})=0\), \(\delta ^{n}(x_{0})=0\) and \(\delta ^{k}=\frac{1}{4}h'(0)c(e_{k})c(e_{n})\). Then, we obtain

$$\begin{aligned}&\sigma _{-4}(({{\widetilde{D}}}^{*}{{\widetilde{D}}}{{\widetilde{D}}}^{*} )^{-1})(x_{0})|_{|\xi '|=1}\nonumber \\&\quad = \frac{c(\xi )\sigma _{2}({{\widetilde{D}}}^{*}{{\widetilde{D}}}{{\widetilde{D}}}^{*}) (x_{0})|_{|\xi '|=1}c(\xi )}{|\xi |^8} -\frac{c(\xi )}{|\xi |^4}\sum _j\partial _{\xi _j}\big (c(\xi )|\xi |^2\big ){D}_{x_j} \bigg (\frac{ic(\xi )}{|\xi |^4}\bigg )\nonumber \\&\quad =\frac{1}{|\xi |^8}c(\xi )\Bigg (\frac{1}{2}h'(0)c(\xi )\sum _{k<n}\xi _kc(e_k)c(e_n) -\frac{5}{2}h'(0)\xi _nc(\xi )-\frac{1}{4}h'(0)\nonumber \\&\qquad |\xi |^2c(dx_n) +2\Bigg [|\xi |^2\Bigg (-\overline{f_1}\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\Bigg ) -c(\xi )\nonumber \\&\qquad \Bigg (f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\Bigg )c(\xi )\Bigg ]+|\xi |^2\Bigg (-\overline{f_1} \sum _{u<v}(p_{uv}-p_{vu})\nonumber \\&\qquad c(e_u)c(e_v)+\overline{f_2})\Bigg )c(\xi )+\frac{ic(\xi )}{|\xi |^8} \Big (|\xi |^4c(dx_n)\partial _{x_n}c(\xi ') -2h'(0)c(dx_n)c(\xi )\nonumber \\&\qquad +2\xi _{n}c(\xi )\partial _{x_n}c(\xi ')+4\xi _{n}h'(0)\Big ).\nonumber \\ \end{aligned}$$
(4.23)

By (3.32) and (4.23), we have

$$\begin{aligned}&{\mathrm{tr}} [\partial _{\xi _n}\pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1})\times \sigma _{-4}({{\widetilde{D}}}^{*}{{\widetilde{D}}}{{\widetilde{D}}}^{*})^{-1}](x_0)|_{|\xi '|=1} \nonumber \\&\quad =\frac{1}{2(\xi _{n}-i)^{2}(1+\xi _{n}^{2})^{4}}\Bigg (\frac{3}{4}i+2+(3+4i)\xi _{n}+(-6+2i)\xi _{n}^{2}+3\xi _{n}^{3}+\frac{9i}{4}\xi _{n}^{4}\Bigg )h'(0){\mathrm{tr}} [id]\nonumber \\&\qquad +\frac{1}{2(\xi _{n}-i)^{2}(1+\xi _{n}^{2})^{4}}\big (-1-3i\xi _{n}-2\xi _{n}^{2}-4i\xi _{n}^{3}-\xi _{n}^{4}-i\xi _{n}^{5}\big ){\mathrm{tr}[c(\xi ')\partial _{x_n}c(\xi ')]}.\nonumber \\ \end{aligned}$$
(4.24)

Then by (4.24), we get

$$\begin{aligned} \Psi _4&= ih'(0)\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }8 \times \frac{\frac{3}{4}i+2+(3+4i)\xi _{n}+(-6+2i)\xi _{n}^{2} +3\xi _{n}^{3}+\frac{9i}{4}\xi _{n}^{4}}{2(\xi _n-i)^5(\xi _n+i )^4}d\xi _n\sigma (\xi ')dx'\nonumber \\&\quad +ih'(0)\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }4\times \frac{1+3i\xi _{n} +2\xi _{n}^{2}+4i\xi _{n}^{3}+\xi _{n}^{4}+i\xi _{n}^{5}}{2(\xi _{n}-i)^{2} (1+\xi _{n}^{2})^{4}}d\xi _n\sigma (\xi ')dx'\nonumber \\&=\left( -\frac{41}{64}i-\frac{195}{64}\right) \pi h'(0)\Omega _4dx'.\nonumber \\ \end{aligned}$$
(4.25)

Case (c) \(r=-2,l=-3,|\alpha |=j=k=0\).

By (4.2), we have

$$\begin{aligned} \Psi _5=-i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} \Big [\pi ^{+}_{\xi _{n}}\sigma _{-2}({{\widetilde{D}}}^{-1}) \times \partial _{\xi _{n}}\sigma _{-3}(({{\widetilde{D}}}^{*}{ {\widetilde{D}}}{{\widetilde{D}}}^{*})^{-1})\Big ](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(4.26)

By Lemma 4.1 and Lemma 4.2, we have

$$\begin{aligned} \sigma _{-2}({{\widetilde{D}}}^{-1})(x_0)&=\frac{c(\xi )\sigma _{0} ({{\widetilde{D}}})c(\xi )}{|\xi |^4}(x_0)+\frac{c(\xi )}{|\xi |^6}\sum _jc(dx_j) \Big [\partial _{x_j}(c(\xi ))|\xi |^2-c(\xi )\partial _{x_j}(|\xi |^2)\Big ](x_0), \end{aligned}$$
(4.27)

where

$$\begin{aligned} \sigma _0({{\widetilde{D}}})= -\frac{1}{4}\sum _{i,s,t}\omega _{s,t}(e_i)c(e_i)c(e_s)c(e_t) +\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) . \end{aligned}$$
(4.28)

On the other hand,

$$\begin{aligned} \partial _{\xi _{n}}\sigma _{-3}(({{\widetilde{D}}}^{*}{{\widetilde{D}}} {{\widetilde{D}}}^{*})^{-1})=\frac{-4 i \xi _{n}c(\xi ')}{(1+\xi _{n}^{2})^{3}} +\frac{i(1- 3\xi _{n}^{2})c(\texttt {d}x_{n})}{(1+\xi _{n}^{2})^{3}}. \end{aligned}$$
(4.29)

By (4.27), (3.5) and (3.6), we have

$$\begin{aligned} \pi ^{+}_{\xi _{n}}\Big (\sigma _{-2}({{\widetilde{D}}}^{-1})\Big )(x_{_{0}})|_{|\xi '|=1}&=\pi ^{+}_{\xi _{n}}\Big [\frac{c(\xi )\sigma _{0}({{\widetilde{D}}})(x_{0})c(\xi ) +c(\xi )c(dx_{n})\partial _{x_{n}}[c(\xi ')](x_{0})}{(1+\xi ^{2}_{n})^{2}}\Big ]\nonumber \\&\quad -h'(0)\pi ^{+}_{\xi _{n}}\Big [\frac{c(\xi )c(dx_{n})c(\xi )}{(1+\xi ^{2}_{n})^{3}}\Big ]. \end{aligned}$$
(4.30)

We denote

$$\begin{aligned} \sigma _{0}({{\widetilde{D}}})(x_0)|_{\xi _n=i}=Q(x_0) +\Bigg (f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\Bigg ). \end{aligned}$$
(4.31)

Then, we obtain

$$\begin{aligned}&\pi ^{+}_{\xi _{n}}\Big (\sigma _{-2}({{\widetilde{D}}}^{-1})\Big )(x_{_{0}})|_{|\xi '|=1} \quad =\pi ^+_{\xi _n}\Big [\frac{c(\xi )Q(x_0)c(\xi )+c(\xi )c(dx_n) \partial _{x_n}[c(\xi ')](x_0)}{(1+\xi _n^2)^2}-h'(0)\frac{c(\xi )c(dx_n )c(\xi )}{(1+\xi _n^{2})^3}\Big ]\nonumber \\&\qquad +\pi ^+_{\xi _n}\Big [\frac{c(\xi )[(f_1\sum _{u<v}(p_{uv}-p_{vu} )c(e_u)c(e_v)+f_2)]c(\xi )(x_0)}{(1+\xi _n^2)^2}\Big ].\nonumber \\ \end{aligned}$$
(4.32)

Furthermore,

$$\begin{aligned}&\pi ^+_{\xi _n}\Big [\frac{c(\xi )[f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2](x_0)c(\xi )}{(1+\xi _n^2)^2}\Big ]\nonumber \\&\quad =\pi ^+_{\xi _n}\Big [\frac{c(\xi ')[f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2](x_0)c(\xi ')}{(1+\xi _n^2)^2}\Big ]\nonumber \\&\qquad +\pi ^+_{\xi _n}\Big [ \frac{\xi _nc(\xi ')[f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2] (x_0)c(dx_{n})}{(1+\xi _n^2)^2}\Big ]\nonumber \\&\qquad +\pi ^+_{\xi _n}\Big [\frac{\xi _nc(dx_{n})[f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2](x_0)c(\xi ')}{(1+\xi _n^2)^2}\Big ]\nonumber \\&\qquad +\pi ^+_{\xi _n}\Big [\frac{\xi _n^{2}c(dx_{n})[f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2](x_0)c(dx_{n})}{(1+\xi _n^2)^2}\Big ]\nonumber \\&=-\frac{c(\xi ')[f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2](x_0)c(\xi ')(2+i\xi _{n})}{4(\xi _{n}-i)^{2}}\nonumber \\&\qquad +\frac{ic(\xi ')[f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2](x_0)c(dx_{n})}{4(\xi _{n}-i)^{2}}\nonumber \\&\qquad +\frac{ic(dx_{n})[f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2](x_0)c(\xi ')}{4(\xi _{n}-i)^{2}}\nonumber \\&\qquad +\frac{-i\xi _{n}c(dx_{n})[f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2](x_0)c(dx_{n})}{4(\xi _{n}-i)^{2}}.\nonumber \\ \end{aligned}$$
(4.33)

By \(c(\xi )=c(\xi ')+\xi _nc(dx_n)\), we have

$$\begin{aligned}&\pi ^+_{\xi _n}\Big [\frac{c(\xi )Q(x_0)c(\xi )+c(\xi )c(dx_n)\partial _{x_n}(c(\xi '))(x_0)}{(1+\xi _n^2)^2}\Big ]-h'(0)\pi ^+_{\xi _n}\Big [\frac{c(\xi )c(dx_n)c(\xi )}{(1+\xi _n)^3}\Big ]\nonumber \\&\quad =\pi ^+_{\xi _n}\Big [\frac{(c(\xi ')+\xi _nc(dx_n))Q(x_0)(c(\xi ')+\xi _nc(dx_n))+(c(\xi ')+\xi _nc(dx_n))c(dx_n)\partial _{x_n}(c(\xi '))(x_0)}{(1+\xi _n^2)^2}\Big ]\nonumber \\&\qquad -h'(0)\pi ^+_{\xi _n}\Big [\frac{(c(\xi ')+\xi _nc(dx_n))c(dx_n)(c(\xi ')+\xi _nc(dx_n))}{(1+\xi _n)^3}\Big ]\nonumber \\&\quad =\frac{1}{2\pi i}\lim _{u\rightarrow 0^-}\int \limits _{\Gamma ^+}\frac{\frac{(c(\xi ')+\eta _nc(dx_n))Q(x_0)(c(\xi ')+\xi _nc(dx_n))+(c(\xi ')+\eta _nc(dx_n))c(dx_n)\partial _{x_n}(c(\xi '))(x_0)}{(\eta _n+i)^2(\xi _n+iu-\eta _n)}}{(\eta _n-i)^2}d\eta _n\nonumber \\&\qquad -\frac{1}{2\pi i}\lim _{u\rightarrow 0^-}\int \limits _{\Gamma ^+}h'(0)\frac{\frac{(c(\xi ')+\eta _nc(dx_n))c(dx_n)(c(\xi ')+\eta _nc(dx_n))}{(\eta _n+i)^3(\xi _n+iu-\eta _n)}}{(\eta _n-i)^3}d\eta _n\nonumber \\&\quad := C_1-C_2,\nonumber \\ \end{aligned}$$
(4.34)

where

$$\begin{aligned} C_1&=\frac{-1}{4(\xi _n-i)^2}\big [(2+i\xi _n)c(\xi ')Qc(\xi ')+i\xi _nc(dx_n)Qc(dx_n) \nonumber \\&\quad +(2+i\xi _n)c(\xi ')c(dx_n)\partial _{x_n}c(\xi ')+ic(dx_n)Q^2_0c(\xi ') +ic(\xi ')Qc(dx_n)-i\partial _{x_n}c(\xi ')\big ]\nonumber \\&=\frac{1}{4(\xi _n-i)^2}\Big [\frac{5}{2}h'(0)c(dx_n)-\frac{5i}{2}h'(0)c(\xi ') -(2+i\xi _n)c(\xi ')c(dx_n)\partial _{\xi _n}c(\xi ')+i\partial _{\xi _n}c(\xi ')\Big ]; \nonumber \\ C_2&=\frac{h'(0)}{2}\Big [\frac{c(dx_n)}{4i(\xi _n-i)}+\frac{c(dx_n)-ic(\xi ')}{8(\xi _n-i)^2} +\frac{3\xi _n-7i}{8(\xi _n-i)^3}\big (ic(\xi ')-c(dx_n)\big )\Big ].\nonumber \\ \end{aligned}$$
(4.35)

By (4.30) and (4.35), we have

$$\begin{aligned}&{\mathrm{tr }}[C_2\times \partial _{\xi _n}\sigma _{-3}(({{\widetilde{D}}}^{*}{{\widetilde{D}}}{{\widetilde{D}}}^{*})^{-1})(x_0)]|_{|\xi '|=1}\nonumber \\&\quad ={\mathrm{tr }}\Big \{ \frac{h'(0)}{2}\Big [\frac{c(dx_n)}{4i(\xi _n-i)}+\frac{c(dx_n)-ic(\xi ')}{8(\xi _n-i)^2} +\frac{3\xi _n-7i}{8(\xi _n-i)^3}[ic(\xi ')-c(dx_n)]\Big ] \nonumber \\&\qquad \times \frac{-4i\xi _nc(\xi ')+(i-3i\xi _n^{2})c(dx_n)}{(1+\xi _n^{2})^3}\Big \} \nonumber \\&\quad =h'(0)\frac{4i-11\xi _n-6i\xi _n^{2}+3\xi _n^{3}}{(\xi _n-i)^5(\xi _n+i)^3}. \end{aligned}$$
(4.36)

Similarly, we have

$$\begin{aligned}&{\mathrm{tr }}[C_1\times \partial _{\xi _n}\sigma _{-3}(({{\widetilde{D}}}^{*}{{\widetilde{D}}}{{\widetilde{D}}}^{*})^{-1})(x_0)]|_{|\xi '|=1}\nonumber \\&\quad ={\mathrm{tr }}\Big \{ \frac{1}{4(\xi _n-i)^2}\Big [\frac{5}{2}h'(0)c(dx_n)-\frac{5i}{2}h'(0)c(\xi ')\nonumber \\&\qquad -(2+i\xi _n)c(\xi ')c(dx_n)\partial _{\xi _n}c(\xi ')+i\partial _{\xi _n}c(\xi ')\Big ]\nonumber \\&\qquad \times \frac{-4i\xi _nc(\xi ')+(i-3i\xi _n^{2})c(dx_n)}{(1+\xi _n^{2})^3}\Big \} \nonumber \\&\quad =h'(0)\frac{3+12i\xi _n+3\xi _n^{2}}{(\xi _n-i)^4(\xi _n+i)^3};\nonumber \\&{\mathrm{tr }}\bigg [\pi ^+_{\xi _n}\Big (\frac{c(\xi )[(f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2)] (x_0)c(\xi )}{(1+\xi _n^2)^2}\Big )\nonumber \\&\qquad \times \partial _{\xi _n}\sigma _{-3}(({D}^{*}{{\widetilde{D}}}{{\widetilde{D}}}^{*})^{-1}) (x_0)\bigg ]\bigg |_{|\xi '|=1}\nonumber \\&\quad =\frac{2-8i\xi _n-6\xi _n^2}{4(\xi _n-i)^{2}(1+\xi _n^2)^{3}}{\mathrm{tr }} \left[ \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) (x_0)c(\xi ')\right] \nonumber \\&\quad =0.\nonumber \\ \end{aligned}$$
(4.37)

By \(\int _{|\xi '|=1}\xi _{1}\ldots \xi _{2d+1}\sigma (\xi ')=0,\) we have

$$\begin{aligned} \Psi _5&= -i h'(0)\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty } \times \frac{-7i+26\xi _n+15i\xi _n^{2}}{(\xi _n-i)^5(\xi _n+i)^3}d\xi _n\sigma (\xi ')dx' \nonumber \\&=-i h'(0)\times \frac{2 \pi i}{4!}\Big [\frac{-7i+26\xi _n+15i\xi _n^{2}}{(\xi _n+i)^3} \Big ]^{(5)}|_{\xi _n=i}\Omega _4dx'\nonumber \\&=\frac{55}{16}\pi h'(0)\Omega _4dx'. \end{aligned}$$
(4.38)

Now \(\Psi \) is the sum of the cases (a), (b) and (c), then

$$\begin{aligned} \Psi =\sum _{i=1}^5\Psi _i=\left( \frac{65}{64}-\frac{41}{64}i\right) \pi h'(0)\Omega _4dx'. \end{aligned}$$
(4.39)

By (4.1), (4.3) and (4.39), we can get

Theorem 4.3

Let M be a 6-dimensional compact oriented spin manifold with the boundary \(\partial M\) and the metric \(g^M\) as above, \({{\widetilde{D}}}\) and \({{\widetilde{D}}}^*\) be the Dirac–Witten operators on \({\widetilde{M}}\) , then

$$\begin{aligned}&\widetilde{{\mathrm{Wres}}}[\pi ^+{{\widetilde{D}}}^{-1}\circ \pi ^+ ({{\widetilde{D}}}^{*}{{\widetilde{D}}} {{\widetilde{D}}}^{*})^{-1}]\nonumber \\&\quad =128\pi ^3\int \limits _{M}\bigg ( -\frac{2}{3}s-4(f_1^2+\overline{f_1}^2-4f_1\overline{f_1}) \sum _{u<v}(p_{uv}-p_{vu})^2-32f_2\overline{f_2}+12f_2^2 +12\overline{f_2}^2\bigg )d{\mathrm{Vol}_{\mathrm{M}}}\nonumber \\&\qquad +\int \limits _{\partial M}\left( \frac{65}{64}-\frac{41}{64}i\right) \pi h'(0)\,\Omega _4dx'. \end{aligned}$$
(4.40)

where s is the scalar curvature.

Next, we prove the Kastler–Kalau–Walze type theorem for 6-dimensional manifold with boundary associated to \({{\widetilde{D}}}^{3}\). From [14], we know that

$$\begin{aligned} \widetilde{{\mathrm{Wres}}}[\pi ^+{{\widetilde{D}}}^{-1}\circ \pi ^+{{\widetilde{D}}}^{-3} ]= & {} \int \limits _M\int \limits _{|\xi |=1}\mathrm{trace}_{\wedge ^*T^*M \bigotimes {\mathbb {C}}}[\sigma _{-4}({{\widetilde{D}}}^{-4})]\sigma (\xi )dx\nonumber \\&+\int \limits _{\partial M}{\overline{\Psi }}, \end{aligned}$$
(4.41)

where \(\widetilde{{\mathrm{Wres}}}\) denote noncommutative residue on minifolds with boundary,

$$\begin{aligned} {\overline{\Psi }}&=\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\sum ^{\infty }_{j, k=0}\sum \frac{(-i)^{|\alpha |+j+k+1}}{\alpha !(j+k+1)!} \times {\mathrm{trace}}_{{\wedge ^*T^*M\bigotimes {\mathbb {C}}}}[\partial ^j_{x_n}\partial ^\alpha _{\xi '}\partial ^k_{\xi _n}\sigma ^+_{r}({{\widetilde{D}}}^{-1})(x',0,\xi ',\xi _n) \nonumber \\&\quad \times \partial ^\alpha _{x'}\partial ^{j+1}_{\xi _n}\partial ^k_{x_n}\sigma _{l} ({{\widetilde{D}}}^{-3})(x',0,\xi ',\xi _n)]d\xi _n\sigma (\xi ')dx',\nonumber \\ \end{aligned}$$
(4.42)

and the sum is taken over \(r+\ell -k-j-|\alpha |-1=-6, \ r\le -1, \ell \le -3\).

By Theorem 2.2, we compute the interior term of (4.42), then

$$\begin{aligned}&\int \limits _M\int \limits _{|\xi |=1}\mathrm{trace}_{\wedge ^*T^*M\bigotimes {\mathbb {C}}} [\sigma _{-4}({{\widetilde{D}}}^{-4})]\sigma (\xi )dx\nonumber \\&\quad =128\pi ^3\int \limits _{M}\bigg [-\frac{2}{3}s -24f_1^2\sum _{u<v}(p_{uv}-p_{vu})^2+40f_2^2\bigg ]d{\mathrm{Vol}_{\mathrm{M}}}\nonumber \\. \end{aligned}$$
(4.43)

So we only need to compute \(\int _{\partial M} {\overline{\Psi }}\). Let us now turn to compute the specification of \({{\widetilde{D}}}^3\).

$$\begin{aligned} {{\widetilde{D}}}^3&=\sum ^{n}_{i=1}c(e_{i})\langle e_{i},dx_{l}\rangle (-g^{ij}\partial _{l}\partial _{i}\partial _{j})\nonumber \\&\quad +\sum ^{n}_{i=1}c(e_{i})\langle e_{i},dx_{l}\rangle \bigg \{-(\partial _{l}g^{ij})\partial _{i}\partial _{j}-g^{ij}\bigg (4\sigma _{i} \partial _{j}2\Gamma ^{k}_{ij}\partial _{k}\bigg ) \partial _{l}\bigg \}\nonumber \\&\quad +\sum ^{n}_{i=1}c(e_{i})\langle e_{i},dx_{l}\rangle \left\{ -2(\partial _{l}g^{ij})\sigma _{i}\partial _{j}+g^{ij} (\partial _{l}\Gamma ^{k}_{ij})\partial _{k}-2g^{ij}[(\partial _{l}\sigma _{i}) +(\partial _{l}g^{ij})\Gamma ^{k}_{ij}\partial _{k}\right. \nonumber \\&\quad +\sum _{j,k}\left[ \partial _{l}\left( \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2\right) c(e_{j})\right. \right. \nonumber \\&\quad \left. \left. +c(e_{j})\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2\right) \right) \right] \langle e_{j},dx^{k}\rangle \partial _{k}\nonumber \\&\quad +\sum _{j,k}\left( \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) c(e_{j})\right. \nonumber \\&\quad \left. +c(e_{j})\left( f_1\sum _{u<v}(p_{uv} -p_{vu})c(e_u)c(e_v)+f_2\right) \right) \nonumber \\&\quad \left. \Big [\partial _{l}\langle e_{j},dx^{k}\rangle \Big ]\partial _{k} \right\} +\sum ^{n}_{i=1}c(e_{i})\langle e_{i},dx_{l}\rangle \partial _{l} \left\{ -g^{ij}\Big [(\partial _{i}\sigma _{j})+\sigma _{i}\sigma _{j}\right. \nonumber \\&\quad -\Gamma _{i,j}^{k}\sigma _{k}+\sum _{i,j}g^{i,j} \left[ \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) c(\partial _{i})\sigma _{i}\right. \nonumber \\&\quad +c(\partial _{i})\partial _{i}\left( f_1\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+f_2\right) \nonumber \\&\quad \left. \left. +c(\partial _{i})\sigma _{i}\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2\right) \right] +\frac{1}{4}s-\left[ \left( f_1\sum _{u<v}(p_{uv}-p_{vu}) c(e_u)c(e_v)+f_2\right) \right] ^2\right\} \nonumber \\&\quad +\Big [\sigma _{i}+(f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v) +f_2)\Big ](-g^{ij}\partial _{i}\partial _{j})\nonumber \\&\quad +\sum ^{n}_{i=1}c(e_{i}) \langle e_{i},dx_{l}\rangle \left\{ 2\sum _{j,k}\left[ (f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2)c(e_{j})\right. \right. \nonumber \\&\quad \left. +c(e_{j})\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u) c(e_v)+f_2\right) \right] \nonumber \\&\quad \left. \times \langle e_{i},dx_{k}\rangle \right\} _{l}\partial _{k} +\Big [\sigma _{i}+\Big (f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\Big )\Big ] \left\{ -\sum _{i,j}g^{i,j}\right. \nonumber \\&\quad \Big [2\sigma _{i}\partial _{j} -\Gamma _{i,j}^{k}\partial _{k}+(\partial _{i}\sigma _{j}) +\sigma _{i}\sigma _{j} -\Gamma _{i,j}^{k}\sigma _{k}\Big ]\nonumber \\&\quad +\sum _{i,j}g^{i,j}\Bigg [c(\partial _{i})\Bigg (f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)\nonumber \\&\quad +f_2\Bigg ) +\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) c(\partial _{i})\Bigg ] \partial _{j}\nonumber \\&\quad +\sum _{i,j}g^{i,j}\left[ \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)\right. \right. \nonumber \\&\quad +f_2)c(\partial _{i})\sigma _{i}+c(\partial _{i})\partial _{i} \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \nonumber \\&\quad +c(\partial _{i})\sigma _{i}\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u) c(e_v)+f_2\right) \nonumber \\&\quad +c(\partial _{i})\partial _{i}\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \nonumber \\&\quad \left. +c(\partial _{i})\sigma _{i}\left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u) c(e_v)+f_2\right) \right] \nonumber \\&\quad \left. +\frac{1}{4}s-\left[ \left( f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\right) \right] ^2\right\} . \end{aligned}$$
(4.44)

Then, we obtain

Lemma 4.4

The following identities hold:

$$\begin{aligned} \sigma _2({{\widetilde{D}}}^3)&=\sum _{i,j,l}c(dx_{l})\partial _{l}(g^{i,j})\xi _{i}\xi _{j} +c(\xi )(4\sigma ^k-2\Gamma ^k)\xi _{k}-2[c(\xi )(f_1\sum _{u<v}(p_{uv}-p_{vu})\nonumber \\&\quad c(e_u)c(e_v)+f_2)c(\xi )-|\xi |^2(f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2)]\nonumber \\&\quad -\frac{1}{4}|\xi |^2\sum _{s,t,l}\omega _{s,t} (e_l)c(e_s)c(e_t)];\nonumber \\ \sigma _{3}({{\widetilde{D}}}^3)&=ic(\xi )|\xi |^{2}.\nonumber \\ \end{aligned}$$
(4.45)

Write

$$\begin{aligned} \sigma ({{\widetilde{D}}}^3)=p_3+p_2+p_1+p_0; ~\sigma ({{\widetilde{D}}}^{-3})=\sum ^{\infty }_{j=3}q_{-j}. \end{aligned}$$
(4.46)

By the composition formula of pseudodifferential operators, we have

$$\begin{aligned} 1=\sigma ({{\widetilde{D}}}^3\circ {{\widetilde{D}}}^{-3})&= \sum _{\alpha }\frac{1}{\alpha !}\partial ^{\alpha }_{\xi } [\sigma ({{\widetilde{D}}}^3)]{{\widetilde{D}}}^{\alpha }_{x} [\sigma ({{\widetilde{D}}}^{-3})] \nonumber \\&=(p_3+p_2+p_1+p_0)(q_{-3}+q_{-4}+q_{-5}+\cdots ) \nonumber \\&\quad +\sum _j(\partial _{\xi _j}p_3+\partial _{\xi _j}p_2+\partial _{\xi _j}p_1+\partial _{\xi _j}p_0)\nonumber \\&\quad (D_{x_j}q_{-3}+D_{x_j}q_{-4}+D_{x_j}q_{-5}+\cdots ) \nonumber \\&=p_3q_{-3}+(p_3q_{-4}+p_2q_{-3}+\sum _j\partial _{\xi _j}p_3D_{x_j}q_{-3})+\cdots , \end{aligned}$$
(4.47)

by (4.47), we have

$$\begin{aligned} q_{-3}=p_3^{-1};~q_{-4}=-p_3^{-1}\Bigg [p_2p_3^{-1}+\sum _j\partial _{\xi _j}p_3D_{x_j}(p_3^{-1})\Bigg ]. \end{aligned}$$
(4.48)

By (4.44)–(4.48), we have some symbols of operators.

Lemma 4.5

The following identities hold:

$$\begin{aligned} \sigma _{-3}({{\widetilde{D}}}^{-3})&=\frac{ic(\xi )}{|\xi |^{4}};\nonumber \\ \sigma _{-4}({{\widetilde{D}}}^{-3})&= \frac{c(\xi )\sigma _{2}({{\widetilde{D}}}^{3})c(\xi )}{|\xi |^8} +\frac{ic(\xi )}{|\xi |^8}\Big (|\xi |^4c(dx_n)\partial _{x_n}c(\xi ') -2h'(0)c(dx_n)c(\xi )\nonumber \\&\quad +2\xi _{n}c(\xi )\partial _{x_n}c(\xi ')+4\xi _{n}h'(0)\Big ). \end{aligned}$$
(4.49)

When \(n=6\), then \({\mathrm{tr}}_{\wedge ^*T^*M}[\texttt {id}]=8\), where \({\mathrm{tr}}\) as shorthand of \({\mathrm{trace}}\). Since the sum is taken over \(r+\ell -k-j-|\alpha |-1=-6, \ r\le -1, \ell \le -3\), then we have the following five cases:

Case (a) (I) \(r=-1, l=-3, j=k=0, |\alpha |=1\).

By (4.42), we get

$$\begin{aligned} {\overline{\Psi }}_1=-\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }\sum _{|\alpha |=1}{\mathrm{trace}} \Big [\partial ^{\alpha }_{\xi '}\pi ^{+}_{\xi _{n}}\sigma _{-1}({{\widetilde{D}}}^{-1}) \times \partial ^{\alpha }_{x'}\partial _{\xi _{n}}\sigma _{-3}({{\widetilde{D}}}^{-3})\Big ](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(4.50)

Case (a) (II) \(r=-1, l=-3, |\alpha |=k=0, j=1\).

By (4.42), we have

$$\begin{aligned} {\overline{\Psi }}_2=-\frac{1}{2}\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty } \mathrm{trace} \Big [\partial _{x_{n}}\pi ^{+}_{\xi _{n}}\sigma _{-1}({{\widetilde{D}}}^{-1}) \times \partial ^{2}_{\xi _{n}}\sigma _{-3}({{\widetilde{D}}}^{-3}) \Big ](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(4.51)

Case (a) (III) \(r=-1,l=-3,|\alpha |=j=0,k=1\).

By (4.42), we have

$$\begin{aligned} {\overline{\Psi }}_3=-\frac{1}{2}\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} \Big [\partial _{\xi _{n}}\pi ^{+}_{\xi _{n}}\sigma _{-1}({{\widetilde{D}}}^{-1}) \times \partial _{\xi _{n}}\partial _{x_{n}}\sigma _{-3}({{\widetilde{D}}}^{-3}) \Big ](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(4.52)

By Lemma 4.2 and Lemma 4.5, we have \(\sigma _{-3}(({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*)^{-1})=\sigma _{-3}({{\widetilde{D}}}^{-3})\), by (4.11)- (4.21), we obtain

$$\begin{aligned} {\overline{\Psi }}_1+{\overline{\Psi }}_2+{\overline{\Psi }}_3=\frac{5}{8}\pi h'(0)\Omega _{4}dx', \end{aligned}$$

where \({{\Omega _{4}}}\) is the canonical volume of \(S^{4}.\)

Case (b) \(r=-1,l=-4,|\alpha |=j=k=0\).

By (4.42), we have

$$\begin{aligned} {\overline{\Psi }}_4&=-i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} \Big [\pi ^{+}_{\xi _{n}}\sigma _{-1}({{\widetilde{D}}}^{-1}) \times \partial _{\xi _{n}}\sigma _{-4}({{\widetilde{D}}}^{-3})\Big ](x_0)d\xi _n \sigma (\xi ')dx'\nonumber \\&=i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} [\partial _{\xi _n}\pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1})\times \sigma _{-4}({{\widetilde{D}}}^{-3})](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(4.53)

In the normal coordinate, \(g^{ij}(x_{0})=\delta ^{j}_{i}\) and \(\partial _{x_{j}}(g^{\alpha \beta })(x_{0})=0\), if \(j<n\); \(\partial _{x_{j}}(g^{\alpha \beta })(x_{0})=h'(0)\delta ^{\alpha }_{\beta }\), if \(j=n\). So by [12], when \(k<n\), we have \(\Gamma ^{n}(x_{0})=\frac{5}{2}h'(0)\), \(\Gamma ^{k}(x_{0})=0\), \(\delta ^{n}(x_{0})=0\) and \(\delta ^{k}=\frac{1}{4}h'(0)c(e_{k})c(e_{n})\). Then, we obtain

$$\begin{aligned}&\sigma _{-4}({{\widetilde{D}}}^{-3})(x_{0})|_{|\xi '|=1}\nonumber \\&\quad = \frac{c(\xi )\sigma _{2}({{\widetilde{D}}}^{3}) (x_{0})|_{|\xi '|=1}c(\xi )}{|\xi |^8} -\frac{c(\xi )}{|\xi |^4}\sum _j\partial _{\xi _j}\big (c(\xi )|\xi |^2\big ) {D}_{x_j}\bigg (\frac{ic(\xi )}{|\xi |^4}\bigg )\nonumber \\&\quad =\frac{1}{|\xi |^8}c(\xi )\Big (\frac{1}{2}h'(0)c(\xi )\sum _{k<n}\xi _k c(e_k)c(e_n)-\frac{5}{2}h'(0)\xi _nc(\xi )-\frac{1}{4}h'(0)|\xi |^2\nonumber \\&\qquad c(dx_n) -2\Bigg [c(\xi )\Bigg (f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2\Bigg )c(\xi ) +|\xi |^2\Bigg (-\overline{f_1}\sum _{u<v}\nonumber \\&\qquad (p_{uv}-p_{vu})c(e_u)c(e_v)+\overline{f_2}\Bigg )\Bigg ] +|\xi |^2\Bigg (f_1\sum _{u<v}(p_{uv}-p_{vu})c(e_u)c(e_v)+f_2)\Bigg )\nonumber \\&\qquad c(\xi )+\frac{ic(\xi )}{|\xi |^8}\Bigg (|\xi |^4c(dx_n)\partial _{x_n}c(\xi ') -2h'(0)c(dx_n)c(\xi )+2\xi _{n}c(\xi )\partial _{x_n}c(\xi ')\nonumber \\&\qquad +4\xi _{n}h'(0)\Bigg ). \end{aligned}$$
(4.54)

By (3.29) and (4.54), we have

$$\begin{aligned}&{\mathrm{tr}} [\partial _{\xi _n}\pi ^+_{\xi _n}\sigma _{-1}({{\widetilde{D}}}^{-1})\times \sigma _{-4}({{\widetilde{D}}}^{-3}) ](x_0)|_{|\xi '|=1} \nonumber \\&\quad =\frac{1}{2(\xi _{n}-i)^{2}(1+\xi _{n}^{2})^{4}}\bigg (\frac{3}{4}i +2+(3+4i)\xi _{n}+(-6+2i)\xi _{n}^{2}+3\xi _{n}^{3}+\frac{9i}{4}\xi _{n}^{4}\bigg )h'(0){\mathrm{tr}} [id]\nonumber \\&\qquad +\frac{1}{2(\xi _{n}-i)^{2}(1+\xi _{n}^{2})^{4}}\big (-1-3i\xi _{n} -2\xi _{n}^{2}-4i\xi _{n}^{3}-\xi _{n}^{4}-i\xi _{n}^{5} \big ){\mathrm{tr}[c(\xi ')\partial _{x_n}c(\xi ')]}.\nonumber \\ \end{aligned}$$
(4.55)

By (4.55), we have

$$\begin{aligned} {\overline{\Psi }}_4&= ih'(0)\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }8\times \frac{\frac{3}{4}i +2+(3+4i)\xi _{n}+(-6+2i)\xi _{n}^{2}+3\xi _{n}^{3}+\frac{9i}{4} \xi _{n}^{4}}{2(\xi _n-i)^5(\xi _n+i)^4}d\xi _n\sigma (\xi ')dx'\nonumber \\&\quad +ih'(0)\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }4\times \frac{1+3i\xi _{n} +2\xi _{n}^{2}+4i\xi _{n}^{3}+\xi _{n}^{4}+i\xi _{n}^{5}}{2(\xi _{n}-i)^{2} (1+\xi _{n}^{2})^{4}}d\xi _n\sigma (\xi ')dx'\nonumber \\&=\left( -\frac{41}{64}i-\frac{195}{64}\right) \pi h'(0)\Omega _4dx'. \end{aligned}$$
(4.56)

Case (c) \(r=-2,l=-3,|\alpha |=j=k=0\).

By (4.42), we have

$$\begin{aligned} {\overline{\Psi }}_5=-i\int \limits _{|\xi '|=1}\int \limits ^{+\infty }_{-\infty }{\mathrm{trace}} \Big [\pi ^{+}_{\xi _{n}}\sigma _{-2}({{\widetilde{D}}}^{-1}) \times \partial _{\xi _{n}}\sigma _{-3}({{\widetilde{D}}}^{-3})\Big ](x_0)d\xi _n\sigma (\xi ')dx'. \end{aligned}$$
(4.57)

By Lemma 4.2 and Lemma 4.5, we have \(\sigma _{-3}(({{\widetilde{D}}}^*{{\widetilde{D}}}{{\widetilde{D}}}^*)^{-1})=\sigma _{-3}({{\widetilde{D}}}^{-3})\), by (4.26)- (4.38), we obtain

$$\begin{aligned} {\overline{\Psi }}_5=\frac{55}{16}\pi h'(0)\Omega _4dx'. \end{aligned}$$

Now \({\overline{\Psi }}\) is the sum of the cases (a), (b) and (c), then

$$\begin{aligned} {\overline{\Psi }}=\sum _{i=1}^5{\overline{\Psi }}_i=\left( \frac{65}{64} -\frac{41}{64}i\right) \pi h'(0)\Omega _4dx'. \end{aligned}$$
(4.58)

By (4.41), (4.43) and (4.58), we can get

Theorem 4.6

Let M be a 6-dimensional compact oriented spin manifold with the boundary \(\partial M\) and the metric \(g^M\) as above, \({{\widetilde{D}}}\) be the Dirac-Witten operator on \({\widetilde{M}}\) , then

$$\begin{aligned}&\widetilde{{\mathrm{Wres}}}[\pi ^+{{\widetilde{D}}}^{-1}\circ \pi ^+( {{\widetilde{D}}}^{-3})]\nonumber \\&\quad =128\pi ^3\int \limits _{M}\bigg [-\frac{2}{3}s -24f_1^2\sum _{u<v}(p_{uv}-p_{vu})^2+40f_2^2\bigg ]d{\mathrm{Vol}_{\mathrm{M}}}\nonumber \\&\qquad +\int \limits _{\partial M}\left( \frac{65}{64}-\frac{41}{64}i\right) \pi h'(0)\Omega _4dx'. \end{aligned}$$
(4.59)

where s is the scalar curvature.