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Abstract

The properties of the class of functions of generalized bounded variation are studied.
The “anomaly” feature of this class is revealed. There is the notation of absolute
continuity with respect to ((p,), ¢) and it’s connection with the ordinary absolute
continuity is investigated. The problems of approximation by Steklov’s functions and
singular integrals are studied.
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1 Introduction

The notion of bounded variation was based by Jordan [4]. Wiener [9] considered the
class of functions B V. Love [6] studied functional properties of this class. Young [10]
intoduced the notion of @-variation. Musielak and Orlicz [7] studied properties of this
class. Waterman [8] studied class of functions of bounded A-variation. Chanturia [3]
defined notion of modulus of variation. Kita and Yoneda [5] introduced new class of
functions of bounded variation. Akhobadze [1,2] generalized the last class and studied
properties of it. This bibliography can be continued (see e.g. [11]).
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On the classes of functions of generalized bounded variation 763

Definition 1.1 Let f(¢) be a function defined on a finite closed interval [a, b]. Suppose
pn and ¢ (n) be a sequences such that p; > 1, p, + co,n — oo and ¢(1) > 1,
¢(n) 1+ oo, n — oo. We say that f € BV (p, 1 o0, ¢, [a, b]) if

m 1/pn
1
V(F.pu 1 00 9. la,b) = supsup (Z |f(6) = ftDIP" : p(A) = M) < +o0,

i=1

where Aisa =ty < t; < --- < t,, = b partition of the interval [a, b] and p(A) =
min; (& — fi—1).

In the case, ¢(n) = 2", class BV (p, 1 o0, ¢, [a, b]) is considered by Kita and
Yoneda [5]. Sometimes for the simplicity we use notation V (f, p, 1 oo, ¢) in place
Of V(fa pl’l T OO, ¢7 [av b])

2 Some properties of functions of generalized bounded variation

It is easy to verify that BV (p,, 1 0o, ¢, [a, b]) is a normed space, with the norme

LAl =1f@]+V(f,pn?1 oo, ¢,la,b].

Proposition 2.1 (a) BV (py 1t 00, @) is a linear space and for each o and B we
have

Viaf+ B8 pn 100, @) < |a|V(f,pnt oo, ¢)+I[BIV(g pu 1 00, ).
() BV (py 1 00, ¢, [a, b]) is a complete space.

(c) BV(pn 1 o0, ¢, la, b)) is not separable.
(d) If at each point t of [a, b] interval klim fr(t) = f(t), then
—> 00

V(f.pn 100, 9) < “;Ei%f V(fks Pn 1 00, §).

Proof (a) It is clear.
(b) Let (f;) be a fundamental sequence in BV (p,, 1 00, ¢, [a, b]). Then for every
e > 0 there exists a positive integer N (¢), such that for each natural numbers
i,r > N(e) we have

Wi = frll =1 = f)@I + V(fi = froPn 1 00,0, [a,b]) <e. 1

By definition of this variation for every ¢ € [a, b] we have

[(fi = O = |(fi = f)@] < 1(fi = f)@) = (fi = fr)(@)l
< V(fl - fr’ Pn T o0, ¢9 [(l,b])
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764 T. Akhobadze and K. lvanadze

Thus (1) implies that

I(fi = O = (fi = f)@|+V(fi = fripn T 00,0, [a,b]) <e.
This means uniformly convergence of the sequence ( f).Let f, — f uniformly and

consider an arbitrary partition of [a, b] such that p(A) > ¢(1_n) Foreachi,r > N(¢)
we have

“ 1/pn
(Z (i = f) () = (fi = fr)(tk_l)W) <s.
k=1

Considering the limit » — +o0 in the last inequality, we get

m 1/pn
(Z (i = D)) — (fi — f)(rk1>|f’") <s.
k=1

Therefore,

V(fi—fspn 1 00,0,la,b]) > 0,i — oo.

Now, by property (a), for each fixed i (i > N(g)) we obtain

|f @]+ V(f,pnt oo, ¢ la,b) <|f(@|+V(f—fi,pnt oo ¢, la, b))
+V(fis pn 1 00,9, [a, b)) = [f(a)| + &+ V(fi, pn 1 00, ¢, [a, b]).

(c)Leta < xg < b and

0,if a=<t=<xp,

fxo(t)z{l,if X0 <t <bh.

Itiseasytoseethat f € BV (p, 1 oo, ¢, [a, b]) andif f,, and fy, are two functions
corresponding to distinct points xo < x1 from (a, b), then we have

[ fxo = full = V(fxo = frrs Pn 1 00,9) = |(frg = fr) @1 = (frg — fu)O)| = 1.

The set of fy, functions is uncountable and distance between to two different
functions is greater then 1. Thus BV (p, 1 oo, ¢, [a, b]) is not separable.
(d) Let

A = liminf V(fi, pn 1 00, @),
k—o00
then there exists such a subsequence f, that
lim V(fk, pn 1 00,¢) = A.
r—>00
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On the classes of functions of generalized bounded variation 765

For every ¢ > 0 there exists a constant N (g), such that
V(fe,, pn 1 00,¢) < A+e, r>N(e).

Leta =1 <t <--- < t, = b be an arbitrary partition of interval [a, b] and

lti —ti_q| > d)(l—)z =1,2,...,m, then

L/pn
p”) <V(fe,, Pn 1 00,¢) < A+e.

(Z | fi, (0)) = fi,
i=1

Hence

m 1/pn
(Z |f (@) — f(r,-1>|”"> <A+e.

i=1

This implies that

V(f:pnt oo d) <A

Definition 2.2 A sequence of f; functions will be termed convergent in variation to
fitV(fu—f,pn oo, ¢) = 0forn — oo.

€L
Convergence in variation implies uniformly convergence, in general. If ¢ (n)?» is
1

bounded then it is easy to see that they are equivalent. If ¢ (n) 7= is not bounded then

there exists uniformly convergent sequence of functions which is not convergent in
1

variation. Indeed, there exists a subsequence ¢>(nk)m — o0 and let

Ji@) = msm Qrlpmp)/4]l), te[0,1].

Here and in the sequel [a] denotes the i 1nteger part of a number a.ltisclearthat f; —

0 uniformly on [0, 1]. Letus consider points ; ik % (’1k) 7 =0,1,...,4[¢p(nr)/4].

It is obvious that tl. — k W > ¢(111k) We get

1/Pnk
Pny,

4l¢ (i) /4]

by | i) = Sl :

1
— Vppe . = S
= P m) /4D 1M - oS 2 5

when ¢ (n;) > 8. This means that V (fi, p, 1 o0, ¢, [0, 1]) > % for every sufficiently
big k.
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766 T. Akhobadze and K. lvanadze

Lemma 2.3 Let f be a function defined on [a,b]l and ty < t1 < --- < 1ty be an
arbitrary set of points in [a, b] such that |t; — ti—1| > 4% i=1,2,...,m.Then

m 1/pn
(Z () — f(ti_l)V’") <3V(f. pa 1 00. 6. a. b]).

i=1

Proof 1t is obvious that

m 1/pn
(Z |f @) — f(ti_w")

i=1

IA

m 1/pn
(Z |f(t) = ft—DI”" + [ f(t) = f@I” + | f(b) — f(lm1)|p”>

i=1

IA

m—1 1/ pn
(Z |f @) — f@G—DIP + 1 f@t) — f@l” +1fb) — f(fm—1)|p”>

i=2
H () = f@) + 1 f(tm) — ftm-D| =3V (f, pn T 00, 9).

3 On “anomalous” property of the class of function of generalized
bounded variation

Proposition3.1 Let p; > 1, p, + coand ¢(1) > 1, ¢(n) 1 oco. Then for each point
x € (a, b) there exists y € (x, b), and a function f defined on [a, b] such that

V(f’ Pn T o0, ¢’ [a’ }’]) < V(f’ pl’l T o0, ¢7 [aax])‘

Proof (i) Let r be the least positive integer such that : x —a > ¢%r);

(i) ¢c:=x — %);
(iii) choose a point y € (x, b) such that,

1
X<y<x+-—

P(r)’
and
xX<y<c+-———r;
¢(r—1)
(iv) choose a number & € (0, 1) such that

1
0 <& < (2Pr+1/Pr —2ypri1 |

W Birkhauser



On the classes of functions of generalized bounded variation 767

Therefore,
Q2+ £PryTT < 2,
Suppose
1,if t=c,
f([): g’ lf r=y, (2)
0,if tela,bl,t#c,t#y.
We get

V(f’ pl‘l T o0, ¢a [aa x]) == 2pr.

Indeed, let A = {a, c, x}. (i) and (ii) implies that p(A) = ¢Er)' It is clear that

25 = (1£(©) = F@I + @) — F@P)7 < V(f. pu t 00, [ax]). (3)

Leta =1 <t <--- <t, = x be an arbitrary A partition of the interval [a, x],

then we have two cases:
(a) if ¢ is not a point of the partition A, then

m 1/pn
(Z |f @) — f(n_ov’") =0;

i=1

(b) if ¢ is a point of the partition A, then p(A) = min;{t; —t;,_1} <x —¢
Thusif p(A) > ¢+k) then for each partition which contains ¢, implies that (ﬁ(%) > q)(l_k)
hence k > r. Since p, is strictly increasing we have

m 1/ pk . 1
(me — f(ti—l)l”k) =2 <2,
i=1

Therefore, from these two cases we conclude that for arbitrary partition a = #y <
t < -+ <ty = x, for which p(A) > qﬁ, we obtain

m 1/Pn '
<Z|f(ti)—f(ti—l)|p"> <2,
i=1
Thus, from (3) we conclude that

V(f, pn 1 00, ¢,[a,x]) = 2/7%

) Birkhauser



768 T. Akhobadze and K. lvanadze

Now we have to show that

V(f. pn 1 00, . [a, y]) < 20 = V(f. pu 1 00, b, [a, x]).

Leta =1 <t < --- < t,, = y be an arbitrary partition of the interval [a, y].
Then we have three cases:
Case I cisnotin A. Then

m 1/pn
(Zlf(li)—f(ti—l)lp”) =1/ — fm-DI=§.

i=1

Case 2 c is in A, but no point from (c, y) isin A,i.e t,, = y and t,,_1 = c. Thus,
(iii) implies

1

p(A)Ey_C<m

Therefore, if p(A) > ﬁ thenk >r —land k > r.

Since for every fixed a (0 < a < 1) function (1 + a* )% is decreasing with respect
tox (x > 1), by (2) we have

m 1/ pr
(Zlf(n) —f(fil)l”") — L+ (1= 5% < (14 (1= 5P <27,

i=1

Case 3 ¢ is in A and there is a point in (¢, y) which is contained in A. From (ii)
and (iii) we get

R S S
p(r)  dr)  d(r)’

y—c=y—x+x-—c

. i 1 . . 1
In this case we obtain p(A) < 70 Besides, if p(A) > FI) then k > r + 1.

Hence

m 1/ pk . .
(Z |f @) — f(tm)l"k> = Q2+ < 24 EPH) T

i=1
Therefore, in each three cases, when p(A) > d)(;k) we get
m 1/ pk . |
(Z \f 1) — f(ti_1>|f’k) < max {s, I+ -5, 2 +spr+1>"r+1} .
i=1
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On the classes of functions of generalized bounded variation 769

Definition 1.1 and (iv) imply that

V(f, pn 1 00, ¢, la, y]) < max {é, 1+ —é)”’)!’%, (2+$”’“)""1“} <2
=V(f,pn t 00,9, la, x]).
O

Remark 3.2 Let f be defined on [a, b] and [ay, b1] C [a, b]. Lemma 2.3 implies that

V(f.pnt oo, ¢, lai,bi]) =3-V(f, pp 1 0,9, la,b].

Remark 3.3 Letc € (a,b)anda =1ty < t; < --- < t,, = b be an arbitrary partition

of [a, b] suchthat |[t; —#; 1| > qﬁ,i =1,2,...,mandt_; <c < tk.Sinceﬁ <1

we have

m 1/pn
(Z |f () — f(rl-1>|"")

i=1

k—1 1/ pn
< (Df(t,-) - f(ti_1>|”")

i=1

m 1/ pn
HIF©) = Ft] + @) — £l + < S @) - f(r,»nv’") .

i=k+1

The last inequality and Lemma 2.3 imply

V(f:pnt oo, ¢.la,b]) <4-V(f,pn1 o0, ¢,la,c)+4-V(f,pnt oo, ¢,lc,b].

4 A generalization of absolute continuity

Definition 4.1 A function f defined on a closed interval [a, b], will be termed
((pn), ¢)-absolute continuous if the following condition is satisfied: for every ¢ > 0
there exists a number § > O such that

m 1/ pn
(Z 1F(Bi) — f(ai)l””) <e,
i=1

for all finite sets of non-overlapping intervals (¢;, 8i) C [a,b],i = 1,2, ..., m, for

which i — o > ﬁ,i =1,2,...,m, and

m 1/pn
(Z(ﬂi - a»P") <.
i=1

) Birkhauser



770 T. Akhobadze and K. lvanadze

We denote this class by AC(p, 1 00, ¢, [a, b]). Sometimes for the simplicity we use
notation AC(p, 1 o0, ¢). Itis clear that if f is ((p,), ¢)-absolute continuous then f
is continuous.

Lemma4.2 Let f be a function on [a, b] and let («;, B;) C [a,b], i =1,2,...,m,
be a finite set of non-overlapping intervals such that min; (f; — o) > ¢(1n) . Then

m l/pn
(Z If(B) — f(ai)V’") < 6V(f. pnt 00, ¢, [a.b]).
i=1

Proof This statement follows from Lemma 2.3. O

Proposition 4.3 A necessary and sufficient condition for f to be in AC(p, 1
o0, ¢, a, b)) is that for a given ¢ > O there exists a § > 0 such that

V(f’ Pn T oo, ¢’ [tla tZ]) <E§&,

foreach [t1, 2] C [a, b] when ty — t] < 6.

Proof Necessity is obvious. Now we have to show sufficiency of the condition. Sup-
pose ¢ > 0 is given, then there exists > 0 such that

V(f. pn 1 00, 0. [0, 02]) < %

for each [#1, o] C [a, b] when 1, — t; < 7.
Leta = xo < x1 < -+ < x,, = b be a fixed partition of [a, b] such that
Xi —Xi—1 =n1,i =1,2,...,m, where n; < n. Then

V(f,p,,¢oo,¢,[xl~,1,x,-])<li i=1.2.....m. ()

65

1
Suppose r be a positive integer such that m» < 2, and § = min{ni, ¢(1_r)}- Let
(oi, Bi) C la,bl,i = 1,2,...,s, be a finite set of non-overlapping intervals such
that

K 1/pn
(Z(ﬂi - a»Pﬂ) <,
i=1

and

1
Bi—ai>——, i=12,...,5.

¢ (n)

It is sufficient to show that

s 1/ pn
(Zlf(ﬂi) — f(ai>|f’") <e.

i=1

W Birkhauser



On the classes of functions of generalized bounded variation 771

Let
Api=1{i (o, Bi) C xx—1, xil}, k=1,2,...,m.
By (4) and Lemma 4.2
» » 68 Pn
DB = f@l™ < 6V (f, put 00, ¢, L, )™ < ()
€Ay
Suppose
By :={i i <xx <Bi}, k=1,2,...,m.

Note that By consists at most of one element and if i € By then o; € [xx—1, xk],
Bi € [xk, xx+1]1. We have

|fB) — fla)P = (1f(B) — fa)l + | f (xk) — f e

2 Pn
S(V(f,pn oo, ¢, [xk—1, xkD) + V(f, pn 1 00, @, [xk, Xk 1 D))" < (%) .

Since pi < 1, we obtain
n

K 1/pn
(Z 1f(Bi) — f(m)l”")
i=1

m 1/ pn

= (Do Do 1rB) = f@ + Y 1F(B) — flel”

k=1 \i€Ag i€By
m m L/pn m 1/pn m 1/pn
6¢ Pn 2¢ Pn 6¢ Pn ¢ Pn
— —_ < _ - .

(B 2E)) =Z6) (26

1
Note that m <Bi—ai <5< ¢(+), hence n > r. Since m?r < 2, the last term
does not exceed to

1 8¢ 1 ¢
ml’n.—<ml7r.§<g_

16
Remark 3.3 and Proposition 4.3 imply that AC(p,, 1 0o, ¢) C BV (p, 1 00, ¢).

Proposition 4.4 If f is absolute continuous, then f € AC(p, 1 00, ¢).

) Birkhauser



772 T. Akhobadze and K. lvanadze

Proof Let e > 0, then there exists § > 0 such that for every non-overlapping intervals
(ai, Bi),i =1,2,...,m,is satisfying inequality

D IFB) — fle)l <

i=1

when 77 (B — i) < 8.
If x — x; < § then for each partition x; = 9 < t| < .-+ < f = xp we have
¥ (6 — tim1) = x2 — x1 <, hence

k 1/ pn k
(Z |f @) — f(r,-_l)w") < I = fi-Dl < e
i=1

i=1

The last inequality implies V(f, p, 1 oo, ¢, [x1, x2]) < e. By Proposition 4.3
f € AC(py 1 00, ). O

1
Proposition 4.5 If ¢(n)rn is bounded then every continuous function on [a, b] is
((pn), ¢)-absolute continuous.

1
Proof Let ¢(n)rm < C where C is a positive constant and f be continuous on [a, b].
Therefore, f is uniformly continuous. If & > 0 is given then there exists § (0 < § < 1)
such that

1) — fF)] < % if h—t <.

Let [x1,x2] C la,b]land x» —x1 < 8. Ifxy =190 <t < --- < t, = xp 1S an
arbitrary partition, where #; — f;_| > ? (1,1), then it is clear that m < §¢p(n) < ¢ (n)

and

m L/ pn m L/ pn
Pn 1 ¢ 1 ¢ &€
S 1f@) - f(ti_ov’") < (Z = ) =P < ) <
( N (2C> 2C 2C 2

i=1

Hence V(f, pn 1 00, ¢, [x1,x2]) < & and by Proposition 4.3 f is ((p,), ¢)-
absolute continuous.

1
Proposition 4.6 If ¢ (n)Pn is not bounded then there exists a continuous function f
which is not ((pn), ¢)-absolute continuous.

Proof Since ¢ (n)!/Pr is not bounded then for every positive integer k there exists a
positive integer nj such that

Py P L
[4k(k+1)] -

W Birkhauser



On the classes of functions of generalized bounded variation 773

Letc; = % k=1,2,...,and Ay = [ 4/?((:}31)]' Consider the following continuous
function on [0, 1]:

—1/pn;, . — .
Py M Sin@a =R if 1€ ek, e,
0,if 1=0.
Let xlk = cr+1 + i—cklflf“ i =0,1,..., 4% Itis clear that xf = cx41, xi‘Ak = ¢
and
-1 n . .

Fxby =)y 'Pn i (z%); 3)

Ck — Ck+1 1 4 (ny) 1
xf—xiy = = > : =—. ©)

40k k(k+1) 4k(k+1) @)

From (5) and (6) we obtain

4)% 1/pnk
V(fs P 100, ¢, [crs1, ck]) = (Z |f ) = f(xf‘ﬂl”"k)

i=1

4 I/Pn
N (5P \ P S 1/p
- (> (Ak ) = P @) > 1,

i=l1
Lemma 4.3 implies f is not ((py), ¢)-absolute continuous.

Lemmad4.7 Let{fi}:2, be asequence of functionsfrom AC(p, 1 00, ¢, [a, b]) which
is convergent in variation to f, then f € AC(p, 1 o0, ¢, [a, b]).

Proof Let ¢ > 0 be given, then there exists N such thatif k > N
£
v(fk - f’ Pn T 0, ¢s [Cl, b]) < Z

Let kg > N. Since fi, is ((pn), ¢)-absolute continuous then there exists § > 0
such that

£
V(fkos Pn T 0, ¢v [l], t2]) < Zy
where tp — t; < §. Hence by Proposition 2.1(a) and Remark 3.2 we have

V(fipn 100, ¢, [t1, D) SV(f = frg> Pn 1 00,8, [t1, 2]) + V (fio»
pn T OO, ¢9 [tl, tz]) S E.

Thus, by Proposition 4.3 f isin AC(p, 1 o0, ¢, [a, b]).

) Birkhauser



774 T. Akhobadze and K. lvanadze

In Lemma 4.7 convergence in variation can not be replaced with uniform convergence.
Indeed, Fejer (C, 1) means of the continuous function f (constructed in Lemma 4.6)
with respect to trigonometric system converges uniformly to f, but f ¢ AC(p, 1

00, ).
Lemma 4.8 Let f be a function on [a, b), [c,d] C [a,b] and f(c) = f(d) =0. If

| r@,reledl,
g(t) = { 0, t € [a, b]\[c, d],

then

V(g! pn T o0, ¢7 [d,b]) S 5 : V(f’ pn T 0, ¢1 [C’ d])

Proof By Lemma 2.3, for an arbitrary partition of [a, b] where tx_; < ¢ < f; and
t—1 <d < t., we get

1 L
m ITn r—1 Pn
(Zlg(li)—g(li—l)lp") =< ( > Ig(li)—g(ti—l)lp”> +18(n) — g(tx—1)|

i=1 i=k+1
1

r—1 Pn
+g ) — ftr—)| = ( Z |f () — f(h‘—l)l’”’) + 1/ (%) — f (o)l

i=k+1
+f(d) = [l
S 5 N V(f’ pn T o0, ¢7 [C»d])

Lemma 4.9 Let f be a function on [a, b] and {c;}{° be a sequence such that c¢; | a,
ci=band f(c;) =0,i =1,2,..., then
oo
V(f? pl’l T OO, ¢7 [a7 b]) S 5 : Z V(f’ pn T 007 ¢» [Ci+lﬂ Ci])-
i=1
Proof Let

o) f@),t€lci-1,ql,
s = { 0,1 ¢ [ci-1,cil

It is clear that f = Y °2, fi on [a, b] and by Proposition 2.1(d)
k
V(f! pl’l T OO, ¢7 [Cl, b]) S hm lnf V (Z ﬁr pl’l T OO, ¢’ [a’ b])
k— 00 P

k o0
< lifi%};f; V(fi a1 00,9, la,bl) < > V(fi, pu 1 00, , [a, b]).

i=1

W Birkhauser



On the classes of functions of generalized bounded variation 775

By Lemma 4.8 we get
oo
V(f,pu 1 00,0, [a,b]) <5- D V(f, pa 1 00,9, [cit1, cil).
i=1
Lemma 4.10 Let f be a periodic function with a period h. Then for every a
€1
V(fv pn T OO, ¢a [aa a + mh]) S 4’m pro. V(fs pl’l T OO, ¢)7 [av a + h]),

1
where mh < 2=

Proof Using periodicity of f, it is clear that for each ¢; and #, from [a, a + mh] we
have

|f ) — f@)| = V(f,pn 1 00, ¢,la,a+h]).

Leta =t <t < --+ < ty = a + mh be an arbitrary partition, such that
lti —ti—1| > $,i =1,2,...,s. Itis clear that n > r. Suppose

A :={i . [ti—1,ti] Cla+ (k— Dh,a+kh]}, k=1,2,...,m.

By Lemma 2.3 we have

D Ifti) = @) < BV(f, pa 1 00, ¢, la,a+ h])P.

€Ay
Let
B, ={i:ti-1<xx<t;}, k=1,2,...,m.
By consists at most of one point. If i € By then
|f(@) = fUi—Dl = V(f, pn 1 00,8, a,a+ h]).
We obtain

K} 1/pn
(Z |f () — f(ri_l)w)

i=1

m 1/ pn
= (Z (Z |fio) = Fa)IP + Y 1 f i) — f(ti)lp”))
k=1

€Ay ieBy
I
=
k

<4m

S

1/pn
BV(f,pn 00, ¢, la,a+hD))P" + (V(f, pn 1 00,9, la,a+ h]))p">

SV (f. pu 1 00, b [ara + k1) < dmw VS, py 1 00, . [a,a+ hl).

=
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Proposition 4.11 For every g > 1 there exists a function which is ((p,), ¢)-absolute
continuous but it is not in V,;, where V, is the class of functions of Wiener-Young [10]
q-th generalization of total variation.

Proof Letcy = 1,k = 1,2, ..., and consider the following function f on [0, 1]:
1 in(2k3¢) 7 1=Ckz1
fi)y=1#% sin(2k o Ck+l) if te€lcier el
0,if t=0,

This function is periodic with period h = ka il oon [exets ekl f(ci) =0,i =1,2,.
and

4
V(f,pn 10,0, [cki1,Chy1 +h]) < — 7

k2

Let r be the least positive integer for which pr > 3q, then2 — [i—?] > 1. Itis clear

that ¢4 + kB0 = ¢ If% - ﬁ > ¢(r 5 then (7) and Lemma 4.10 imply that

[3¢]
V(f,pn 1 0,0, [cki1,cr]) < k- V(f, pn 1 00,0, [Cki1, Chy1 + h])

- 4k[3ql 4 - 16 3
S g = s ®)

Let

f(t)’ re [Ck+1’ 1]9

sk(t) = { 0, t ¢ [cks1, 11,

Lemma 4.8 implies that

V(f —sk:pn 100, ¢,[a,b]) =5-V(f, pn 1 00,9, [0, cky1D.

(8) and Lemma 4.9 imply that the right side of the last inequality does not exceed
to

o0
16
ZSJZ;HV(JC pnTOO¢[C]+laCJ])<25 ]_2: m—)() k— 0.

Since sy is absolute continuous we conclude that s is in AC(p, 1 00, ¢, [0, 1])
and by lemma 4.7 f is ((pn), ¢)-absolute continuous.
Letxf = cxq1 +i%,i=0,1,....4kB9) Then f(xf) = % sin (i%) and

41341 451341
1 1

q
Z ) = Fplf =) (172) = 4kB4l. a7 = ©)

i=1
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1
For every positive integer M there exists a positive integer N, such that N4 > M.
If we consider the points x*, i =0,1,...,4kB4!, k =1,2,..., N, by (9) we get

N 4k34] l/q N 1/q
Ve(f 10,1 = | D03 IFGeH = faiplf ] > (Zl) =N > M.

k=1 i=l1 k=1

This means that f is notin V, ([0, 1]).

5 Approximation by Steklov functions

Lemma 5.1 Let {g; : h > 0} be a set of functions on [a, b] and satisfies conditions:

(i) For every ¢ > 0 there exists a positive integer N, such that if h > N then for
arbitrary t € [a, b] we have g, (t) < ¢&;

(ii) For every positive number € there exists a fixed partition a = xp < x1 < -+ <
X, = b and a positive integer N such that for every h > N we have

V(ghspnToov¢v[xi—laxi])<€v i=l,2,...,r.
Then,
V(gh, pn 1 00, ¢,la,b]) >0, h— oo

Proof Let ¢ > 0 is given. By condition (ii) there exists a fixeda = xp < x; < --- <
x, = b partition and a positive integer N; such that for every 4 > N; we have

€
Vg, pn 100, ¢ [Xic1, xil) < {50 i =1.2,...7. (10)
i
Let [ be the least integer such that 7 <2 and ¢ (I) > %

By condition (i) there exists N> such that if 7 > N, then

gn(t) < 3 t €la,b]. an

&
b-aypd)

We must show that

V(gh’ Pn T 00, ¢7 [(1, b]) <Eé,

when i > N = max{Ny, N2}
Leta =1 <t <--- <t, = bbe an arbitrary partition of the interval [a, b] such
that |[t; — t;_1| > ﬁ,i =1, 2,...,m. Consider two cases.

Case In <l ,thenb—a =)/ (t —ti_1) = > | ¢(1_n) = ¢’(’;), hence

m=(b—-a)pn) = b-a)p). (12)
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By (11)

A

lgn(ti) — gnti-D)| < lgn()| + lgn(ti-1)]
& & &

2(b—a)p () " 20-a)pl)  b—apl)

By the last inequality and (12) we obtain

IA

S L) — . Pn " ,,17 £ &
<Z|gh(tz) gh(ti-1)| ) <m (b—a)¢(l)<m(b—a)¢(l)§8'

i=1
Case2n > 1. Let
A ={i : [ti—1, 4] C [xk—1, 2]}, k=1,2,...,r.
By (10) and Lemma 2.3 we get

3 Pn
D lgntio1) — gn(@)1”" < BV (gn, pn 1 00, ¢, [xx—1, 5k )" < (—8> :

k 10
€A

(13)
Let

By:={i:tici<xx<t;}, k=1,2,...,r.

Note that By consists at most of one point. If i € By then

e
1) — ti— —_—.
lgn(ti) — gn(ti Dl < (b—a)q)(l)
By the last inequality and (13) we obtain
1
m n
<Z|8h(fi) —gh(fi1)|p")
i=1
1
r Pn
= (D2 D] 1entio) —gn@)P" + > lgntio1) — gn(t)|””
k=1 \i€Ax i€By

1
r 3¢ Pn P Pn Pn 1 3 e
<{,§<<E> +<<b—a>¢<l)> )) = (E+<b—a>¢<l>)55'

This means that

V(gn, pn 1 00, ¢,[a,b]) > 0, h — oo.
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Lemma 5.2 Let f be a periodic function with period b — a and there exist ¢ > 0 and
8 > 0 such that

V(f, Pn T oo, ¢’ [tla tZ]) <E§&,

foreveryt, —t1 < §,[t1, 2] C [a, b]. Then for every real h

V(f", pn 1 00,0, (11, 12]) < 8e,

where fh(t) =f(h+t)andt, — 1 <, [1, 2] C [a, b].

Proof Since f is periodic, we can consider only the case when 0 < i < b — a. We
have two cases:
Ifb ¢ [t + h, t2 + h], by periodicity of f we get

V(" put 00, ¢, [t1,01) = V(f, pn t 00, ¢, [t1 +h,tr + h]) <e.

If b € [t1 + h, t + h] then by Remark 3.3

V(" pn 1 00,0, (11, 02]) = V(f, pn 1 00,6, [t1 + h, 12 + h])
<AV(f, pn 1 00,0, [t1 +h, bl +4V(f, pa 1 00,0, [b, 12 + h])) < 8e.

Lemma 5.3 If a function f is ((pn), ¢)-absolute continuous on [a, b), periodic with
period b — a, then V(fh — f,pn 1 0, 0,la,b]) - 0, h - 04, where fh(t) =
f(h+1).

Proof Let gy := f h _ f.Now we show that g; /1 satisfies conditions of Lemma 5.1.

(1) Since f is ((pn), ¢)-absolute continuous , it is uniformly continuous on [a, b].
Then for each ¢ > 0 there exists § > 0 such that | f(t + h) — f(¢)] < ¢, when
h < 6.

(2) Let e > 0 be given. Since f is ((pn), ¢) absolute continuous, there exists n > 0
such that V(f, p, 1 00, ¢, [t1,12]) < § whento — 11 < 1.

Leta = xo < -+ < x;,, = b be a partition of [a, b] such that x; — x;_; < 7, then
V(f,pnt oo, ¢, [xi—1,x]) < §, i=1,2,...,m, and by Lemma 5.2
V(gL pn 1 00,9, [xi—1, xi])
< V(" pa 00, b, [ximt, i) + V(f, pa 1 00, [xior, i) < e
We get that g 1 satisfies conditions of Lemma 5.1, that implies V (f" — f, pp 1
00, ¢, [a, b]) — 0, for h — 0+.

Proposition5.4 Let f € AC(p, 1 00, ¢, [a.b]) be periodic with period b — a. Then
the sequence fi. of the Steklov functions of f, defined by the formula

1

I+E
f) =k / F)dr,
t
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is convergent in variation to f(t).

Proof

1
13
i =r0=k ["Gutn - rodn
Let ¢ > 0 be given, then by Lemma 5.3 there exists § > 0 such that

V(f" — f.pn oo, ¢,la,b]) <&, h <3, (14)

where f"(t) = f(h+1).Since |x|P, p > 1,is a convex function, by Jensen inequality

k/‘z g(t)dt
0

Suppose % <danda =1ty <t <--- < t,, = b be an arbitrary partition of the
interval [a, b] such that |[t; — t; 1| > i=1,2,...,m. By (14) and (15) we get

Pn

< k/; 1), (15)
0

1
()’

m 1/pn
(Z (e = £t = (fi - f)(t,-—l)l”")

i=1

1
k/ok (flti +1) — ft) — Ftig + 1) + Ft_)de

-

Pn)l/pn
1

m z 1/pn
< Zk/ lfti+7) = f@) = fUic1 + 1)+ i) de
— Jo

% 1/pn % 1/pn
< (k/ V("= f.pnt 00,0, [a,b])”"df) < (k/ s””dr> =e.
0 0

Hence V(fk - f, Pn T oo, ¢’ [a9 b]) <é, When % < 6

If f is an integrable function on [a, b] then its Steklov functions f; are absolute
continuous, hence, f; € AC(p, 1 o0, ¢, [a, b]). Therefore, By Lemma4.7,if V (fi —
f’ pn T o0, ¢) g Othen f € AC(pn T oo, d)v [ab])

6 Approximation by singular integrals

Now we shall consider the problem of approximation in variation of periodic function
f which is ((p,), ¢)-absolute continuous on [a, b], by integrals of the form

b
Iq(t):/ K,(@)f(t+1t)dr.
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Lemma 6.1 Let f be a periodic function with period b — a, K, be a function such that
[PIK@)ldt =6, and 1(t) = [ K () f(t + ©)dt. Then

V(17 pl’l T oo, ¢5[C7 d]) 59 Sup V(fl” pn TOO’ ¢5[C7 d])

1€la,b]

for every closed interval [c, d], where f*(t) = f(t + 7).

Proof letc =ty <t < --- < t,, = d be an arbitrary partition such that |t; — ;1| >

m’i: 1,2,...,m. Then
pn)l/pn

m 1/pn m
(me — I(t,»_1>|""> = (Z
i=1 1

m b Pn 1/pn
< (Z (/ |K(T)|'|(f(ti+f)—f(ti—1+T))|df) ) .
1 a

By Jensen’ inequality, the last term does not exceed to

b
f K@) (f(ti + 1) — fti-1 +1))dT

(i gPn . JPIK @11 f @+ ) = fior + r)lmd’)l/pn
0

i=1

% b n 1/pn
(/ K@ Y 1f 6 +7) = flio + r)|""df>

= 91/
9 P i=1

9 b 1/pn
< - sup V(fF, pn 1 00,9, [c,d]) - K (t)ldT
1/
0P clap a
0

sup V(f*, pn 1 00,9, [c.d]).

t€la,b]

Hence, we get

V(17 Pn T oo, ¢s [C7 d]) S 9 : Sup V(frf Pn T 0, ¢9 [C, d])

t€la,b]

Proposition 6.2 Let fab lkg@®)|dt = 04, g = 1,2..., and (6;) is bounded; f is
((pn), @)-absolute continuous, periodic with period b—a and 1,(t) = fab K,(o) ft+
T)dt. If for some & the sequence of functions 1,(t) converges uniformly to f §(1) then

VI, — f5, pu 1 00, ¢, [a,b]) = 0, ¢ — 0,

where f5(t) = f(t + &).

Proof 1t is sufficient to show that the sequence I, — &, q = 1,2,..., satisfies
condition ii) of Lemma 5.1.
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Letf, < C, g=1,2,...,and ¢ > 0. Since f is ((p,), ¢) absolute continuous,
there exists n > O such that V(f, p, 1 00, ¢, [11, 1]) < m foreveryt, —1 < 1.

Soppuse a = xp < - -+ < X, = b be a partition of [a, b] such that x; — x;_1 < 7,
then V(f, pn T 00, ¢, [xi—1, xi]) < m, i=1,2,...,m, and by Lemma 5.2

V", pu 1 00, b, [xio1, xi]) < =1.2,...,

€ .
— 1
(C+D

for every real h. By Lemma 6.1

Ce
V(I apn TOO,¢,[XZ'_],XZ']) 596] Sup V(f'f’ pn Tm7¢v[xi—1vxi])§ .
t€la,b] C+1
By the last two inequalities we obtain
V(g = f5. pn 1 00,0, [xi—1.x,]) <
V(I ’ pn T OO, ¢1 [-xl‘—13-xi])
VO, 00,6, Dt ]) < o
) y @y L Xi—1, X < =¥ — - =&,
P e oS T Ty )
foreveryi =1,2,...,m. O

Corollary 6.3 Let f be aperiodic function with period 2m and o, () be (C, ), o0 > 0,
means of Fourier series of f with respect to the trigonometric system. Then o, (f) is
convergent in variation to f if and only if f € AC(p, 1 00, @).

Sufficiency follows from Proposition 6.2.

Necessity. Since 0¥ (f) is absolute continuous then o (f) € AC(p, 1 00, ¢).
By Lemma 4.7, if 0,7 (f) is convergent in variation to f then f is ((p,), ¢)-absolute
continuous.

Corollary 6.4 Let Ko(t) = 0, [ K,(1)dt — lasq — oo and [*7) Ky (t)dt — Oas
q — oo foreach0 < § < %(b —a) and f is periodic with period b — a.

If f € AC(pp 1 00,¢,la,b]) then VI, — f¢, p, + 00, 9,[a,b]) — 0, where
[0 = ft+a.
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