1 Introduction

The notion of bounded variation was based by Jordan [4]. Wiener [9] considered the class of functions \(BV_{p}\). Love [6] studied functional properties of this class. Young [10] intoduced the notion of \(\varPhi \)-variation. Musielak and Orlicz [7] studied properties of this class. Waterman [8] studied class of functions of bounded \(\varLambda \)-variation. Chanturia [3] defined notion of modulus of variation. Kita and Yoneda [5] introduced new class of functions of bounded variation. Akhobadze [1, 2] generalized the last class and studied properties of it. This bibliography can be continued (see e.g. [11]).

Definition 1.1

Let f(t) be a function defined on a finite closed interval [ab]. Suppose \(p_n\) and \(\phi (n)\) be a sequences such that \(p_{1}\ge 1\), \( p_{n}\uparrow \infty \), \(n\rightarrow \infty \) and \(\phi (1)\ge 1\), \(\phi (n)\uparrow \infty ,\)\(n\rightarrow \infty \). We say that \(f\in BV(p_n\uparrow \infty ,\phi ,[a,b])\) if

$$\begin{aligned} V(f,p_n\uparrow \infty ,\phi ,[a,b])=\sup _{n}\sup _{\varDelta }\left( \sum _{i=1}^{m}|f(t_{i})-f(t_{i-1})|^{p_{n}} : \rho (\varDelta )\ge \frac{1}{\phi (n)}\right) ^{1/p_n}<+\infty , \end{aligned}$$

where \(\varDelta \) is \(a=t_0<t_1< \cdots <t_m=b\) partition of the interval [ab] and \(\rho (\varDelta )=\min _{i}(t_i-t_{i-1}).\)

In the case, \(\phi (n)=2^n\), class \(BV(p_{n}\uparrow \infty ,\phi ,[a,b])\) is considered by Kita and Yoneda [5]. Sometimes for the simplicity we use notation \(V(f,p_{n}\uparrow \infty ,\phi )\) in place of \(V(f,p_{n}\uparrow \infty ,\phi ,[a,b]).\)

2 Some properties of functions of generalized bounded variation

It is easy to verify that \(BV(p_n\uparrow \infty ,\phi ,[a,b])\) is a normed space, with the norme

$$\begin{aligned} ||f||=|f(a)|+V(f,p_{n}\uparrow \infty ,\phi ,[a,b]). \end{aligned}$$

Proposition 2.1

  • \(\mathrm{(a)}\)\(BV(p_{n}\uparrow \infty ,\phi )\) is a linear space and for each \(\alpha \) and \(\beta \) we have

    $$\begin{aligned} V(\alpha f+\beta g,p_{n}\uparrow \infty ,\phi )\le |\alpha |V( f, p_{n}\uparrow \infty ,\phi )+|\beta |V(g, p_{n}\uparrow \infty ,\phi ). \end{aligned}$$
  • \(\mathrm{(b)}\)\(BV(p_{n}\uparrow \infty ,\phi ,[a,b])\) is a complete space.

  • \(\mathrm{(c)}\)\(BV(p_{n}\uparrow \infty ,\phi ,[a,b])\) is not separable.

  • \(\mathrm{(d)}\) If at each point t of [ab] interval \(\lim \limits _{k\rightarrow \infty }f_k (t)=f(t)\), then

    $$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi )\le \liminf _{k\rightarrow \infty }V(f_k,p_{n}\uparrow \infty ,\phi ). \end{aligned}$$

Proof

  • \(\mathrm{(a)}\) It is clear.

  • \(\mathrm{(b)}\) Let \((f_{s})\) be a fundamental sequence in \(BV(p_{n}\uparrow \infty ,\phi ,[a,b])\). Then for every \(\varepsilon >0\) there exists a positive integer \(N(\varepsilon )\), such that for each natural numbers \(i,r>N(\varepsilon )\) we have

$$\begin{aligned} ||f_{i}-f_{r}||=|(f_i-f_r)(a)|+V(f_{i}-f_{r},p_{n}\uparrow \infty ,\phi ,[a,b])<\varepsilon . \end{aligned}$$
(1)

By definition of this variation for every \(t\in [a,b]\) we have

$$\begin{aligned}&|(f_i-f_r)(t)|-|(f_i-f_r)(a)|\le |(f_i-f_r)(t)-(f_i-f_r)(a)|\\&\quad \le V(f_{i}-f_{r},p_{n}\uparrow \infty ,\phi ,[a,b]). \end{aligned}$$

Thus (1) implies that

$$\begin{aligned} |(f_i-f_r)(t)|\le |(f_i-f_r)(a)|+V(f_{i}-f_{r},p_{n}\uparrow \infty ,\phi ,[a,b])<\varepsilon . \end{aligned}$$

This means uniformly convergence of the sequence \((f_{s})\). Let \(f_{r}\rightarrow f\) uniformly and consider an arbitrary partition of [ab] such that \(\rho (\varDelta )\ge \frac{1}{\phi (n)}\). For each \(i, r > N(\varepsilon )\) we have

$$\begin{aligned} \left( \sum _{k=1}^{m}|(f_{i}-f_{r})(t_{k})-(f_{i}-f_{r})(t_{k-1})|^{p_{n}}\right) ^{1/p_n}<\varepsilon . \end{aligned}$$

Considering the limit \(r\rightarrow +\infty \) in the last inequality, we get

$$\begin{aligned} \left( \sum _{k=1}^{m}|(f_{i}-f)(t_{k})-(f_{i}-f)(t_{k-1})|^{p_{n}}\right) ^{1/p_n}\le \varepsilon . \end{aligned}$$

Therefore,

$$\begin{aligned} V(f_i-f,p_{n}\uparrow \infty ,\phi ,[a,b])\rightarrow 0, i\rightarrow \infty . \end{aligned}$$

Now, by property (a), for each fixed \(i\; (i>N(\varepsilon ))\) we obtain

$$\begin{aligned}&|f(a)|+V(f,p_{n}\uparrow \infty ,\phi ,[a,b])\le |f(a)|+V(f-f_{i},p_{n}\uparrow \infty ,\phi ,[a,b])\\&\quad +V(f_{i},p_{n}\uparrow \infty ,\phi ,[a,b])\le |f(a)|+\varepsilon +V(f_{i},p_{n}\uparrow \infty ,\phi ,[a,b]). \end{aligned}$$

(c) Let \(a<x_0<b\) and

$$\begin{aligned} f_{x_0}(t) = \left\{ \begin{array}{rl} 0,&{} if\quad a\le t\le x_0,\\ 1,&{} if\quad x_0<t\le b. \end{array} \right. \end{aligned}$$

It is easy to see that \(f\in BV(p_{n}\uparrow \infty ,\phi ,[a,b])\) and if \(f_{x_0}\) and \(f_{x_1}\) are two functions corresponding to distinct points \(x_0< x_1\) from (ab), then we have

$$\begin{aligned} ||f_{x_0}-f_{x_1}||=V(f_{x_0}-f_{x_1},p_{n}\uparrow \infty ,\phi )\ge \left| (f_{x_0}-f_{x_1})(x_1)-(f_{x_0}-f_{x_1})(0)\right| =1. \end{aligned}$$

The set of \(f_{x_0}\) functions is uncountable and distance between to two different functions is greater then 1. Thus \(BV(p_{n}\uparrow \infty ,\phi ,[a,b])\) is not separable.

(d) Let

$$\begin{aligned} A:=\liminf _{k\rightarrow \infty }V(f_k ,p_{n}\uparrow \infty ,\phi ), \end{aligned}$$

then there exists such a subsequence \(f_{k_r}\) that

$$\begin{aligned} \lim \limits _{r\rightarrow \infty }V(f_{k_r},p_{n}\uparrow \infty ,\phi )=A. \end{aligned}$$

For every \(\varepsilon >0\) there exists a constant \(N(\varepsilon ),\) such that

$$\begin{aligned} V(f_{k_r},p_{n}\uparrow \infty ,\phi )<A+\varepsilon , \quad r>N(\varepsilon ). \end{aligned}$$

Let \(a=t_0<t_1< \cdots <t_m=b\) be an arbitrary partition of interval [ab] and \(|t_i - t_{i-1}|\ge \frac{1}{\phi (n)}\), \(i=1,2, ... ,m,\) then

$$\begin{aligned} \left( \sum _{i=1}^{m}\left| f_{k_r}(t_i)-f_{k_r}(t_{i-1})\right| ^{p_n}\right) ^{1/p_n} \le V(f_{k_r},p_{n}\uparrow \infty ,\phi )<A+\varepsilon . \end{aligned}$$

Hence

$$\begin{aligned} \left( \sum _{i=1}^{m}\left| f(t_i)-f(t_{i-1})\right| ^{p_n}\right) ^{1/p_n}\le A+\varepsilon . \end{aligned}$$

This implies that

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi )\le A. \end{aligned}$$

Definition 2.2

A sequence of \(f_n\) functions will be termed convergent in variation to f if \(V(f_n-f,p_n\uparrow \infty ,\phi )\rightarrow 0\) for \(n\rightarrow \infty .\)

Convergence in variation implies uniformly convergence, in general. If \(\phi (n)^{\frac{1}{p_n}}\) is bounded then it is easy to see that they are equivalent. If \(\phi (n)^{\frac{1}{p_n}}\) is not bounded then there exists uniformly convergent sequence of functions which is not convergent in variation. Indeed, there exists a subsequence \(\phi (n_k)^{\frac{1}{p_{n_k}}}\rightarrow \infty \) and let

$$\begin{aligned} f_k(t)=\frac{1}{\phi (n_k)^{1/p_{n_k}}}\sin \left( 2\pi [\phi (n_k)/4] t\right) , \quad t\in [0,1]. \end{aligned}$$

Here and in the sequel [a] denotes the integer part of a number a. It is clear that \(f_k\rightarrow 0\) uniformly on [0, 1]. Let us consider points \(t_i^k=\frac{i}{4[\phi (n_k)/4]}\), \(i=0,1,\ldots ,4[\phi (n_k)/4]\).

It is obvious that \(t_i^k-t_{i-1}^k=\frac{1}{4[\phi (n_k)/4]}\ge \frac{1}{\phi (n_k)}\). We get

$$\begin{aligned} \left( \sum _{i=1}^{4[\phi (n_k)/4]}\left| f_k(t_i^k)-f_k(t_{i-1}^k)\right| ^{p_{n_k}}\right) ^{1/p_{n_k}}=\left( 4[\phi (n_k)/4]\right) ^{1/p_{n_k}}\cdot \frac{1}{\phi (n_k)^{1/p_{n_k}}}\ge \frac{1}{2}, \end{aligned}$$

when \(\phi (n_k)\ge 8\). This means that \(V(f_k,p_n\uparrow \infty ,\phi ,[0,1])\ge \frac{1}{2}\) for every sufficiently big k.

Lemma 2.3

Let f be a function defined on [ab] and \(t_0<t_1<\cdots <t_m\) be an arbitrary set of points in [ab] such that \(|t_i - t_{i-1}|\ge \frac{1}{\phi (n)}\), \(i=1,2, \ldots ,m.\) Then

$$\begin{aligned} \left( \sum _{i=1}^{m}\left| f(t_i)-f(t_{i-1})\right| ^{p_n}\right) ^{1/p_n}\le 3V(f,p_n\uparrow \infty ,\phi ,[a,b]). \end{aligned}$$

Proof

It is obvious that

$$\begin{aligned}&\left( \sum _{i=1}^{m}\left| f(t_i)-f(t_{i-1})\right| ^{p_n}\right) ^{1/p_n}\\&\quad \le \left( \sum _{i=1}^{m}|f(t_i)-f(t_{i-1})|^{p_n}+|f(t_1)-f(a)|^{p_n}+|f(b)-f(t_{m-1})|^{p_n}\right) ^{1/p_n}\\&\quad \le \left( \sum _{i=2}^{m-1}|f(t_i)-f(t_{i-1})|^{p_n}+|f(t_1)-f(a)|^{p_n}+|f(b)-f(t_{m-1})|^{p_n}\right) ^{1/p_n}\\&\qquad +|f(t_1)-f(t_0)|+|f(t_m)-f(t_{m-1})|\le 3V(f,p_{n}\uparrow \infty ,\phi ). \end{aligned}$$

\(\square \)

3 On “anomalous” property of the class of function of generalized bounded variation

Proposition 3.1

Let \(p_1\ge 1\), \(p_n\uparrow \infty \) and \(\phi (1) \ge 1\), \(\phi (n)\uparrow \infty \). Then for each point \(x\in (a,b)\) there exists \(y\in (x,b)\), and a function f defined on [ab] such that

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi ,[a,y]) < V(f,p_{n}\uparrow \infty ,\phi ,[a,x]). \end{aligned}$$

Proof

  1. (i)

    Let r be the least positive integer such that : \(x-a\ge \frac{2}{\phi (r)};\)

  2. (ii)

    \(c:=x-\frac{1}{\phi (r)}\);

  3. (iii)

    choose a point \(y\in (x,b)\) such that,

    $$\begin{aligned} x<y<x+\frac{1}{\phi (r)}, \end{aligned}$$

    and

    $$\begin{aligned} x<y<c+\frac{1}{\phi (r-1)}; \end{aligned}$$
  4. (iv)

    choose a number \(\xi \in (0,1)\) such that

    $$\begin{aligned} 0<\xi < (2^{p_{r+1}/p_{r}}-2)^{\frac{1}{p_{r+1}}}. \end{aligned}$$

Therefore,

$$\begin{aligned} (2+\xi ^{p_{r+1}})^{\frac{1}{p_{r+1}}}<2^{\frac{1}{p_{r}}}. \end{aligned}$$

Suppose

$$\begin{aligned} f(t) = \left\{ \begin{array}{rl} 1, &{} if \quad t=c,\\ \xi , &{} if \quad t = y,\\ 0, &{} if \quad t\in [a,b], t\ne c , t\ne y. \end{array} \right. \end{aligned}$$
(2)

We get

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi ,[a,x])=2^{p_{r}}. \end{aligned}$$

Indeed, let \(\varDelta =\{a, c, x \}.\) (i) and (ii) implies that \(\rho (\varDelta )= \frac{1}{\phi (r)}.\) It is clear that

$$\begin{aligned} 2^{\frac{1}{p_{r}}}=\left( |f(c)-f(a)|^{p_{r}}+|f(x)-f(c)|^{p_{r}}\right) ^{\frac{1}{p_{r}}}\le V(f,p_{n}\uparrow \infty ,\phi ,[a,x]). \end{aligned}$$
(3)

Let \(a=t_0<t_1< \cdots <t_m=x\) be an arbitrary \(\varDelta \) partition of the interval [ax], then we have two cases:

(a) if c is not a point of the partition \(\varDelta \), then

$$\begin{aligned} \left( \sum _{i=1}^{m}\left| f(t_i)-f(t_{i-1})\right| ^{p_n}\right) ^{1/p_n}=0; \end{aligned}$$

(b) if c is a point of the partition \(\varDelta \), then \(\rho (\varDelta )=\min _{i}\{t_{i}-t_{i-1}\} \le x-c=\frac{1}{\phi (r)}\). Thus if \(\rho (\varDelta )\ge \frac{1}{\phi (k)}\) then for each partition which contains c, implies that \(\frac{1}{\phi (r)}\ge \frac{1}{\phi (k)}\), hence \(k\ge r\). Since \(p_n\) is strictly increasing we have

$$\begin{aligned} \left( \sum _{i=1}^{m}|f(t_{i})-f(t_{i-1})|^{p_{k}}\right) ^{1/p_k}=2^{\frac{1}{p_k}}\le 2^{\frac{1}{p_{r}}}. \end{aligned}$$

Therefore, from these two cases we conclude that for arbitrary partition \(a=t_0<t_1< \cdots <t_m=x\), for which \(\rho (\varDelta )\ge \frac{1}{\phi (n)}\), we obtain

$$\begin{aligned} \left( \sum _{i=1}^{m}\left| f(t_i)-f(t_{i-1})\right| ^{p_n}\right) ^{1/p_n}\le 2^{\frac{1}{p_{r}}}. \end{aligned}$$

Thus, from (3) we conclude that

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi ,[a,x])=2^{\frac{1}{p_{r}}}. \end{aligned}$$

Now we have to show that

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi ,[a,y])<2^{\frac{1}{p_{r}}}= V(f,p_{n}\uparrow \infty ,\phi ,[a,x]). \end{aligned}$$

Let \(a=t_0<t_1< \cdots <t_m=y\) be an arbitrary partition of the interval [ay]. Then we have three cases:

Case 1c is not in \(\varDelta \). Then

$$\begin{aligned} \left( \sum _{i=1}^{m}\left| f(t_i)-f(t_{i-1})\right| ^{p_n}\right) ^{1/p_n}=|f(y)-f(t_{m-1})|=\xi . \end{aligned}$$

Case 2c is in \(\varDelta \), but no point from (cy) is in \(\varDelta \), i.e \(t_m=y\) and \(t_{m-1}=c\). Thus, (iii) implies

$$\begin{aligned} \rho (\varDelta )\le y-c<\frac{1}{\phi (r-1)}. \end{aligned}$$

Therefore, if \(\rho (\varDelta )\ge \frac{1}{\phi (k)}\) then \( k>r-1\) and \( k\ge r\).

Since for every fixed a\(( 0<a<1)\) function \((1+a^x)^{\frac{1}{x}}\) is decreasing with respect to x\((x\ge 1)\), by (2) we have

$$\begin{aligned} \left( \sum _{i=1}^{m}|f(t_{i})-f(t_{i-1})|^{p_{k}}\right) ^{1/p_k}=(1+(1-\xi )^{p_k})^{\frac{1}{p_k}}\le (1+(1-\xi )^{p_{r}})^{\frac{1}{p_{r}}}< 2^{\frac{1}{p_r}}. \end{aligned}$$

Case 3c is in \(\varDelta \) and there is a point in (cy) which is contained in \(\varDelta \). From (ii) and (iii) we get

$$\begin{aligned} y-c=y-x+x-c<\frac{1}{\phi (r)}+\frac{1}{\phi (r)}=\frac{2}{\phi (r)}. \end{aligned}$$

In this case we obtain \(\rho (\varDelta )<\frac{1}{\phi (r)}.\) Besides, if \(\rho (\varDelta )\ge \frac{1}{\phi (k)}\) then \(k\ge r+1.\) Hence

$$\begin{aligned} \left( \sum _{i=1}^{m}|f(t_{i})-f(t_{i-1})|^{p_{k}}\right) ^{1/p_k}=(2+\xi ^{p_k})^{\frac{1}{p_k}}\le (2+\xi ^{p_{r+1}})^{\frac{1}{p_{r+1}}}. \end{aligned}$$

Therefore, in each three cases, when \(\rho (\varDelta )\ge \frac{1}{\phi (k)}\) we get

$$\begin{aligned} \left( \sum _{i=1}^{m}|f(t_{i})-f(t_{i-1})|^{p_{k}}\right) ^{1/p_k}\le \max \left\{ \xi ,\,(1+(1-\xi )^{p_{r}})^{\frac{1}{p_{r}}},\, {(2+\xi ^{p_{r+1}})^{\frac{1}{p_{r+1}}}}\right\} . \end{aligned}$$

Definition 1.1 and (iv) imply that

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi ,[a,y])\le & {} \max \left\{ \xi ,\,(1+(1-\xi )^{p_{r}})^{\frac{1}{p_{r}}},\, {(2+\xi ^{p_{r+1}})^{\frac{1}{p_{r+1}}}}\right\} <2^{\frac{1}{p_{r}}}\\= & {} V(f,p_{n}\uparrow \infty ,\phi ,[a,x]). \end{aligned}$$

\(\square \)

Remark 3.2

Let f be defined on [ab] and \([a_1,b_1]\subset [a,b]\). Lemma 2.3 implies that

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi ,[a_1,b_1])\le 3\cdot V(f,p_{n}\uparrow \infty ,\phi ,[a,b]). \end{aligned}$$

Remark 3.3

Let \(c\in (a,b)\) and \(a=t_0<t_1< \cdots <t_m=b\) be an arbitrary partition of [ab] such that \(|t_i - t_{i-1}|\ge \frac{1}{\phi (n)}\), \(i=1,2, \ldots ,m\) and \(t_{k-1}< c\le t_k\). Since \(\frac{1}{p_n}\le 1\) we have

$$\begin{aligned}&\left( \sum _{i=1}^{m}\left| f(t_i)-f(t_{i-1})\right| ^{p_n}\right) ^{1/p_n}\\&\quad \le \left( \sum _{i=1}^{k-1}\left| f(t_i)-f(t_{i-1})\right| ^{p_n}\right) ^{1/p_n}\\&\quad +|f(c)-f(t_{k-1})|+|f(t_k)-f(c)| +\left( \sum _{i=k+1}^{m}\left| f(t_i)-f(t_{i-1})\right| ^{p_n}\right) ^{1/p_n}. \end{aligned}$$

The last inequality and Lemma 2.3 imply

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi ,[a,b])\le 4\cdot V(f,p_{n}\uparrow \infty ,\phi ,[a,c])+4\cdot V(f,p_{n}\uparrow \infty ,\phi ,[c,b]). \end{aligned}$$

4 A generalization of absolute continuity

Definition 4.1

A function f defined on a closed interval [ab], will be termed \(\left( (p_n), \phi \right) \)-absolute continuous if the following condition is satisfied: for every \(\varepsilon >0\) there exists a number \(\delta >0\) such that

$$\begin{aligned} \left( \sum _{i=1}^{m}|f(\beta _i)-f(\alpha _i)|^{p_n}\right) ^{1/p_n}<\varepsilon , \end{aligned}$$

for all finite sets of non-overlapping intervals \((\alpha _i , \beta _i)\subset [a,b]\), \(i=1,2, \ldots ,m\), for which \(\beta _i-\alpha _i\ge \frac{1}{\phi (n)} \), \(i=1,2,...,m\), and

$$\begin{aligned} \left( \sum _{i=1}^{m}(\beta _i-\alpha _i)^{p_n}\right) ^{1/p_n}<\delta . \end{aligned}$$

We denote this class by \(AC(p_n\uparrow \infty ,\phi , [a,b])\). Sometimes for the simplicity we use notation \(AC(p_n\uparrow \infty ,\phi )\). It is clear that if f is \(\left( (p_n), \phi \right) \)-absolute continuous then f is continuous.

Lemma 4.2

Let f be a function on [ab] and let \((\alpha _i , \beta _i)\subset [a,b]\), \(i=1,2, \ldots ,m, \) be a finite set of non-overlapping intervals such that \(min_i(\beta _i-\alpha _i)\ge \frac{1}{\phi (n)}.\) Then

$$\begin{aligned} \left( \sum _{i=1}^{m}|f(\beta _i)-f(\alpha _i)|^{p_n}\right) ^{1/p_n}\le 6V(f,p_{n}\uparrow \infty ,\phi ,[a,b]). \end{aligned}$$

Proof

This statement follows from Lemma 2.3. \(\square \)

Proposition 4.3

A necessary and sufficient condition for f to be in \(AC(p_n\uparrow \infty ,\phi ,[a,b])\) is that for a given \(\varepsilon >0\) there exists a \(\delta >0\) such that

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi ,[t_1,t_2])<\varepsilon , \end{aligned}$$

for each \([t_1,t_2]\subset [a,b]\) when \(t_2-t_1<\delta .\)

Proof

Necessity is obvious. Now we have to show sufficiency of the condition. Suppose \(\varepsilon >0\) is given, then there exists \(\eta >0\) such that

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi ,[t_1,t_2])<\frac{\varepsilon }{16}, \end{aligned}$$

for each \([t_1,t_2]\subset [a,b]\) when \(t_2-t_1<\eta .\)

Let \(a=x_0<x_1< \cdots <x_m=b\) be a fixed partition of [ab] such that \(x_i-x_{i-1}=\eta _1\), \(i=1,2, \ldots ,m\), where \(\eta _1<\eta \). Then

$$\begin{aligned} V(f,p_{n}\uparrow \infty ,\phi ,[x_{i-1},x_i])<\frac{\varepsilon }{16},\quad i=1,2, \ldots ,m. \end{aligned}$$
(4)

Suppose r be a positive integer such that \(m^{\frac{1}{p_r}}<2\), and \(\delta =min\{\eta _1,\frac{1}{\phi (r)}\}.\) Let \((\alpha _i , \beta _i)\subset [a,b]\), \(i=1,2, \ldots ,s, \) be a finite set of non-overlapping intervals such that

$$\begin{aligned} \left( \sum _{i=1}^{s}(\beta _i-\alpha _i)^{p_n}\right) ^{1/p_n}<\delta , \end{aligned}$$

and

$$\begin{aligned} \beta _i-\alpha _i\ge \frac{1}{\phi (n)}, \quad i=1,2, \ldots ,s. \end{aligned}$$

It is sufficient to show that

$$\begin{aligned} \left( \sum _{i=1}^{s}|f(\beta _i)-f(\alpha _i)|^{p_n}\right) ^{1/p_n}<\varepsilon . \end{aligned}$$

Let

$$\begin{aligned} A_k:=\{i:(\alpha _i,\beta _i)\subset [x_{k-1},x_k]\},\quad k=1,2, \ldots ,m. \end{aligned}$$

By (4) and Lemma 4.2

$$\begin{aligned} \sum _{i\in A_k}|f(\beta _i)-f(\alpha _i)|^{p_n}\le \left( 6V(f,p_{n}\uparrow \infty ,\phi ,[x_{k-1},x_k])\right) ^{p_n}<\left( \frac{6\varepsilon }{16}\right) ^{p_n}. \end{aligned}$$

Suppose

$$\begin{aligned} B_k:=\{i:\alpha _i< x_k<\beta _i\},\quad k=1,2, \ldots ,m. \end{aligned}$$

Note that \(B_k\) consists at most of one element and if \(i\in B_k\) then \(\alpha _i\in [x_{k-1},x_k]\), \(\beta _i\in [x_k,x_{k+1}]\). We have

$$\begin{aligned}&|f(\beta _i)-f(\alpha _i)|^{p_n}\le \left( |f(\beta _i)-f(x_k)|+|f(x_k)-f(\alpha _i)|\right) ^{p_n}\\&\quad \le (V(f,p_{n}\uparrow \infty ,\phi ,[x_{k-1},x_k])+V(f,p_{n}\uparrow \infty ,\phi ,[x_k,x_{k+1}]))^{p_n}<\left( \frac{2\varepsilon }{16}\right) ^{p_n}. \end{aligned}$$

Since \(\frac{1}{p_n}\le 1\), we obtain

$$\begin{aligned}&\left( \sum _{i=1}^{s}|f(\beta _i)-f(\alpha _i)|^{p_n}\right) ^{1/p_n}\\&\quad =\left( \sum _{k=1}^{m}\left( \sum _{i\in A_k}|f(\beta _i)-f(\alpha _i)|^{p_n} + \sum _{i\in B_k}|f(\beta _i)-f(\alpha _i)|^{p_n}\right) \right) ^{1/p_n}\\&\quad <\left( \sum _{k=1}^{m}\left( \frac{6\varepsilon }{16}\right) ^{p_n}+\sum _{k=1}^{m}\left( \frac{2\varepsilon }{16}\right) ^{p_n}\right) ^{1/p_n}\le \left( \sum _{k=1}^{m}\left( \frac{6\varepsilon }{16}\right) ^{p_n}\right) ^{1/p_n}+\left( \sum _{k=1}^{m}\left( \frac{2\varepsilon }{16}\right) ^{p_n}\right) ^{1/p_n}. \end{aligned}$$

Note that \( \frac{1}{\phi (n)}\le \beta _i - \alpha _i<\delta \le \frac{1}{\phi (r)}, \) hence \(n>r\). Since \(m^{\frac{1}{p_r}}<2\), the last term does not exceed to

$$\begin{aligned} m^{\frac{1}{p_n}}\cdot \frac{8\varepsilon }{16}< m^{\frac{1}{p_r}}\cdot \frac{\varepsilon }{2}<\varepsilon . \end{aligned}$$

Remark 3.3 and Proposition 4.3 imply that \(AC(p_n\uparrow \infty ,\phi )\subset BV(p_n\uparrow \infty ,\phi )\).

Proposition 4.4

If f is absolute continuous, then \(f\in AC(p_n\uparrow \infty ,\phi )\).

Proof

Let \(\varepsilon >0\), then there exists \(\delta >0\) such that for every non-overlapping intervals \((\alpha _i,\beta _i), i=1,2, \ldots ,m\), is satisfying inequality

$$\begin{aligned} \sum _{i=1}^{m}|f(\beta _i)-f(\alpha _i)|<\varepsilon \end{aligned}$$

when \(\sum _{i=1}^{m}(\beta _i-\alpha _i)<\delta \).

If \(x_2-x_1<\delta \) then for each partition \(x_1=t_0<t_1< \cdots <t_k=x_2\) we have \(\sum _{i=1}^{k}(t_i-t_{i-1})=x_2-x_1<\delta ,\) hence

$$\begin{aligned} \left( \sum _{i=1}^{k}|f(t_{i})-f(t_{i-1})|^{p_n}\right) ^{1/p_n}\le \sum _{i=1}^{k}|f(t_{i})-f(t_{i-1})|<\varepsilon . \end{aligned}$$

The last inequality implies \(V(f,p_{n}\uparrow \infty ,\phi ,[x_1,x_2])\le \varepsilon \). By Proposition 4.3\( f\in AC(p_n\uparrow \infty ,\phi )\). \(\square \)

Proposition 4.5

If \(\phi (n)^{\frac{1}{p_n}}\) is bounded then every continuous function on [ab] is \(\left( (p_n), \phi \right) \)-absolute continuous.

Proof

Let \(\phi (n)^{\frac{1}{p_n}}\le C\) where C is a positive constant and f be continuous on [ab]. Therefore, f is uniformly continuous. If \(\varepsilon >0\) is given then there exists \(\delta \;(0<\delta <1)\) such that

$$\begin{aligned} |f(t_1)-f(t_2)|<\frac{\varepsilon }{2C},\quad if \quad t_1-t_2<\delta . \end{aligned}$$

Let \([x_1,x_2]\subset [a,b]\) and \(x_2-x_1<\delta \). If \(x_1=t_0<t_1<\cdots <t_m=x_2\) is an arbitrary partition, where \(t_i-t_{i-1}\ge \frac{1}{\phi (n)}\), then it is clear that \(m\le \delta \phi (n)<\phi (n)\) and

$$\begin{aligned} \left( \sum _{1}^{m}|f(t_i)-f(t_{i-1})|^{p_n}\right) ^{1/p_n} <\left( \sum _{i=1}^{m}\left( \frac{\varepsilon }{2C}\right) ^{p_n}\right) ^{1/p_n}=m^{\frac{1}{p_n}}\frac{\varepsilon }{2C}\le \phi (n)^{\frac{1}{p_n}}\frac{\varepsilon }{2C}\le \frac{\varepsilon }{2}. \end{aligned}$$

Hence \(V(f,p_{n}\uparrow \infty ,\phi ,[x_1,x_2])<\varepsilon \) and by Proposition 4.3f is \(\left( (p_n), \phi \right) \)-absolute continuous.

Proposition 4.6

If \(\phi (n)^{\frac{1}{p_n}}\) is not bounded then there exists a continuous function f which is not \(\left( (p_n), \phi \right) \)-absolute continuous.

Proof

Since \(\phi (n)^{1/p_n}\) is not bounded then for every positive integer k there exists a positive integer \(n_k\) such that

$$\begin{aligned} \left[ \frac{\phi (n_k)}{4k(k+1)}\right] ^{1/p_{n_k}}>k. \end{aligned}$$

Let \(c_k=\frac{1}{k}\), \(k=1,2,\ldots ,\) and \(\lambda _k= \left[ \frac{\phi (n_k)}{4k(k+1)}\right] \). Consider the following continuous function on [0, 1]:

$$\begin{aligned} f(t) = \left\{ \begin{array}{rl} \lambda _k^{-1/p_{n_k}}\sin (2\lambda _k\pi \frac{t-c_{k+1}}{c_k-c_{k+1}}), &{} if\quad t\in [c_{k+1},c_k],\\ 0, &{} if \quad t=0. \end{array} \right. \end{aligned}$$

Let \(x_i^k=c_{k+1}+i\frac{c_k-c_{k+1}}{4\lambda _k}\), \(i=0,1,\ldots , 4\lambda _k\). It is clear that \(x_0^k=c_{k+1}\), \(x_{4\lambda _k}^{k}= c_k\) and

$$\begin{aligned} f(x_i^k)= & {} \lambda _k^{-1/p_{n_k}}\sin \left( i\frac{\pi }{2}\right) ; \end{aligned}$$
(5)
$$\begin{aligned} x_i^k-x_{i-1}^k= & {} \frac{c_k-c_{k+1}}{4\lambda _k}\ge \frac{1}{k(k+1)}:\frac{4\phi (n_k)}{4k(k+1)}=\frac{1}{\phi (n_k)}. \end{aligned}$$
(6)

From (5) and (6) we obtain

$$\begin{aligned}&V(f,p_n\uparrow \infty ,\phi ,[c_{k+1},c_k])\ge \left( \sum _{i=1}^{4\lambda _k}|f(x_i^k)-f(x_{i-1}^{k})|^{p_{n_k}}\right) ^{1/{p_{n_k}}}\\&\quad =\left( \sum _{i=1}^{4\lambda _k}\left( \lambda _k^{-1/p_{n_k}}\right) ^{p_{n_k}}\right) ^{1/{p_{n_k}}}=\lambda _k^{-1/p_{n_k}}\cdot \left( 4\lambda _k\right) ^{1/p_{n_k}}>1. \end{aligned}$$

Lemma 4.3 implies f is not \(\left( (p_n), \phi \right) \)-absolute continuous.

Lemma 4.7

Let \(\{f_k\}_{i=1}^{\infty }\) be a sequence of functions from \(AC(p_n\uparrow \infty ,\phi ,[a,b])\) which is convergent in variation to f, then \(f\in AC(p_n\uparrow \infty ,\phi ,[a,b])\).

Proof

Let \(\varepsilon >0\) be given, then there exists N such that if \(k>N\)

$$\begin{aligned} V(f_k-f, p_n\uparrow \infty ,\phi ,[a,b])<\frac{\varepsilon }{4}. \end{aligned}$$

Let \(k_0>N\). Since \(f_{k_0}\) is \(\left( (p_n), \phi \right) \)-absolute continuous then there exists \(\delta >0\) such that

$$\begin{aligned} V(f_{k_0}, p_n\uparrow \infty ,\phi ,[t_1,t_2])<\frac{\varepsilon }{4}, \end{aligned}$$

where \(t_2-t_1<\delta \). Hence by Proposition 2.1(a) and Remark 3.2 we have

$$\begin{aligned}&V(f, p_n\uparrow \infty ,\phi ,[t_1,t_2])\le V(f-f_{k_0}, p_n\uparrow \infty ,\phi ,[t_1,t_2])+V(f_{k_0},\\&\quad p_n\uparrow \infty ,\phi ,[t_1,t_2])\le \varepsilon . \end{aligned}$$

Thus, by Proposition 4.3f is in \(AC(p_n\uparrow \infty ,\phi ,[a,b]).\)

In Lemma 4.7 convergence in variation can not be replaced with uniform convergence. Indeed, Fejer (C, 1) means of the continuous function f (constructed in Lemma 4.6) with respect to trigonometric system converges uniformly to f, but \(f\notin AC(p_n\uparrow \infty ,\phi )\).

Lemma 4.8

Let f be a function on [ab], \([c,d]\subset [a,b]\) and \(f(c)=f(d)=0\). If

$$\begin{aligned} g(t) = \left\{ \begin{array}{rl} f(t), &{} t\in [c,d],\\ 0, &{} t\in [a,b]\backslash [c,d],\\ \end{array} \right. \end{aligned}$$

then

$$\begin{aligned} V(g, p_n\uparrow \infty ,\phi ,[a,b])\le 5\cdot V(f, p_n\uparrow \infty ,\phi ,[c,d]). \end{aligned}$$

Proof

By Lemma 2.3, for an arbitrary partition of [ab] where \(t_{k-1}< c\le t_k\) and \(t_{r-1}\le d<t_r\), we get

$$\begin{aligned}&\left( \sum _{i=1}^{m}|g (t_{i})-g (t_{i-1})|^{p_{n}}\right) ^{\frac{1}{p_{n}}}\le \left( \sum _{i=k+1}^{r-1}|g (t_{i})-g (t_{i-1})|^{p_{n}}\right) ^{\frac{1}{p_{n}}}+|g(t_k)-g(t_{k-1})|\\&\qquad +|g(t_r)-f(t_{r-1})|=\left( \sum _{i=k+1}^{r-1}|f (t_{i})-f (t_{i-1})|^{p_{n}}\right) ^{\frac{1}{p_{n}}}+|f(t_k)-f(c)|\\&\qquad + |f(d)-f(t_{r-1})|\\&\quad \le 5\cdot V(f, p_n\uparrow \infty ,\phi ,[c,d]). \end{aligned}$$

Lemma 4.9

Let f be a function on [ab] and \(\{c_i\}_1^{\infty }\) be a sequence such that \(c_i\downarrow a\), \(c_1=b\) and \(f(c_i)=0\), \(i=1,2, \ldots ,\) then

$$\begin{aligned} V(f, p_n\uparrow \infty ,\phi ,[a,b])\le 5\cdot \sum _{i=1}^{\infty }V(f, p_n\uparrow \infty ,\phi ,[c_{i+1},c_i]). \end{aligned}$$

Proof

Let

$$\begin{aligned} f_i(t) = \left\{ \begin{array}{rl} f(t), &{} t\in [c_{i-1},c_i],\\ 0, &{} t\notin [c_{i-1},c_i].\\ \end{array} \right. \end{aligned}$$

It is clear that \(f=\sum _{i=1}^{\infty }f_i\) on [ab] and by Proposition 2.1(d)

$$\begin{aligned}&V(f, p_n\uparrow \infty ,\phi ,[a,b])\le \liminf _{k\rightarrow \infty } V\left( \sum _{i=1}^{k}f_i, \, p_n\uparrow \infty ,\phi ,[a,b]\right) \\&\quad \le \liminf _{k\rightarrow \infty } \sum _{i=1}^{k}V(f_i, p_n\uparrow \infty ,\phi ,[a,b])\le \sum _{i=1}^{\infty }V(f_i, p_n\uparrow \infty ,\phi ,[a,b]). \end{aligned}$$

By Lemma 4.8 we get

$$\begin{aligned} V(f, p_n\uparrow \infty ,\phi ,[a,b])\le 5\cdot \sum _{i=1}^{\infty }V(f, p_n\uparrow \infty ,\phi ,[c_{i+1},c_i]). \end{aligned}$$

Lemma 4.10

Let f be a periodic function with a period h. Then for every a

$$\begin{aligned} V(f, p_n\uparrow \infty ,\phi ,[a,a+mh])\le 4m^{\frac{1}{p_r}}\cdot V(f, p_n\uparrow \infty ,\phi ,[a,a+h]), \end{aligned}$$

where \(mh<\frac{1}{\phi (r-1)}.\)

Proof

Using periodicity of f, it is clear that for each \(t_1\) and \(t_2\) from \([a,a+mh]\) we have

$$\begin{aligned} |f(t_1)-f(t_2)|\le V(f, p_n\uparrow \infty ,\phi ,[a,a+h]). \end{aligned}$$

Let \(a=t_0<t_1< \cdots <t_s=a+mh\) be an arbitrary partition, such that \(|t_i - t_{i-1}|\ge \frac{1}{\phi (n)}\), \(i=1,2, \ldots ,s\). It is clear that \(n\ge r\). Suppose

$$\begin{aligned} A_k:=\{i: [t_{i-1},t_i]\subset [a+(k-1)h,a+kh]\},\quad k=1,2,\ldots ,m. \end{aligned}$$

By Lemma 2.3 we have

$$\begin{aligned} \sum _{i\in A_k}|f(t_{i-1})-f (t_i)|^{p_n}\le (3V(f,p_{n}\uparrow \infty ,\phi ,[a,a+h]))^{p_n}. \end{aligned}$$

Let

$$\begin{aligned} B_k:=\{i: t_{i-1}<x_k<t_i \},\quad k=1,2,\ldots ,m. \end{aligned}$$

\(B_k\) consists at most of one point. If \(i\in B_k\) then

$$\begin{aligned} |f(t_i)-f(t_{i-1})|\le V(f, p_n\uparrow \infty ,\phi ,[a,a+h]). \end{aligned}$$

We obtain

$$\begin{aligned}&\left( \sum _{i=1}^{s}\left| f(t_i)-f(t_{i-1})\right| ^{p_n}\right) ^{1/p_n}\\&\quad \le \left( \sum _{k=1}^{m}\left( \sum _{i\in A_k}|f(t_{i-1})-f (t_i)|^{p_n}+\sum _{i\in B_k}|f(t_{i-1})-f (t_i)|^{p_n}\right) \right) ^{1/p_n}\\&\quad \le \left( \sum _{k=1}^{m}\left( 3 V(f, p_n\uparrow \infty ,\phi ,[a,a+h])\right) ^{p_n}+\left( V(f, p_n\uparrow \infty ,\phi ,[a,a+h])\right) ^{p_n}\right) ^{1/p_n}\\&\quad \le 4 m^{\frac{1}{p_n}}V(f, p_n\uparrow \infty ,\phi ,[a,a+h])\le 4 m^{\frac{1}{p_r}}V(f, p_n\uparrow \infty ,\phi ,[a,a+h]). \end{aligned}$$

Proposition 4.11

For every \(q\ge 1\) there exists a function which is \(\left( (p_n), \phi \right) \)-absolute continuous but it is not in \(V_q\), where \(V_q\) is the class of functions of Wiener-Young [10] q-th generalization of total variation.

Proof

Let \(c_k=\frac{1}{k}\), \(k=1,2,\ldots ,\) and consider the following function f on [0, 1]:

$$\begin{aligned} f(t) = \left\{ \begin{array}{rl} \frac{1}{k^2}\sin (2k^{[3q]}\pi \frac{t-c_{k+1}}{c_k-c_{k+1}}), &{} if\quad t\in [c_{k+1},c_k],\\ 0, &{} if \quad t=0, \end{array} \right. \end{aligned}$$

This function is periodic with period \(h=\frac{c_k-c_{k+1}}{k^{[3q]}}\) on \([c_{k+1},c_k]\), \(f(c_i)=0\), \(i=1,2,..\), and

$$\begin{aligned} V(f, p_n\uparrow \infty ,\phi ,[c_{k+1},c_{k+1}+h])\le \frac{4}{k^2}. \end{aligned}$$
(7)

Let r be the least positive integer for which \(p_r>3q\), then \(2-\frac{[3q]}{p_r}>1.\) It is clear that \(c_{k+1}+k^{[3q]}h=c_k\). If \(\frac{1}{k}-\frac{1}{k+1}>\frac{1}{\phi (r-1)}\) then (7) and Lemma 4.10 imply that

$$\begin{aligned}&V(f, p_n\uparrow \infty ,\phi ,[c_{k+1},c_k]) \le 4k^{\frac{[3q]}{p_r}}\cdot V(f, p_n\uparrow \infty ,\phi ,[c_{k+1},c_{k+1}+h])\nonumber \\&\quad \le 4k^{\frac{[3q]}{p_r}}\cdot \frac{4}{k^2}\le \frac{16}{k^{2-[3q]/p_r}}. \end{aligned}$$
(8)

Let

$$\begin{aligned} s_k(t) = \left\{ \begin{array}{rl} f(t), &{} t\in [c_{k+1},1],\\ 0, &{} t\notin [c_{k+1},1],\\ \end{array} \right. \end{aligned}$$

Lemma 4.8 implies that

$$\begin{aligned} V(f-s_k, p_n\uparrow \infty ,\phi ,[a,b])\le 5\cdot V(f, p_n\uparrow \infty ,\phi ,[0,c_{k+1}]). \end{aligned}$$

(8) and Lemma 4.9 imply that the right side of the last inequality does not exceed to

$$\begin{aligned} 25\cdot \sum _{j=k+1}^{\infty }V(f, p_n\uparrow \infty ,\phi ,[c_{j+1},c_j])\le 25\cdot \sum _{j=k+1}^{\infty }\frac{16}{k^{2-[3q]/p_r}}\rightarrow 0 ,\quad k\rightarrow 0. \end{aligned}$$

Since \(s_k\) is absolute continuous we conclude that \(s_k\) is in \(AC(p_n\uparrow \infty ,\phi ,[0,1])\) and by lemma 4.7f is \(\left( (p_n), \phi \right) \)-absolute continuous.

Let \(x_i^k=c_{k+1}+i\frac{h}{4}\), \(i=0,1, \ldots , 4k^{[3q]}\). Then \(f(x_i^k)=\frac{1}{k^2}\sin \left( i\frac{\pi }{2}\right) \) and

$$\begin{aligned} \sum _{i=1}^{4k^{[3q]}}|f(x_i^k)-f(x_{i-1}^{k})|^q= \sum _{i=1}^{4k^{[3q]}}\left( \frac{1}{k^2}\right) ^q=4 k^{[3q]}\cdot \frac{1}{k^{2q}}> 1. \end{aligned}$$
(9)

For every positive integer M there exists a positive integer N, such that \(N^{\frac{1}{q}}\ge M\). If we consider the points \(x_i^k,\, i=0,1,\ldots , 4k^{[3q]} \, , \, k=1,2,\ldots ,N,\) by (9) we get

$$\begin{aligned} V_q(f, [0,1])\ge \left( \sum _{k=1}^{N}\sum _{i=1}^{4k^{[3q]}}|f(x_i^k)-f(x_{i-1}^{k})|^q\right) ^{1/q}> \left( \sum _{k=1}^{N}1\right) ^{1/q}=N^{1/q}\ge M. \end{aligned}$$

This means that f is not in \(V_q([0,1]).\)

5 Approximation by Steklov functions

Lemma 5.1

Let \(\{g_h : h\ge 0\}\) be a set of functions on [ab] and satisfies conditions:

  1. (i)

    For every \(\varepsilon >0\) there exists a positive integer N, such that if \(h>N\) then for arbitrary \(t\in [a,b]\) we have \(g_h(t)<\varepsilon \);

  2. (ii)

    For every positive number \(\varepsilon \) there exists a fixed partition \(a=x_0<x_1<\cdots <x_r=b\) and a positive integer N such that for every \( h>N\) we have

    $$\begin{aligned} V(g_h,p_{n}\uparrow \infty ,\phi ,[x_{i-1},x_i])<\varepsilon ,\quad i=1,2,\ldots ,r. \end{aligned}$$

Then,

$$\begin{aligned} V(g_h,p_{n}\uparrow \infty ,\phi ,[a,b])\rightarrow 0,\quad h\rightarrow \infty . \end{aligned}$$

Proof

Let \(\varepsilon >0\) is given. By condition (ii) there exists a fixed \(a=x_0<x_1<\cdots <x_r=b\) partition and a positive integer \(N_1\) such that for every \( h>N_1\) we have

$$\begin{aligned} V(g_h,p_{n}\uparrow \infty ,\phi ,[x_{i-1},x_i])<\frac{\varepsilon }{10}, \, i=1,2,\ldots r. \end{aligned}$$
(10)

Let l be the least integer such that \(r^{\frac{1}{p_l}}\le 2\) and \(\phi (l)\ge \frac{5}{b-a}.\)

By condition (i) there exists \(N_2\) such that if \(h>N_2\) then

$$\begin{aligned} g_h(t)<\frac{\varepsilon }{2(b-a)\phi (l)}, \quad t\in [a,b]. \end{aligned}$$
(11)

We must show that

$$\begin{aligned} V(g_h,p_{n}\uparrow \infty ,\phi ,[a,b])<\varepsilon , \end{aligned}$$

when \(h>N=\max \{N_1,N_2\}.\)

Let \(a=t_0<t_1< \cdots <t_m=b\) be an arbitrary partition of the interval \([a,b]\) such that \(|t_i - t_{i-1}|\ge \frac{1}{\phi (n)}\), \(i=1,2, \ldots ,m\). Consider two cases.

Case 1\(n\le l\), then \(b-a=\sum _{i=1}^{m}(t_i-t_{i-1})\ge \sum _{1}^{m}\frac{1}{\phi (n)}=\frac{m}{\phi (n)}\), hence

$$\begin{aligned} m\le (b-a)\phi (n)\le (b-a)\phi (l). \end{aligned}$$
(12)

By (11)

$$\begin{aligned} |g_h(t_i)-g_h(t_{i-1})|\le & {} |g_h(t_i)|+|g_h(t_{i-1})|\\\le & {} \frac{\varepsilon }{2(b-a)\phi (l)}+\frac{\varepsilon }{2(b-a)\phi (l)}=\frac{\varepsilon }{(b-a)\phi (l)}. \end{aligned}$$

By the last inequality and (12) we obtain

$$\begin{aligned} \left( \sum _{i=1}^{m}|g_h (t_{i})-g_h (t_{i-1})|^{p_{n}}\right) ^{\frac{1}{p_{n}}}\le m^{\frac{1}{p_n}}\frac{\varepsilon }{(b-a)\phi (l)}< m\frac{\varepsilon }{(b-a)\phi (l)}\le \varepsilon . \end{aligned}$$

Case 2\(n>l\). Let

$$\begin{aligned} A_k:=\{i: [t_{i-1},t_i]\subset [x_{k-1},x_k]\},\quad k=1,2,\ldots ,r. \end{aligned}$$

By (10) and Lemma 2.3 we get

$$\begin{aligned} \sum _{i\in A_k}|g_h(t_{i-1})-g_h (t_i)|^{p_n}\le (3V(g_h,p_{n}\uparrow \infty ,\phi ,[x_{k-1},x_k]))^{p_n} <\left( \frac{3\varepsilon }{10}\right) ^{p_n}.\nonumber \\ \end{aligned}$$
(13)

Let

$$\begin{aligned} B_k:=\{i: t_{i-1}<x_k<t_i \},\quad k=1,2,\ldots ,r. \end{aligned}$$

Note that \(B_k\) consists at most of one point. If \(i\in B_k\) then

$$\begin{aligned} |g_h(t_i)-g_h(t_{i-1})|<\frac{\varepsilon }{(b-a)\phi (l)}. \end{aligned}$$

By the last inequality and (13) we obtain

$$\begin{aligned}&\left( \sum _{i=1}^{m}|g_h (t_{i})-g_h (t_{i-1})|^{p_{n}}\right) ^{\frac{1}{p_{n}}}\\&\quad =\left( \sum _{k=1}^{r}\left( \sum _{i\in A_k}|g_h(t_{i-1})-g_h (t_i)|^{p_n}+\sum _{i\in B_k}|g_h(t_{i-1})-g_h (t_i)|^{p_n}\right) \right) ^{\frac{1}{p_n}}\\&\quad <\left\{ \sum _{k=1}^{r}\left( \left( \frac{3\varepsilon }{10}\right) ^{p_n}+\left( \frac{\varepsilon }{(b-a)\phi (l)}\right) ^{p_n}\right) \right) ^{\frac{1}{p_n}}\le r^{\frac{1}{p_l}}\left( \frac{3\varepsilon }{10}+\frac{\varepsilon }{(b-a)\phi (l)}\right) \le \varepsilon . \end{aligned}$$

This means that

$$\begin{aligned} V(g_h,p_{n}\uparrow \infty ,\phi ,[a,b])\rightarrow 0,\quad h\rightarrow \infty . \end{aligned}$$

Lemma 5.2

Let f be a periodic function with period \(b-a\) and there exist \(\varepsilon >0\) and \(\delta >0\) such that

$$\begin{aligned} V(f,p_n\uparrow \infty ,\phi ,[t_1,t_2])<\varepsilon , \end{aligned}$$

for every \(t_2-t_1<\delta , [t_1,t_2]\subset [a,b].\) Then for every real h

$$\begin{aligned} V(f^h,p_n\uparrow \infty ,\phi ,[t_1,t_2])<8\varepsilon , \end{aligned}$$

where \(f^h(t)=f(h+t)\) and \(t_2-t_1<\delta \), \([t_1,t_2]\subset [a,b].\)

Proof

Since f is periodic, we can consider only the case when \(0<h<b-a.\) We have two cases:

If \(b\notin [t_1+h,t_2+h]\), by periodicity of f we get

$$\begin{aligned} V(f^h,p_{n}\uparrow \infty ,\phi ,[t_{1},t_2])=V(f,p_{n}\uparrow \infty ,\phi ,[t_{1}+h,t_2+h])<\varepsilon . \end{aligned}$$

If \(b\in [t_1+h,t_2+h]\) then by Remark 3.3

$$\begin{aligned}&V(f^h,p_{n}\uparrow \infty ,\phi ,[t_{1},t_2])=V(f,p_{n}\uparrow \infty ,\phi ,[t_{1}+h,t_2+h])\\&\quad \le 4V(f,p_{n}\uparrow \infty ,\phi ,[t_1+h,b]+4V(f,p_{n}\uparrow \infty ,\phi ,[b,t_2+h]))<8\varepsilon . \end{aligned}$$

Lemma 5.3

If a function f is \(\left( (p_n), \phi \right) \)-absolute continuous on [ab], periodic with period \(b-a\), then \(V(f^h-f,p_n\uparrow \infty ,\phi ,[a,b])\rightarrow 0\), \(h\rightarrow 0+\), where \(f^h(t)=f(h+t)\).

Proof

Let \(g_{1/h}:=f^h-f\). Now we show that \(g_{1/h}\) satisfies conditions of Lemma 5.1.

  1. (1)

    Since f is \(\left( (p_n), \phi \right) \)-absolute continuous , it is uniformly continuous on [ab]. Then for each \(\varepsilon >0\) there exists \(\delta >0\) such that \(|f(t+h)-f(t)|<\varepsilon \), when \(h<\delta .\)

  2. (2)

    Let \(\varepsilon >0\) be given. Since f is \(\left( (p_n), \phi \right) \) absolute continuous, there exists \(\eta >0\) such that \(V(f,p_{n}\uparrow \infty ,\phi ,[t_1,t_2])<\frac{\varepsilon }{9}\) when \(t_2-t_1<\eta \).

Let \(a=x_0<\cdots <x_m=b\) be a partition of [ab] such that \(x_i-x_{i-1}<\eta \), then \(V(f,p_{n}\uparrow \infty ,\phi ,[x_{i-1},x_i])<\frac{\varepsilon }{9}, \, i=1,2,\ldots ,m,\) and by Lemma 5.2

$$\begin{aligned}&V(g_{\frac{1}{h}},p_{n}\uparrow \infty ,\phi , [x_{i-1},x_i])\\&\quad \le V(f^h,p_{n}\uparrow \infty ,\phi ,[x_{i-1},x_i])+V(f,p_{n}\uparrow \infty ,\phi ,[x_{i-1},x_i])<\varepsilon . \end{aligned}$$

We get that \(g_{\frac{1}{h}}\) satisfies conditions of Lemma 5.1, that implies \(V(f^h-f,p_{n}\uparrow \infty ,\phi ,[a,b])\rightarrow 0\), for \(h\rightarrow 0+\).

Proposition 5.4

Let \(f\in AC(p_n\uparrow \infty ,\phi ,[a.b])\) be periodic with period \(b-a\). Then the sequence \(f_k\) of the Steklov functions of f, defined by the formula

$$\begin{aligned} f_k(t)=k\int _{t}^{t+\frac{1}{k}}f(\tau ) d\tau , \end{aligned}$$

is convergent in variation to f(t).

Proof

$$\begin{aligned} f_k(t)-f(t)=k\int _{0}^{\frac{1}{k}}\left( f(t+\tau )-f(t)\right) d\tau . \end{aligned}$$

Let \(\varepsilon >0\) be given, then by Lemma 5.3 there exists \(\delta >0\) such that

$$\begin{aligned} V(f^h-f,p_{n}\uparrow \infty ,\phi ,[a,b])<\varepsilon ,\quad h<\delta , \end{aligned}$$
(14)

where \(f^h(t)=f(h+t)\). Since \(|x|^p\), \(p\ge 1\), is a convex function, by Jensen inequality

$$\begin{aligned} \left| k\int _{0}^{\frac{1}{k}}g(t)dt\right| ^{p_n}\le k\int _{0}^{\frac{1}{k}}|g(t)|^{p_n}dt. \end{aligned}$$
(15)

Suppose \(\frac{1}{k}<\delta \) and \(a=t_0<t_1< \cdots <t_m=b\) be an arbitrary partition of the interval \([a,b]\) such that \(|t_i - t_{i-1}|\ge \frac{1}{\phi (n)}\), \(i=1,2, \ldots ,m\). By (14) and (15) we get

$$\begin{aligned}&\left( \sum _{i=1}^{m}|(f_k-f)(t_i)-(f_k-f)(t_{i-1})|^{p_n}\right) ^{1/{p_n}}\\&\quad =\left( \sum _{1}^{m}\left| k\int _{0}^{\frac{1}{k}}(f(t_i+\tau )-f(t_i)-f(t_{i-1}+\tau )+f(t_{i-1}))d\tau \right| ^{p_n}\right) ^{1/{p_n}}\\&\quad \le \left( \sum _{1}^{m}k\int _{0}^{\frac{1}{k}}|f(t_i+\tau )-f(t_i)-f(t_{i-1}+\tau )+f(t_{i-1})|^{p_n}d\tau \right) ^{1/{p_n}}\\&\quad \le \left( k\int _{0}^{\frac{1}{k}}V(f^{\tau }-f,p_{n}\uparrow \infty ,\phi ,[a,b])^{p_n}d\tau \right) ^{1/{p_n}}<\left( k\int _{0}^{\frac{1}{k}}\varepsilon ^{p_n}d\tau \right) ^{1/{p_n}}=\varepsilon . \end{aligned}$$

Hence \(V(f_k-f,p_{n}\uparrow \infty ,\phi ,[a,b])<\varepsilon \), when \(\frac{1}{k}<\delta .\)

If f is an integrable function on [ab] then its Steklov functions \(f_k\) are absolute continuous, hence, \(f_k\in AC(p_n\uparrow \infty ,\phi , [a,b])\). Therefore, By Lemma 4.7, if \(V(f_k-f,p_n\uparrow \infty ,\phi )\rightarrow 0\) then \(f\in AC(p_n\uparrow \infty ,\phi , [a.b])\).

6 Approximation by singular integrals

Now we shall consider the problem of approximation in variation of periodic function f which is \(\left( (p_n), \phi \right) \)-absolute continuous on [ab], by integrals of the form

$$\begin{aligned} I_q(t)=\int _{a}^{b}K_q(\tau )f(t+\tau )d\tau . \end{aligned}$$

Lemma 6.1

Let f be a periodic function with period \(b-a\), \(K_q\) be a function such that \(\int _{a}^{b}|K(t)|dt=\theta \), and \(I(t)=\int _{a}^{b}K(\tau )f(t+\tau )dt\). Then

$$\begin{aligned} V(I,p_n\uparrow \infty ,\phi ,[c,d])\le \theta \cdot \sup _{\tau \in [a,b]}V(f^{\tau },p_n\uparrow \infty ,\phi ,[c,d]) \end{aligned}$$

for every closed interval [cd], where \(f^\tau (t)=f(t+\tau )\).

Proof

Let \(c=t_0<t_1<\cdots <t_m=d\) be an arbitrary partition such that \(|t_i - t_{i-1}|\ge \frac{1}{\phi (n)}\), \(i=1,2, \ldots ,m\). Then

$$\begin{aligned}&\left( \sum _{i=1}^{m}|I(t_i)-I(t_{i-1})|^{p_n} \right) ^{1/p_n} =\left( \sum _{1}^{m} \left| \int _{a}^{b}K(\tau )(f(t_i+\tau )-f(t_{i-1}+\tau ))d\tau \right| ^{p_n}\right) ^{1/p_n}\\&\quad \le \left( \sum _{1}^{m} \left( \int _{a}^{b}|K(\tau )|\cdot |(f(t_i+\tau )-f(t_{i-1}+\tau ))|d\tau \right) ^{p_n}\right) ^{1/p_n}. \end{aligned}$$

By Jensen’ inequality, the last term does not exceed to

$$\begin{aligned}&\left( \sum _{i=1}^{m}\theta ^{p_n} \cdot \frac{\int _{a}^{b}|K(\tau )|\cdot |f(t_i+\tau )-f(t_{i-1}+\tau )|^{p_n} d\tau }{\theta } \right) ^{1/p_n}\\&\quad =\frac{\theta }{\theta ^{1/p_n}}\left( \int _{a}^{b}|K(\tau )|\cdot \sum _{i=1}^{m}|f(t_i+\tau )-f(t_{i-1}+\tau )|^{p_n}d\tau \right) ^{1/p_n}\\&\quad \le \frac{\theta }{\theta ^{1/p_n}}\cdot \sup _{\tau \in [a,b]}V(f^{\tau },p_n\uparrow \infty ,\phi ,[c,d]) \cdot \left( \int _{a}^{b}|K(\tau )|d\tau \right) ^{1/p_n}\\&\quad =\theta \cdot \sup _{\tau \in [a,b]}V(f^{\tau },p_n\uparrow \infty ,\phi ,[c,d]). \end{aligned}$$

Hence, we get

$$\begin{aligned} V(I,p_n\uparrow \infty ,\phi ,[c,d])\le \theta \cdot \sup _{\tau \in [a,b]}V(f^{\tau },p_n\uparrow \infty ,\phi ,[c,d]). \end{aligned}$$

Proposition 6.2

Let \(\int _{a}^{b}|k_q(t)|dt=\theta _q\), \(q=1,2\ldots ,\) and \((\theta _q)\) is bounded; f is \(((p_n), \phi )\)-absolute continuous, periodic with period \(b-a\) and \(I_q(t)=\int _{a}^{b}K_q(\tau )f(t+\tau )dt\). If for some \(\xi \) the sequence of functions \(I_q(t)\) converges uniformly to \(f^{\xi }(t)\) then

$$\begin{aligned} V(I_q-f^{\xi },p_n\uparrow \infty ,\phi ,[a,b])\rightarrow 0, \,q\rightarrow \infty , \end{aligned}$$

where \(f^\xi (t)=f(t+\xi )\).

Proof

It is sufficient to show that the sequence \(I_q-f^{\xi }\), \(q=1,2,\ldots ,\) satisfies condition ii) of Lemma 5.1.

Let \(\theta _q\le C,\;\)\(q=1,2,\ldots ,\) and \(\varepsilon >0\). Since f is \(\left( (p_n), \phi \right) \) absolute continuous, there exists \(\eta >0\) such that \(V(f,p_{n}\uparrow \infty ,\phi ,[t_1,t_2])<\frac{\varepsilon }{8(C+1)}\) for every \(t_2-t_1<\eta \).

Soppuse \(a=x_0<\cdots <x_m=b\) be a partition of [ab] such that \(x_i-x_{i-1}<\eta \), then \(V(f,p_{n}\uparrow \infty ,\phi ,[x_{i-1},x_i])<\frac{\varepsilon }{8(C+1)}, \, i=1,2,\ldots ,m,\) and by Lemma 5.2

$$\begin{aligned} V(f^{h},p_{n}\uparrow \infty ,\phi , [x_{i-1},x_i])< \frac{\varepsilon }{(C+1)}, \, i=1,2,\ldots \,, \end{aligned}$$

for every real h. By Lemma 6.1

$$\begin{aligned} V(I_q,p_n\uparrow \infty ,\phi ,[x_{i-1},x_i])\le \theta _q\cdot \sup _{\tau \in [a,b]}V(f^{\tau },p_n\uparrow \infty ,\phi ,[x_{i-1},x_i])\le \frac{C\varepsilon }{C+1}. \end{aligned}$$

By the last two inequalities we obtain

$$\begin{aligned}&V(I_q-f^{\xi },p_n\uparrow \infty ,\phi ,[x_{i-1},x_i])\le \\&\quad V(I_q,p_n\uparrow \infty ,\phi ,[x_{i-1},x_i])\\&\quad +V(f^{\xi },p_n\uparrow \infty ,\phi ,[x_{i-1},x_i])<\frac{C\varepsilon }{C+1}+\frac{\varepsilon }{(C+1)}=\varepsilon , \end{aligned}$$

for every \(i=1, 2, \ldots ,m.\)\(\square \)

Corollary 6.3

Let f be a periodic function with period \(2\pi \) and \(\sigma _n^{\alpha }(f)\) be \((C,\alpha )\), \(\alpha >0\), means of Fourier series of f with respect to the trigonometric system. Then \(\sigma _n^{\alpha }(f)\) is convergent in variation to f if and only if \(f\in AC(p_n\uparrow \infty ,\phi )\).

Sufficiency follows from Proposition 6.2.

Necessity. Since \(\sigma _n^{\alpha }(f)\) is absolute continuous then \(\sigma _n^{\alpha }(f)\in AC(p_n\uparrow \infty ,\phi )\). By Lemma 4.7, if \(\sigma _n^{\alpha }(f)\) is convergent in variation to f then f is \(\left( (p_n), \phi \right) \)-absolute continuous.

Corollary 6.4

Let \(K_q(t)\ge 0\), \(\int _{a}^{b}K_q(t)dt\rightarrow 1\) as \(q\rightarrow \infty \) and \(\int _{a+\delta }^{b-\delta }K_q(t)dt\rightarrow 0\) as \(q\rightarrow \infty \) for each \(0<\delta <\frac{1}{2}(b-a)\) and f is periodic with period \(b-a\).

If \(f\in AC(p_n\uparrow \infty ,\phi ,[a,b])\) then \( V(I_q-f^a,p_n\uparrow \infty ,\phi ,[a,b])\rightarrow 0\), where \(f^a(t)=f(t+a)\).