1 Introduction

Multi-parameter harmonic analysis containing multi-parameter function spaces and boundedness of operators have been extensively studied over the past decades. We refer readers to the work in [1, 2, 7,8,9,10, 12, 13, 15, 21,22,23, 25, 27, 29,30,32, 34,35,37, 39,40,47, 49,50,52].

The product Hardy space was first introduced in [25, 38]. Immediately after, Chang and Fefferman R. developed this theory in [4,5,6]. At the same time, Fefferman and Stein studied product convolution singular integral operators which satisfy analogous conditions of double Hilbert transform [18]. In [33], Journé generalized this result to product non-convolution singular integral operators and proved the \(L^{\infty }\rightarrow BMO\) boundedness for such operators, which opened the door to prove the product \(H^{p}\) boundedness of operators in the Journé’s class. Besides that, authors in [11, 37, 48] studied weighted multi-parameter Hardy spaces. For more results about multi-parameter Hardy spaces, we refer readers to [1,2,3, 11, 12, 20, 21, 25, 26, 28,29,30,31, 35,36,37, 46, 48].

Recently, the theory of multi-parameter mixed Hardy space has been developed in [14]. To be more precise, let \(\psi _{0}^{(1)},\psi ^{(1)}\in {{\mathcal {S}}}({\mathbb {R}}^{n_{1}})\) with

$$\begin{aligned} \hbox {supp} \widehat{\psi _{0}^{(1)}}\subseteq \{\xi \in \mathbb R^{n_{1}}: |\xi |\le 2\};\ \widehat{\psi _{0}^{(1)}}(\xi )=1,\ \hbox {if}\ |\xi |\le 1, \end{aligned}$$
(1.1)

and

$$\begin{aligned} \hbox {supp} \widehat{\psi ^{(1)}}\subseteq \{\xi \in \mathbb R^{n_{1}}: \frac{1}{2}\le |\xi |\le 2\}, \end{aligned}$$
(1.2)

and

$$\begin{aligned} |\widehat{\psi _{0}^{(1)}}(\xi )|^{2}+\sum \limits ^{\infty }_{j =1}|\widehat{\psi ^{(1)}}(2^{-j}\xi )|^2=1, \ \hbox { for all } \xi \in {\mathbb {R}}^{n_{1}}. \end{aligned}$$
(1.3)

Let \(\psi ^{(2)}\in {{\mathcal {S}}}({\mathbb {R}}^{n_{2}})\) with

$$\begin{aligned} \hbox {supp} \widehat{\psi ^{(2)}}\subseteq \{\xi \in \mathbb R^{n_{2}}: \frac{1}{2}\le |\xi |\le 2\}, \end{aligned}$$
(1.4)

and

$$\begin{aligned} \sum \limits _{j \in \mathbb Z}|\widehat{\psi ^{(2)}}(2^{-j}\xi )|^2=1, \ \hbox { for all } \xi \in {\mathbb {R}}^{n_{2}}\setminus \{0\}. \end{aligned}$$
(1.5)

Then, for \(j,k\in {\mathbb {Z}}, j\ge 1\), set that \(\psi _j^{(1)}(x)= 2^{jn_{1}} \psi ^{(1)}(2^jx)\), \(\psi _k^{(2)}(x)= 2^{kn_{2}} \psi ^{(2)}(2^kx)\) and that \(\psi _{j,k}(x,y)=\psi _j^{(1)}(x)\psi _k^{(2)}(y)\), \(\psi _{0,k}(x,y)=\psi _0^{(1)}(x)\psi _k^{(2)}(y)\).

Denote that \({{\mathcal {S}}_{0}}({\mathbb {R}}^{n_{1}+n_{2}})=\{f\in {{\mathcal {S}}}({\mathbb {R}}^{n_{1}+n_{2}}): \int _{{\mathbb {R}}^{n_{2}}} f(x_{1},x_{2}) x_{2}^\alpha \textrm{d}x_{2}=0, \ \forall \ |\alpha |\ge 0, \ \forall \ x_{1}\in {\mathbb {R}}^{n_{1}}\}\). For \(i=1,2\) and any \(j\in {\mathbb {Z}}\), denote that \(\Pi _{j}^{n_{i}}=\{I: \) I are dyadic cubes in \({\mathbb {R}}^{n_{i}}\) with the side length \(l(I)=2^{-j}\), and the left lower corners of I are \(x_{I}=2^{-j}\ell \), \(\ell \in {\mathbb {Z}}^{n_{i}}\}\), \(\Pi _{j,k}=\Pi _{j}^{n_{1}}\times \Pi _{k}^{n_{2}},\) and that \(\Pi =\cup _{j,k\in {\mathbb {Z}}}\Pi _{j,k}.\)

The following discrete multi-parameter Calderón’s reproducing formula was obtained in [16]:

Theorem A Suppose that \(\psi _{0}^{(1)}\),\(\psi ^{(1)}\in {{\mathcal {S}}}({\mathbb {R}}^{n_{1}})\) and \(\psi ^{(2)}\in {{\mathcal {S}}}({\mathbb {R}}^{n_{2}})\) satisfy conditions in (1.1)–(1.3) and (1.4)–(1.5), respectively. Then

$$\begin{aligned} \qquad f(x_{1},x_{2}) =\sum \limits _{j\in {\mathbb {N}},k\in {\mathbb {Z}}}\sum \limits _{I\times J\in \Pi _{j,k}}|I||J|(\psi _{j,k}*f)(x_{I},x_{J})\times \psi _{j,k}(x_{1}-x_{I},x_{2}-x_{J}), \end{aligned}$$
(1.6)

where the series converges in \(L^{2}({\mathbb {R}}^{n_{1}+n_{2}})\), \(\mathcal S_{0} ({\mathbb {R}}^{{n_{1}+n_{2}}})\) and \({\mathcal {S}}'_{0}({\mathbb {R}}^{{n_{1}+n_{2}}})\), the dual space of \({\mathcal {S}}_{0} ({\mathbb {R}}^{{n_{1}+n_{2}}})\).

We recall some definitions of product weights in two parameter setting [24]. For \(1<p<\infty , \) a nonnegative locally integrable function \(\omega \in A_p({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) if there exists a constant \(C>0\) such that

$$\begin{aligned} \Big (\frac{1}{|R|}\int _R \omega (x)\textrm{d}x \Big )\Big (\frac{1}{|R|}\int _R \omega (x)^{-1/(p-1)}\textrm{d}x \Big )^{p-1}<C \end{aligned}$$

for any dyadic rectangle R, that is \(R\in \Pi \). We say that \(\omega \in A_1({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) if there exists a constant \(C>0\) such that

$$\begin{aligned} M_s \omega (x)\le C \omega (x),\ \hbox {a.e.}\ x\in {\mathbb {R}}^{n_{1}+n_{2}}, \end{aligned}$$

where \(M_s\) is the strong maximal function defined by

$$\begin{aligned} M_s f(x)= \sup \limits _{x \in R\in \Pi }\frac{1}{|R|}\int _{R} |f(y)| \textrm{d}y. \end{aligned}$$

Finally, define that \(\omega \in A_\infty ({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) by

$$\begin{aligned} A_\infty ({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})=\bigcup \limits _{1\le p<\infty } A_p({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}}). \end{aligned}$$

In this paper, the classical Muckenhoupt’s weights on \({\mathbb {R}}^{n}\) is denoted by \(A_p({\mathbb {R}}^{n})\).

Given a weight \(\omega \) on \({\mathbb {R}}^{n}\), for \(0<r<\infty \), \(L_{\omega }^{r}({\mathbb {R}}^{n})\) is defined by

$$\begin{aligned} L_{\omega }^{r}({\mathbb {R}}^{n})=\{f:\int _{{\mathbb {R}}^{n}} |f(x)|^{r}\omega (x)\textrm{d}x<\infty \}. \end{aligned}$$

Based on the discrete Calderón’s identity (1.6), weighted mixed Hardy spaces are introduced in [14].

Definition 1.1

Let \(0<p<\infty \) and \(\omega \in A_\infty ({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\). Suppose that \(\psi _{0}^{(1)}\),\(\psi ^{(1)}\in {{\mathcal {S}}}({\mathbb {R}}^{n_{1}})\) and \(\psi ^{(2)}\in {{\mathcal {S}}}({\mathbb {R}}^{n_{2}})\) satisfy conditions in (1.1)–(1.3) and (1.4)–(1.5), respectively. The weighted multi-parameter mixed Hardy space \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) is defined to be the set of \(f\in {\mathcal {S}}'_0({\mathbb {R}}^{n_{1}+n_{2}})\) such that \(\Vert f\Vert _{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}=\Vert S(f)(x)\Vert _{L_{\omega }^p({\mathbb {R}}^{n_{1}+n_{2}})}<\infty ,\) where

$$\begin{aligned} S(f)(x)=\Big (\sum _{j\in {\mathbb {N}},k\in {\mathbb {Z}}} \sum \limits _{I\times J\in \Pi _{j}^{{n_{1}}}\times \Pi _{k}^{{n_{2}}}}|\psi _{j,k}*f(x_{I},x_{J})|^2\chi _{I}(x_{1})\chi _{J}(x_{2})\Big )^{\frac{1}{2}}. \end{aligned}$$
(1.7)

It is well-known that atomic decomposition plays an important role in studying the boundedness of singular operators, and it is much more complicated in multi-parameter setting. In the present paper, we consider the atomic decomposition of \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\). The atoms of \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) are defined as follows.

Definition 1.2

Let \(0<p\le 1\). A function \(a(x_{1},x_{2})\) is said to be an atom for \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) if it satisfies the following properties:

  1. (1)

    \(a(x_{1},x_{2})\) is supported in an open set \(\Omega \subseteq {\mathbb {R}}^{n_{1}+n_{2}}\) with finite measure.

  2. (2)

    \(\Vert a\Vert _{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\le \omega (\Omega )^{\frac{1}{2}-\frac{1}{p}}.\)

  3. (3)

    a can be further decomposed as

    $$\begin{aligned} a=\sum _{R\subset {\mathcal {M}}(\Omega )}a_{R} \end{aligned}$$

    with

    $$\begin{aligned} \sum _{R\subset {\mathcal {M}}(\Omega )}\Vert a_{R}\Vert _{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}^{2}\lesssim \omega (\Omega )^{1-\frac{2}{p}}, \end{aligned}$$
    (1.8)

where \(a_{R}\) are named as rectangle-atoms associated with the dyadic rectangles \(R=I\times J\), and supported in \(\tau R\) for some positive integer \(\tau > 1\) independent of a and \(a_{R}\), and \({\mathcal {M}}(\Omega )\) is the set of all maximal dyadic rectangles in \(\Omega \). Furthermore, \(a_{R}\) has the following vanishing moment conditions:

  1. (i)

    in the \(x_{2}\) direction,

    $$\begin{aligned} \ \hbox {for}\ \hbox {a.e.}\ x_{1}\in \tau I, \int a_{R}(x_{1},x_{2})x_{2}^{\alpha }\textrm{d}x_{2}=0,0\le |\alpha |\le N^{2}_{p}=\left[ \frac{2n_{2}}{p}-n_{2}\right] . \end{aligned}$$
  2. (ii)

    in the \(x_{1}\) direction, there exists a positive constant \(\varrho \), when \(\ell (I)<\varrho \),

    $$\begin{aligned} \ \hbox {for}\ \hbox {a.e.}\ x_{2}\in \tau J, \int a_{R}(x_{1},x_{2})x_{1}^{\beta }\textrm{d}x_{1}=0, 0\le |\beta |\le N^{1}_{p}=\left[ \frac{2n_{1}}{p}-n_{1}\right] . \end{aligned}$$

Theorem 1.1

Let \(0<p\le 1\), \(\omega \in A_2({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\). Then there exists a constant \(c_{p,n_{1},n_{2},\omega }\), such that for all \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) atoms a,

$$\begin{aligned} \Vert a\Vert _{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}\le c_{p,n_{1},n_{2},\omega }. \end{aligned}$$

It has been proved in [14] that \(L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})\cap H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) is dense in \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) for all \(0<p<\infty \). Once we obtain the atomic decomposition in this dense set, it is easy to generalize to whole space.

Theorem 1.2

Let \(0<p\le 1\) and \(\omega \in A_2({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\). Then \(f\in H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) if and only if there exist a sequence \(\{a_{k}\}\) of \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) atoms and a sequence \(\{\lambda _{k}\}\) of real numbers satisfying \(\sum _{k\in {\mathbb {Z}}}|\lambda _{k}|^{p}\le C\Vert f\Vert ^{p}_{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}\) such that

$$\begin{aligned} f(x)=\sum _{k\in {\mathbb {Z}}}\lambda _{k}a_{k}(x), \hbox {in}\ H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}}), \end{aligned}$$

where the series also converges to f in \(L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})\).

One will see that the above atomic decomposition theorem is very useful to prove the boundedness of some kinds of singular operators, such as multi-pseudodifferential operators, and those in mixed Journé class. It will be exhibited in our following papers. As a direct application of Theorem  and Theorem 1.2, we have the following results.

Theorem 1.3

Let \(0<p\le 1\) and \(\omega \in A_2({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\). Assume that T is a linear singular integral operator bounded on \(L_{\omega }^2({\mathbb {R}}^{n_{1}+n_{2}})\). Then T is bounded on \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) if and only if

$$\begin{aligned} \sup \{\Vert T(a)\Vert _{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}} )}:a\ \ is\ \ any \ atom\ of\ H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\}<\infty . \end{aligned}$$
(1.9)

We now describe the strategy of this paper. In Section 2, we mainly prove the uniform boundedness of atoms on \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\). Comparison with the unweighted case, the uniform boundedness of atoms on weighted mixed Hardy spaces is much more involved. In Section 3, we establish atomic decomposition on \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\). The proof of Theorem 1.3 is also placed in this section.

2 The Uniform Boundedness of Atoms

In this section, we mainly discuss the uniform boundedness of atoms on \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) when \(0<p\le 1\). First of all, let’s recall a key theorem discovered by Journé. For this, given any open set \(\Omega \subseteq {\mathbb {R}}^{n_{1}+n_{2}}\), denote that \({\mathcal {M}}_{1}(\Omega )\) the collection of all dyadic rectangles \(R=I\times J\subseteq \Omega , R\in \Pi ,\) which are maximal in the \(x_{1}\) direction. Define \({\mathcal {M}}_{2}(\Omega )\) similarly. It is easy to see that \({\mathcal {M}}(\Omega )\subseteq {\mathcal {M}}_{1}(\Omega )\) and \({\mathcal {M}}(\Omega )\subseteq {\mathcal {M}}_{2}(\Omega )\).

Define that

$$\begin{aligned} {\widetilde{\Omega }}=\left\{ x \in {\mathbb {R}}^{n_{1}+n_{2}}: M^{\omega }_{s}(\chi _{\Omega })(x) > \frac{1}{(10\tau )^{n_{1}+n_{2}}}\right\} , \end{aligned}$$

and similarly for \(\widetilde{{\widetilde{\Omega }}}\), \(\widetilde{\widetilde{{\widetilde{\Omega }}}}\). Here, \(M^{\omega }_{s}(g)(x)\) is a weighted strong Maximal function defined by

$$\begin{aligned} M^{\omega }_{s}(g)(x)=\sup _{x\in R}\frac{1}{\omega (R)}\int _{R}|g(y)|\omega (y)\textrm{d}y. \end{aligned}$$

Obviously, \(\Omega \subseteq {\widetilde{\Omega }}\subseteq \widetilde{{\widetilde{\Omega }}}\subseteq \widetilde{\widetilde{{\widetilde{\Omega }}}}\). By the weighted strong maximal theorem (see [17]), one has \(\omega (\widetilde{\widetilde{{\widetilde{\Omega }}}})\lesssim \omega (\Omega )\).

For any \(R\in {\mathcal {M}}(\Omega )\), let \({\tilde{I}}\subseteq {\mathbb {R}}^{n_{1}}\) be the largest dyadic cube containing I such that \({\tilde{R}}={\tilde{I}}\times J\subseteq {\widetilde{\Omega }}\), and \({\tilde{J}}\) be the largest dyadic cube containing J such that \(\tilde{{\tilde{R}}} = {\tilde{I}}\times {\tilde{J}} \subseteq \widetilde{{\widetilde{\Omega }}}\). Define \(\gamma =\gamma (R)=\frac{\ell ({\tilde{I}})}{\ell (I)}\) and \(\gamma '=\gamma '(R)=\frac{\ell ({\tilde{J}})}{\ell (J)}\). The following weighted version of Journé’s lemma is in [19].

Lemma 2.1

Let \(\Omega \) be an open set in \({\mathbb {R}}^{n_{1}+n_{2}}\). If \(\omega \in A_\infty ({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\), then for any \(\eta >0\)

$$\begin{aligned} \sum _{R\in {\mathcal {M}}_{2}(\Omega )} \omega (R)\gamma (R)^{-\eta }\le C_{\eta }\omega (\Omega ). \end{aligned}$$

Proof of Theorem 1.1:

Let a be any \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) atom supported on an open set \(\Omega \subseteq {\mathbb {R}}^{n_{1}+n_{2}}\) with \(\omega (\Omega )<\infty \).

Firstly, by \(L_{\omega }^{2}\) boundedness of operator S and condition 2 in the Definition 1.2, it is easy to have that

$$\begin{aligned} \int _{\widetilde{\widetilde{{\widetilde{\Omega }}}}}S(a)(x)^{p}\omega (x)\textrm{d}x\le & {} \omega (\widetilde{\widetilde{{\widetilde{\Omega }}}})^{1-p/2} \Vert S(a)(\cdot )\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\\\le & {} C\omega (\Omega )^{1-p/2} \Vert a\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\le C. \end{aligned}$$

Then this theorem will be proved if we obtain that

$$\begin{aligned} \int _{\widetilde{\widetilde{{\widetilde{\Omega }}}}^{c}}S(a)(x)^{p}\omega (x)\textrm{d}x<C, \end{aligned}$$
(2.1)

where C is a positive constant independent of a. According to the Definition 1.2, there are some rectangle atoms \(a_{R}\) such that \(a=\sum _{R\in {\mathcal {M}}(\Omega )}a_{R}.\) Then (2.1) follows from

$$\begin{aligned} \sum _{R\subset {\mathcal {M}}(\Omega )}\int _{\widetilde{\widetilde{{\widetilde{\Omega }}}}^{c}} S(a_{R})(x)^{p}\omega (x)\textrm{d}x\le C. \end{aligned}$$
(2.2)

For any \(R\in {\mathcal {M}}(\Omega )\) centered at \((x_{0},y_{0})\), we now estimate \(\int _{\widetilde{\widetilde{{\widetilde{\Omega }}}}^{c}}S(a_{R})(x)^{p}\omega (x)\textrm{d}x\). Note that \({\tilde{R}}\in {\mathcal {M}}_{1}({\widetilde{\Omega }})\), \(\tilde{{\tilde{R}}}\in {\mathcal {M}}_{2}(\widetilde{{\widetilde{\Omega }}})\) and \(10\tau \tilde{{\tilde{R}}}\subseteq \widetilde{\widetilde{{\widetilde{\Omega }}}}\). Hence one has that

$$\begin{aligned} \int _{\widetilde{\widetilde{{\widetilde{\Omega }}}}^{c}}S(a_{R})(x)^{p}\omega (x)\textrm{d}x\le & {} \int _{(10\tau {\tilde{I}})^{c}\times {\mathbb {R}}^{n_{2}}}S(a_{R})(x)^{p}\omega (x)\textrm{d}x\\{} & {} + \int _{{\mathbb {R}}^{n_{1}}\times (10\tau {\tilde{J}})^{c}}S(a_{R})(x)^{p}\omega (x)\textrm{d}x\\= & {} I+II. \end{aligned}$$

To estimate the first term, we split it into two terms as follows:

$$\begin{aligned} I= & {} \int _{(10\tau {\tilde{I}})^{c}\times (10\tau J)^{c}}S(a_{R})(x)^{p}\omega (x)\textrm{d}x+\int _{(10\tau {\tilde{I}})^{c}\times (10\tau J)}S(a_{R})(x)^{p}\omega (x)\textrm{d}x\\= & {} U(R)+V(R). \end{aligned}$$

Recall that \(S(a_{R})(x_{1},x_{2})=\Big (\sum _{j\in {\mathbb {N}},k\in {\mathbb {Z}}} \sum \limits _{I'\times J'\in \Pi _{j}^{{n_{1}}}\times \Pi _{k}^{{n_{2}}}}|\psi _{j,k}*a_{R}(x_{I'},x_{J'})|^2\chi _{I'}(x_{1})\chi _{J'}(x_{2})\Big )^{\frac{1}{2}}\). Note that, for any fixed jk, the rectangles in \(\Pi _{j}^{{n_{1}}}\times \Pi _{k}^{{n_{2}}}\) are disjoint. Hence one can rewrite \(S(a_{R})\) as follows:

$$\begin{aligned} S(a_{R})(x_{1},x_{2})= & {} \left( \sum _{j\in {\mathbb {N}},k\in {\mathbb {Z}}} |\sum \limits _{I'\times J'\in \Pi _{j}^{{n_{1}}}\times \Pi _{k}^{{n_{2}}}}\psi _{j,k}*a_{R}(x_{I'},x_{J'})\chi _{I'}(x_{1})\chi _{J'}(x_{2})|^2\right) ^{\frac{1}{2}}. \end{aligned}$$

According to side length of I, there are two cases: \(\ell (I)\ge \varrho \) and \(\ell (I)< \varrho .\)

We now discuss the first case: \(\ell (I)\ge \varrho \). For U(R), using the cancellation condition of \(a_{R}\) in the \(x_{2}\) direction and the Taylor’s Theorem, one has that

$$\begin{aligned} |\psi _{j,k}*a_{R}(x_{I'},x_{J'})|= & {} |\int \psi ^{(1)}_{j}(x_{I'}-y_{1})[\psi _{k}(x_{J'}-y_{2})\\{} & {} \quad -\sum _{|\alpha |\le N^{2}_{p}}2^{k|\alpha |}(y_{0}-y_{2})^{\alpha }(D^{\alpha }\psi ^{(2)})_{k}\\{} & {} \qquad (x_{J'}-y_{0})] a_{R}(y)\textrm{d}y|\\= & {} |\int \psi ^{(1)}_{j}(x_{I'}-y_{1})\\{} & {} \quad \sum _{|\alpha |= N^{2}_{p}+1}2^{k|\alpha |}(y_{0}-y_{2})^{\alpha }(D^{\alpha } \psi ^{(2)})_{k}\\{} & {} \quad (x_{J'}-y_{0}-\theta (y_{2}-y_{0})] a_{R}(y)\textrm{d}y| \end{aligned}$$

for some \(\theta \in (0,1)\). Set \(N=N^{2}_{p}+1\). It implies that

$$\begin{aligned}{} & {} |\psi _{j,k}*a_{R}(x_{I'},x_{J'})|\lesssim \\{} & {} \quad \int \frac{2^{jn_{1}}}{(1+2^{j}|x_{I'}-y_{1}|)^{n_{1}+L}} \frac{2^{k(n_{2}+N)}\ell (J)^{N}}{(1+2^{k}|x_{J'}-y_{0}-\theta (y_{2}-y_{0})|)^{n_{2}+L}} |a_{R}(y)|\textrm{d}y \end{aligned}$$

for any positive integer L. Note that \(|x_{J'}-x_{2}|\le 2^{-k}\) if \(x_{2}\in J'\), which yields that \(1+2^{k}|x_{J'}-y_{0}-\theta (y_{2}-y_{0})|\thickapprox 1+2^{k}|x_{2}-y_{0}-\theta (y_{2}-y_{0})| \thickapprox 1+2^{k}|x_{2}-y_{0}|\) since \(x_{2}\in (10\tau J)^{c}\). Similarly, \(1+2^{j}|x_{I'}-y_{1}|\thickapprox 1+2^{j}|x_{1}-x_{0}|\). Hence when \((x_{1},x_{2})\in (10\tau {\tilde{I}})^{c}\times (10\tau J)^{c}\),

$$\begin{aligned}{} & {} |\psi _{j,k}*a_{R}(x_{I'},x_{J'})|\nonumber \\{} & {} \quad \lesssim \frac{2^{jn_{1}}}{(1+2^{j}|x_{1}-x_{0}|)^{n_{1}+L}} \frac{2^{k(n_{2}+N)}\ell (J)^{N}}{(1+2^{k}|x_{2}-y_{0}|)^{n_{2}+L}} \int |a_{R}(y)|\textrm{d}y\\{} & {} \quad \le \frac{2^{-jL}}{|x_{1}-x_{0}|^{n_{1}+L}} \frac{2^{k(n_{2}+N)}\ell (J)^{N}}{(1+2^{k} |x_{2}-y_{0}|)^{n_{2}+L}}\Vert a_{R}\Vert _{L_{\omega }^{2} ({\mathbb {R}}^{n_{1}+n_{2}})}(\omega ^{-1}(R))^{\frac{1}{2}}\nonumber \end{aligned}$$
(2.3)

by Hölder’s inequality. Moreover, by a standard estimate, if \(L>N\), one has that

$$\begin{aligned} \sum _{k\in {\mathbb {Z}}} \frac{2^{k(n_{2}+N)}}{(1+2^{k}|x_{2}-y_{0}|)^{n_{2}+L}}\lesssim \frac{1}{|x_{2}-y_{0}|^{n_{2}+N}}. \end{aligned}$$

Therefore,

$$\begin{aligned} U(R)= & {} \int _{(10\tau {\tilde{I}})^{c}\times (10\tau J)^{c}} \Big (\sum _{j\in {\mathbb {N}},k\in {\mathbb {Z}}} \sum \limits _{I'\times J'\in \Pi _{j}^{{n_{1}}}\times \Pi _{k}^{{n_{2}}}}|\psi _{j,k}*a_{R}(x_{I'},x_{J'})|^2\chi _{I'}(x_{1})\chi _{J'}(x_{2})\Big )^{\frac{p}{2}}\omega (x)\textrm{d}x\\\lesssim & {} \int _{(\frac{\ell ({\tilde{I}})}{\ell (I)}I)^{c}\times (10\tau J)^{c}} \frac{1}{|x_{1}-x_{0}|^{(n_{1}+L)p}} \frac{\ell (J)^{Np}}{|x_{2}-y_{0}|^{(n_{2}+N)p}}\omega (x_{1},x_{2})\textrm{d}x\\{} & {} \cdot \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})} (\omega ^{-1}(R))^{\frac{p}{2}}\\\le & {} \sum ^{\infty }_{i=0}\sum ^{\infty }_{s=0}\int _{|x_{1}-x_{0}|\approx 2^{i}\ell ( {\tilde{I}})}\int _{|x_{2}-y_{0}|\approx 2^{s}\ell ( J)}\frac{1}{|x_{1}-x_{0}|^{(n_{1}+L)p}}\\{} & {} \frac{\ell (J)^{Np}}{|x_{2}-y_{0}|^{(n_{2}+N)p}}\omega (x_{1},x_{2})\textrm{d}x \cdot \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}(\omega ^{-1}(R))^{\frac{p}{2}}\\\approx & {} \sum ^{\infty }_{i=0}\sum ^{\infty }_{s=0}(2^{i}\ell ({\tilde{I}}))^{-(n_{1}+L)p}(2^{s}\ell ( J))^{-(n_{2}+N)p}\ell (J)^{Np} \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}(\omega ^{-1}(R))^{\frac{p}{2}}\\{} & {} \cdot \omega (2^{i}\frac{\ell ({\tilde{I}})}{\ell (I)}I\times 2^{s} J)\\\lesssim & {} \sum ^{\infty }_{i=0}\sum ^{\infty }_{s=0} (2^{i}\ell ({\tilde{I}}))^{-(n_{1}+L)p}(2^{s}\ell ( J))^{-(n_{2}+N)p}\ell (J)^{Np} \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}(\omega ^{-1}(R))^{\frac{p}{2}}\\{} & {} \cdot 2^{2in_{1}}2^{2sn_{2}}(\frac{\ell ({\tilde{I}})}{\ell (I)})^{2n_{1}}\omega (I\times J)\\\lesssim & {} \ell ({\tilde{I}})^{-(n_{1}+L)p}\ell (J)^{-n_{2}p} \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}(\omega ^{-1}(R))^{\frac{p}{2}} \left( \frac{\ell ({\tilde{I}})}{\ell (I)}\right) ^{2n_{1}}\omega (I\times J) \end{aligned}$$

by choosing L such that \((n_{1}+L)p-2n_{1}>0\). Hence,

$$\begin{aligned}{} & {} U(R)\lesssim (\frac{\ell ({\tilde{I}})}{\ell (I)})^{-[(n_{1}+L)p-2n_{1}]}|R|^{-p} \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}(\omega ^{-1}(R))^{\frac{p}{2}} \omega (I\times J) \end{aligned}$$

since \(\ell (I)\ge \varrho \). At last, since \(\omega ^{-1}(R)\lesssim |R|^{2}\omega (R)^{-1}\) when \(\omega \in A_{2}({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\), we have that

$$\begin{aligned}{} & {} U(R)\lesssim \gamma (R)^{-[(n_{1}+L)p-2n_{1}]} \omega (R)^{1-\frac{p}{2}}\Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}, \end{aligned}$$

where \(\gamma (R)=\frac{\ell ({\tilde{I}})}{\ell (I)}\).

We now discuss V(R). In a fashion similar to obtain (2.3), one has that

$$\begin{aligned}{} & {} |\psi _{j,k}*a_{R}(x_{I'},x_{J'})| \le \int |\psi _{j}(x_{I'}-y_{1})||\int \psi _{k}(x_{J'}-y_{2}) a_{R}(y_{1},y_{2})\textrm{d}y_{2}|\textrm{d}y_{1}\\{} & {} \quad \lesssim \int \frac{2^{jn_{1}}}{(1+2^{j}|x_{I'}-y_{1}|)^{n_{1}+L}} |\int \psi _{k}(x_{J'}-y_{2}) a_{R}(y_{1},y_{2})\textrm{d}y_{2}|\textrm{d}y_{1}\\{} & {} \quad \lesssim \frac{2^{jn_{1}}}{(1+2^{j}|x_{1}-x_{0}|)^{n_{1}+L}}\int _{\tau I}|\int \psi _{k}(x_{J'}-y_{2}) a_{R}(y_{1},y_{2})\textrm{d}y_{2}|\textrm{d}y_{1}. \end{aligned}$$

It yields that

$$\begin{aligned}{} & {} |\sum \limits _{I'\times J'\in \Pi _{j}^{{n_{1}}}\times \Pi _{k}^{{n_{2}}}}\psi _{j,k}*a(x_{I'},x_{J'})\chi _{I'}(x_{1})\chi _{J'}(x_{2})|\\{} & {} \quad \lesssim \frac{2^{jn_{1}}}{(1+2^{j}|x_{1}-x_{0}|)^{n_{1}+L}} \int _{\tau I}\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(y_{1},y_{2})\textrm{d}y_{2}|\chi _{J'}(x_{2})\textrm{d}y_{1}. \end{aligned}$$

Hence

$$\begin{aligned}{} & {} \sum _{j\in {\mathbb {N}},k\in {\mathbb {Z}}} |\sum \limits _{I'\times J'\in \Pi _{j}^{{n_{1}}}\times \Pi _{k}^{{n_{2}}}}\psi _{j,k}*f(x_{I'},x_{J'})\chi _{I'}(x_{1})\chi _{J'}(x_{2})|^2\\{} & {} \quad \lesssim \sum \limits _{j\in {\mathbb {N}},k\in {\mathbb {Z}}}\\{} & {} \quad \left( \frac{2^{jn_{1}}}{(1{+}2^{j}|x_{1}{-}x_{0}|)^{n_{1}{+}L}}\right) ^{2} \left( \int _{\tau I}\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(y_{1},y_{2})\textrm{d}y_{2}|\chi _{J'}(x_{2})\textrm{d}y_{1}\right) ^{2}. \end{aligned}$$

Then,

$$\begin{aligned} V(R)\lesssim & {} \int _{(10\tau {\tilde{I}})^{c}\times (10\tau J)}\bigg (\sum \limits _{j\in {\mathbb {N}},k\in {\mathbb {Z}}}(\frac{2^{jn_{1}} }{(1+2^{j}|x_{1}-x_{0}|)^{n_{1}+L}})^{2} \\{} & {} \times \left( \int _{\tau I}\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(y_{1},y_{2})\textrm{d}y_{2} |\chi _{J'}(x_{2})\textrm{d}y_{1})^{2}\right) ^{p/2}\omega (x_{1},x_{2})\textrm{d}x\\\lesssim & {} \sum ^{\infty }_{i=0}\int _{|x_{1}-x_{0}|\approx 2^{i}\ell ( {\tilde{I}})}\int _{10\tau J}\left( \frac{1}{|x_{1}-x_{0}|^{(n_{1}+L)}}\right) ^{p}\\{} & {} \times \left( \sum \limits _{k\in {\mathbb {Z}}} \left( \int _{\tau I}\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(y_{1},y_{2})\textrm{d}y_{2}| \chi _{J'}(x_{2})\textrm{d}y_{1}\right) ^{2}\right) ^{p/2}\omega (x_{1},x_{2})\textrm{d}x\\\le & {} \frac{1}{\ell ( {\tilde{I}})^{Lp}} \sum ^{\infty }_{i=0}2^{-Lpi}\int _{|x_{1}-x_{0}|\approx 2^{i}\ell ( {\tilde{I}})}\int _{10\tau J}\\{} & {} \times \bigg (\sum \limits _{k\in {\mathbb {Z}}} (\frac{1}{|x_{1}-x_{0}|^{n_{1}}}\int _{\tau I}\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(y_{1},y_{2})\textrm{d}y_{2}|\chi _{J'}(x_{2})\textrm{d}y_{1})^{2}\bigg )^{p/2}\\{} & {} \omega (x_{1},x_{2})\textrm{d}x\\\le & {} \frac{1}{\ell ( {\tilde{I}})^{Lp}} \sum ^{\infty }_{i=0}2^{-Lpi}\int _{|x_{1}-x_{0}|\approx 2^{i}\ell ( {\tilde{I}})}\int _{10\tau J}\\{} & {} \times \bigg (\sum \limits _{k\in {\mathbb {Z}}} \big ({\mathcal {M}}^{(1)}(\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}{-}y_{2})a_{R} (\cdot ,y_{2})\textrm{d}y_{2}|\chi _{J'}(x_{2})\big )^{2}(x_{1})\bigg )^{p/2}\omega (x_{1},x_{2})\textrm{d}x, \end{aligned}$$

where \({\mathcal {M}}^{(1)}\) is the Hardy-Littlewood maximal operator associated with the first direction \(x_{1}\). By Hölder’s inequality and \(L^{2}\) boundedness of \({\mathcal {M}}^{(1)}\), one has that

$$\begin{aligned}{} & {} \int _{|x_{1}-x_{0}|\approx 2^{i}\ell ( {\tilde{I}})}\int _{10\tau J} \bigg (\sum \limits _{k\in {\mathbb {Z}}} \big ({\mathcal {M}}^{(1)}(\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}\\{} & {} \quad (\cdot ,y_{2})\textrm{d}y_{2}|\chi _{J'}(x_{2})\big )^{2}(x_{1})\bigg )^{p/2} \cdot \omega (x_{1},x_{2})\textrm{d}x\\{} & {} \quad \le \omega \bigg (\frac{2^{i}\ell ( {\tilde{I}})}{\ell (I)}I,10\tau J \bigg )^{1-\frac{p}{2}}\\{} & {} \quad \bigg (\int \int \sum \limits _{k\in {\mathbb {Z}}} ({\mathcal {M}}^{(1)}\bigg (\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}\\{} & {} \quad (\cdot ,y_{2})\textrm{d}y_{2}|\chi _{J'}(x_{2})\bigg )^{2}(x_{1}) \omega (x_{1},x_{2})\textrm{d}x\bigg )^{p/2}\\{} & {} \quad \lesssim \omega (\frac{2^{i}\ell ( {\tilde{I}})}{\ell (I)}I,10\tau J)^{1-\frac{p}{2}}\\{} & {} \quad \bigg (\int \int \sum \limits _{k\in {\mathbb {Z}}} \bigg (\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(x_{1},y_{2})\textrm{d}y_{2} |\chi _{J'}(x_{2})\bigg )^{2}\omega (x_{1},x_{2})\textrm{d}x\bigg )^{p/2}\\{} & {} \quad \lesssim \omega \left( \frac{2^{i}\ell ( {\tilde{I}})}{\ell (I)}I,10\tau J \right) ^{1-\frac{p}{2}}\Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\\{} & {} \quad \lesssim \left( \frac{2^{i}\ell ( {\tilde{I}})}{\ell (I)}\right) ^{2n_{1}(1-\frac{p}{2})}\omega (R)^{1-\frac{p}{2}} \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}. \end{aligned}$$

It gives that

$$\begin{aligned} V(R)\lesssim & {} \frac{1}{\ell ( {\tilde{I}})^{Lp}} \sum ^{\infty }_{i=0}2^{-Lpi}(\frac{2^{i}\ell \bigg ( {\tilde{I}})}{\ell (I)}\bigg )^{2n_{1}(1-\frac{p}{2})}\omega (R)^{1-\frac{p}{2}} \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\\\lesssim & {} \gamma (R)^{-(n_{1}+L)p+2n_{1}} \omega (R)^{1-\frac{p}{2}}\Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}, \end{aligned}$$

since \(\ell (I)\ge \varrho \).

For the second case \(\ell (I)< \varrho ,\) in a fashion similar to case one, using the cancellation condition of \(a_{R}\) in two directions and Taylor’s Theorem, one has that

$$\begin{aligned}{} & {} |\psi _{j,k}*a_{R}(x_{I'},x_{J'})|\\{} & {} \quad \lesssim \frac{2^{j(n_{1}+N')}\ell (I)^{N'}}{(1+2^{j}|x_{1}-x_{0}|)^{n_{1}+L}} \frac{2^{k(n_{2}+N)}\ell (J)^{N}}{(1+2^{k}|x_{2}-y_{0}|)^{n_{2}+L}} \Vert a_{R}\Vert _{L_{\omega }^{2} ({\mathbb {R}}^{n_{1}+n_{2}})}(\omega ^{-1}(R))^{\frac{1}{2}}, \end{aligned}$$

where \(N'=N^{1}_{p}+1\). It follows that

$$\begin{aligned}{} & {} U(R)\lesssim \int _{(\frac{\ell ({\tilde{I}})}{\ell (I)}I)^{c}\times (10\tau J)^{c}} \frac{\ell (I)^{N'p}}{|x_{1}-x_{0}|^{(n_{1}+N')p}} \frac{\ell (J)^{Np}}{|x_{2}-y_{0}|^{(n_{2}+N)p}}\omega (x_{1},x_{2})\textrm{d}x \\{} & {} \qquad \cdot \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}(\omega ^{-1}(R))^{\frac{p}{2}}\\{} & {} \quad \le \sum ^{\infty }_{i=0}\sum ^{\infty }_{s=0}\int _{|x_{1}-x_{0}|\approx 2^{i}\ell ( {\tilde{I}})}\int _{|x_{2}-y_{0}|\approx 2^{s}\ell ( J)}\frac{\ell (I)^{N'p}}{|x_{1}-x_{0}|^{(n_{1}+N')p}} \frac{\ell (J)^{Np}}{|x_{2}-y_{0}|^{(n_{2}+N)p}}\omega (x_{1},x_{2})\textrm{d}x\\{} & {} \qquad \cdot \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})} (\omega ^{-1}(R))^{\frac{p}{2}}\\ \\{} & {} \quad \lesssim \sum ^{\infty }_{i=0}\sum ^{\infty }_{s=0} (2^{i}\ell ({\tilde{I}}))^{-(n_{1}+N')p}\ell (I)^{N'p}(2^{s}\ell ( J))^{-(n_{2}+N)p}\ell (J)^{Np} \Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}(\omega ^{-1}(R))^{\frac{p}{2}}\\{} & {} \qquad \cdot 2^{2in_{1}}2^{2sn_{2}}(\frac{\ell ({\tilde{I}})}{\ell (I)})^{2n_{1}}\omega (I\times J)\\{} & {} \quad \lesssim \gamma (R)^{-[(n_{1}+N')p-2n_{1}]} \omega (R)^{1-\frac{p}{2}}\Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}, \end{aligned}$$

since \((n_{1}+N')p-2n_{1}>0\).

For V(R), let \(x_{1}\in (10\tau {\tilde{I}})^{c}\). Similarly, for any positive integer L,

$$\begin{aligned} |\psi _{j,k}*a_{R}(x_{I'},x_{J'})| \lesssim \frac{2^{j(n_{1}+N)}\ell (I)^{N}}{(1+2^{j}|x_{1}-x_{0}|)^{n_{1}+L}} \int _{\tau I}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(y_{1},y_{2})\textrm{d}y_{2}|\textrm{d}y_{1}. \end{aligned}$$

It yields that

$$\begin{aligned}{} & {} |\sum \limits _{I'\times J'\in \Pi _{j}^{{n_{1}}}\times \Pi _{k}^{{n_{2}}}}\psi _{j,k}*a(x_{I'},x_{J'})\chi _{I'}(x_{1})\chi _{J'}(x_{2})|\\{} & {} \quad \lesssim \frac{2^{j(n_{1}+N)}\ell (I)^{N}}{(1+2^{j}|x_{1}-x_{0}|)^{n_{1}+L}} \int _{\tau I}\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(y_{1},y_{2})\textrm{d}y_{2}|\chi _{J'}(x_{2})\textrm{d}y_{1}. \end{aligned}$$

Then

$$\begin{aligned}{} & {} \sum _{j\in {\mathbb {N}},k\in {\mathbb {Z}}} |\sum \limits _{I'\times J'\in \Pi _{j}^{{n_{1}}}\times \Pi _{k}^{{n_{2}}}}\psi _{j,k}*f(x_{I'},x_{J'})\chi _{I'}(x_{1})\chi _{J'}(x_{2})|^2\\{} & {} \quad \lesssim \sum \limits _{j\in {\mathbb {N}},k\in {\mathbb {Z}}}(\frac{2^{j(n_{1}+N)}\ell (I)^{N}}{(1+2^{j}|x_{1}-x_{0}|)^{n_{1}+L}})^{2} (\int _{\tau I}\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(y_{1},y_{2})\textrm{d}y_{2}|\chi _{J'}(x_{2})\textrm{d}y_{1})^{2}. \end{aligned}$$

Thus

$$\begin{aligned}{} & {} V(R)\\{} & {} \quad \lesssim \int _{(10\tau {\tilde{I}})^{c}\times (10\tau J)}\bigg (\sum \limits _{j\in {\mathbb {N}},k\in {\mathbb {Z}}}\bigg (\frac{2^{j(n_{1}+N)} \ell (I)^{N}}{(1+2^{j}|x_{1}-x_{0}|)^{n_{1}+L}}\bigg )^{2} \\{} & {} \qquad \bigg (\int _{\tau I}\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(y_{1},y_{2})\textrm{d}y_{2} |\chi _{J'}(x_{2})\textrm{d}y_{1}\bigg )^{2}\bigg )^{p/2}\omega (x_{1},x_{2})\textrm{d}x\\{} & {} \quad \lesssim \sum ^{\infty }_{i=0}\int _{|x_{1}-x_{0}|\approx 2^{i}\ell ( {\tilde{I}})}\int _{10\tau J}\bigg (\frac{\ell (I)^{N}}{|x_{1}-x_{0}|^{(n_{1}+N)}}\bigg )^{p}\\{} & {} \qquad \bigg (\sum \limits _{k\in {\mathbb {Z}}} \bigg (\int _{\tau I}\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(y_{1},y_{2})\textrm{d}y_{2}| \chi _{J'}(x_{2})\textrm{d}y_{1}\bigg )^{2}\bigg )^{p/2}\omega (x_{1},x_{2})\textrm{d}x\\ \\{} & {} \quad \le \bigg (\frac{\ell (I)^{N}}{\ell ( {\tilde{I}})^{N}}\bigg )^{p} \sum ^{\infty }_{i=0}2^{-Npi}\int _{|x_{1}-x_{0}|\approx 2^{i}\ell ( {\tilde{I}})}\int _{10\tau J}\\{} & {} \quad \bigg (\sum \limits _{k\in {\mathbb {Z}}} ({\mathcal {M}}^{(1)}\bigg (\sum \limits _{ J'\in \Pi _{k}^{{n_{2}}}}|\int \psi _{k}(x_{J'}-y_{2})a_{R}(\cdot ,y_{2})\textrm{d}y_{2}| \chi _{J'}(x_{2})\bigg )^{2}(x_{1})\bigg )^{p/2}\omega (x_{1},x_{2})\textrm{d}x\\{} & {} \quad \lesssim \bigg (\frac{\ell (I)^{N}}{\ell ( {\tilde{I}})^{N}}\bigg )^{p} \sum ^{\infty }_{i=0}2^{-Npi}\omega \bigg (\frac{2^{i}\ell ( {\tilde{I}})}{\ell (I)}I,10\tau J \bigg )^{1-\frac{p}{2}}\Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\\{} & {} \quad \lesssim \gamma (R)^{-(n_{1}+N)p+2n_{1}} \omega (R)^{1-\frac{p}{2}}\Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}. \end{aligned}$$

Hence, we obtain that

$$\begin{aligned} I\lesssim (\frac{\ell ({\tilde{I}})}{\ell (I)})^{-(n_{1}+N')p+2n_{1}} \omega (R)^{1-\frac{p}{2}}\Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}. \end{aligned}$$

Similarly,

$$\begin{aligned} II\lesssim & {} \gamma '(R)^{-(n_{2}+N)p+2n_{2}} \omega (R)^{1-\frac{p}{2}}\Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}. \end{aligned}$$

By weighted version of Journé’s Lemma 2.1, one has that

$$\begin{aligned}{} & {} \sum _{R\in {\mathcal {M}}(\Omega )}\int _{\widetilde{\widetilde{{\widetilde{\Omega }}}}^{c}}|S(a_{R})(x)|^{p}\omega (x)\textrm{d}x\\{} & {} \lesssim \sum _{R\in {\mathcal {M}}(\Omega )}\gamma (R)^{-(n_{1}p+N' p-2n_{1})}\omega (R)^{1-\frac{p}{2}}\Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\nonumber \\{} & {} \qquad +\sum _{R\in {\mathcal {M}}(\Omega )}\gamma '(R)^{-(n_{2}p+N p-2n_{2})}\omega (R)^{1-\frac{p}{2}}\Vert a_{R}\Vert ^{p}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})} \\{} & {} \quad \le \big (\sum _{R\in {\mathcal {M}}_{1}(\Omega )}\gamma (R)^{-(n_{1}p+N' p-2n_{1})p'}\omega (R)\big )^{1/p'}\left( \sum _{R\in {\mathcal {M}}(\Omega )} \Vert a_{R}\Vert ^{2}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\right) ^{p/2}\\{} & {} \quad +\big (\sum _{R\in {\mathcal {M}}_{2}(\Omega )}\gamma '(R)^{-(n_{2}p+N p-2n_{2})}\omega (R)\big )^{1/p'}\left( \sum _{R\in {\mathcal {M}}(\Omega )}\Vert a_{R}\Vert ^{2}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\right) ^{p/2}\\{} & {} \quad \lesssim \omega (\Omega )^{1-p/2}\left( \sum _{R\in {\mathcal {M}}(\Omega )}\Vert a_{R}\Vert ^{2}_{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\right) ^{p/2} \le C, \end{aligned}$$

where \(p'=\frac{2}{2-p}\) satisfying \( \frac{p}{2}+\frac{1}{p'}=1\). Thus we obtain (2.2) and then finish the proof. \(\square \)

3 Atomic Decomposition

To discuss the atomic decomposition of \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\), we need a new discrete Calderón-type identity composed by some test functions with compact supports which was obtained in [14]. To do this, given a positive integer M large enough, let \(\phi _{0}^{(1)},\phi ^{(1)}\in {{\mathcal {S}}}({\mathbb {R}}^{n_{1}})\) satisfy that

$$\begin{aligned} \hbox {supp}\phi _{0}^{(1)} \subseteq \{x\in \mathbb R^{n_{1}}: |x|\le 1\};\ \int \phi _{0}^{(1)}=1, \end{aligned}$$
(3.1)

and

$$\begin{aligned} \hbox {supp}\phi ^{(1)} \subseteq \{x\in \mathbb R^{n_{1}}: |x|\le 1\};\ \int \phi ^{(1)}(x)x^{\alpha }\textrm{d}x=0,\ \hbox {for\ all}\ |\alpha | \le M, \end{aligned}$$
(3.2)

and

$$\begin{aligned} |\widehat{\phi _{0}^{(1)}}(\xi )|^{2}+\sum \limits ^{\infty }_{j =1}|\widehat{\phi ^{(1)}}(2^{-j}\xi )|^2=1, \ \hbox { for all } \xi \in {\mathbb {R}}^{n_{1}}. \end{aligned}$$
(3.3)

Let \(\phi ^{(2)}\in {{\mathcal {S}}}({\mathbb {R}}^{n_{2}})\) with

$$\begin{aligned} \hbox {supp} \phi ^{(2)}\subseteq \{x\in \mathbb R^{n_{2}}: |x|\le 1\};\ \int \phi ^{(2)}(x)x^{\alpha }\textrm{d}x=0,\ \hbox {for\ all}\ |\alpha | \le M, \end{aligned}$$
(3.4)

and

$$\begin{aligned} \sum \limits _{j \in \mathbb Z}|\widehat{\phi ^{(2)}}(2^{-j}\xi )|^2=1, \ \hbox { for all } \xi \in {\mathbb {R}}^{n_{2}}\setminus \{0\}. \end{aligned}$$
(3.5)

Theorem 3.1

For \(0<p\le 1\), let \(\phi _{0}^{(1)}\), \(\phi ^{(1)}\in {{\mathcal {S}}}({\mathbb {R}}^{n_{1}})\) and \(\phi ^{(2)}\in {{\mathcal {S}}}({\mathbb {R}}^{n_{2}})\) satisfy conditions (3.1)–(3.3) and (3.4)–(3.5), respectively. Suppose that \(\omega \in A_2({\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\). Then for any \(f \in L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})\cap H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\), there exists \({\tilde{f}}\in L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})\cap H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}}) \) such that

$$\begin{aligned} \qquad f(x)= & {} \sum \limits _{j\in {\mathbb {N}},k\in {\mathbb {Z}}} \sum \limits _{I\times J\in \Pi _{j+N}^{{n_{1}}}\times \Pi _{k+N}^{{n_{2}}}}|I||J|(\phi _{j,k}*{\tilde{f}})(x_{I},x_{J})\times \phi _{j,k}(x_{1}-x_{I},x_{2}-x_{J}),\nonumber \\ \end{aligned}$$
(3.6)

where the series converges in \(L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})\) and \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\), and N is some large positive integer independent of f. Moreover,

$$\begin{aligned} \Vert {\tilde{f}}\Vert _{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}\approx \Vert f\Vert _{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})} \end{aligned}$$

and

$$\begin{aligned} \Vert {\tilde{f}}\Vert _{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}\approx \Vert f\Vert _{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}. \end{aligned}$$

Proof of Theorem 1.2:

For \(f\in L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})\cap H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\), let \({\tilde{S}}(f)(x)= \big (\sum \limits _{j\in {\mathbb {N}},k\in {\mathbb {Z}}} \sum \limits _{I\times J\in \Pi _{j+N}^{{n_{1}}}\times \Pi _{k+N}^{{n_{2}}}}|(\phi _{j,k}*{\tilde{f}})(x_{I},x_{J}|^{2}\chi _{I}\chi _{J}\big )^{1/2}\), where \(\phi _{j,k}\) satisfies the conditions of Theorem 3.1. Firstly, rewrite (3.6)as follows:

$$\begin{aligned} \qquad f(x)= & {} \sum \limits _{j=0,k\in {\mathbb {Z}}} \sum \limits _{I\times J\in \Pi _{j+N}^{{n_{1}}}\times \Pi _{k+N}^{{n_{2}}}}|I||J|(\phi _{j,k}*{\tilde{f}})(x_{I},x_{J})\times \phi _{j,k}(x_{1}-x_{I},x_{2}-x_{J})\\{} & {} +\sum \limits _{j>1,k\in {\mathbb {Z}}} \sum \limits _{I\times J\in \Pi _{j+N}^{{n_{1}}}\times \Pi _{k+N}^{{n_{2}}}}|I||J|(\phi _{j,k}*{\tilde{f}})(x_{I},x_{J})\times \phi _{j,k}(x_{1}-x_{I},x_{2}-x_{J})\\= & {} f_{1}(x)+f_{2}(x). \end{aligned}$$

We now decompose \(f_{1}\) into atoms. For any \(i\in {\mathbb {Z}}\), set that

$$\begin{aligned}{} & {} \Omega _i =\{x \in {\mathbb {R}}^{n_{1}+n_{2}}: {\tilde{S}}(f)(x)> 2^i\}. \\{} & {} \quad {\mathcal {B}}_i=\{R: R\in \Pi _{j+N}^{{n_{1}}}\times \Pi _{k+N}^{{n_{2}}}, j=0,k\in {\mathbb {Z}},\\{} & {} \qquad \ \omega (R \cap \Omega _i) > \frac{1}{2} \omega (R), \ \ \omega (R \cap \Omega _{i+1})\le \frac{1}{2}\omega (R)\},\end{aligned}$$

and

$$\begin{aligned} {\tilde{\Omega }}_i=\{x \in {\mathbb {R}}^{n_{1}+n_{2}}: M^{\omega }_{s}(\chi _{\Omega _i}) > \frac{1}{10^{N(n_{1}+n_{2})}}\}. \end{aligned}$$

Obviously, \(\cup _{R\in {\mathcal {B}}_i}R\subseteq {\tilde{\Omega }}_i\). For \(R\in \Pi _{j+N}^{{n_{1}}}\times \Pi _{k+N}^{{n_{2}}}\), denote \(\phi _{R}=\phi _{j,k}\). Then one can rewrite \(f_{1}\) as following

$$\begin{aligned} f_{1}(x)= & {} \sum \limits _{i=-\infty }^{+\infty } \sum _{R\in {\mathcal {B}}_i}|R|(\phi _{R}*{\tilde{f}})(x_{I},x_{J})\times \phi _{R}(x_{1}-x_{I},x_{2}-x_{J}) =\sum \limits _{i}\lambda _{i}a_{i}(x). \end{aligned}$$

Set

$$\begin{aligned} {\tilde{\Omega }}_i^{'}=\left\{ x \in {\mathbb {R}}^{n_{1}+n_{2}}: M_{s}(\chi _{{\tilde{\Omega }}_i}) > \frac{1}{10^{N(n_{1}+n_{2})}}\right\} . \end{aligned}$$

Note that if \((x_{1},x_{2})\in {\text {supp}}\phi _{R}(\cdot -x_{I},\cdot -x_{J})\), one has that \(|x_{1}-x_{I}|\le 2^{-j},|x_{2}-x_{J}|\le 2^{-k}\), which implies that \({\text {supp}}\phi _{R}(\cdot -x_{I},\cdot -x_{J})\subseteq 10^{N}R\subseteq {\tilde{\Omega }}_i^{'}.\) By the weighted boundedness of \(M_{s}\), one has that \(\omega ({\tilde{\Omega }}'_i)\thickapprox \omega ({\tilde{\Omega }}_i)\). Denote that

$$\begin{aligned} \lambda _{i}=C\omega ({\tilde{\Omega }}'_i)^{\frac{1}{p}-\frac{1}{2}} \Vert \Big (\sum _{R\in {\mathcal {B}}_i}|\phi _{R}*{\tilde{f}}(x_{I},x_{J})\chi _{R}(x)|^{2}\Big )^{\frac{1}{2}}\Vert _{L_{\omega }^2({\mathbb {R}}^{n_{1}+n_{2}})}, \end{aligned}$$

and

$$\begin{aligned} a_{i}(x)=\frac{1}{\lambda _{i}}\sum _{R\in {\mathcal {B}}_i}|R|(\phi _{R}*{\tilde{f}})(x_{I},x_{J})\phi _{R}(x_{1}-x_{I},x_{2}-x_{J}). \end{aligned}$$

Then one has that

$$\begin{aligned} f_{1}(x) =\sum \limits _{i}\lambda _{i}a_{i}(x). \end{aligned}$$

We now check that every \(a_{i}\) is an atom \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\). Firstly, \({\text {supp}}a_{i}\subseteq {\tilde{\Omega }}'_i\). Moreover, by the duality argument,

$$\begin{aligned}{} & {} \Vert a_{i}\Vert _{L_{\omega }^2({\mathbb {R}}^{n_{1}+n_{2}})}=\frac{1}{\lambda _{i}}\sup _{\Vert g\Vert _{L_{\omega ^{-1}}^2({\mathbb {R}}^{n_{1}+n_{2}})}\le 1}|\int (\sum _{R\in {\mathcal {B}}_i}|R|\left( \phi _{R}*{\tilde{f}}\right) \\{} & {} \quad (x_{I},x_{J})\phi _{R}(x_{1}-x_{I},x_{2}-x_{J}))g(x)\textrm{d}x|\\{} & {} \quad =\frac{1}{\lambda _{i}}\sup _{\Vert g\Vert _{L_{\omega ^{-1}}^2({\mathbb {R}}^{n_{1}+n_{2}})}\le 1}|\int \sum _{R\in {\mathcal {B}}_i}(\phi _{R}*{\tilde{f}})(x_{I},x_{J})\times {\tilde{\phi }}_{R}*g(x_{I},x_{J})\chi _{R}(x)\textrm{d}x|\\{} & {} \quad \le \frac{1}{\lambda _{i}}\sup _{\Vert g\Vert _{L_{\omega ^{-1}}^2({\mathbb {R}}^{n_{1}+n_{2}})}\le 1}\int \big (\sum _{R\in {\mathcal {B}}_i}|(\phi _{R}*{\tilde{f}})(x_{I},x_{J})|^{2}\chi _{R}(x)\omega (x)\big )^{1/2}\\{} & {} \qquad \big (\sum _{R\in {\mathcal {B}}_i}|({\tilde{\phi }}_{R}*g)(x_{I},x_{J})|^{2}\chi _{R}(x)\omega ^{-1}(x)\big )^{1/2}\textrm{d}x, \end{aligned}$$

which yields that \(\Vert a_{i}\Vert _{L_{\omega }^2({\mathbb {R}}^{n_{1}+n_{2}})}\le \omega ({\tilde{\Omega }}'_i)^{\frac{1}{2}-\frac{1}{p}}\).

Furthermore, for \(Q\in {\mathcal {M}}(\Omega _i)\), if we set that

$$\begin{aligned} a_{i,Q}(x)=\frac{1}{\lambda _{i}}\sum _{R\in {\mathcal {B}}_i,R\subseteq Q}|Q|(\phi _{R}*{\tilde{f}})(x_{I},x_{J})\phi _{R}(x_{1}-x_{I},x_{2}-x_{J}), \end{aligned}$$

then \(a_{i}=\sum _{Q\in {\mathcal {M}}(\Omega _i)}a_{i,Q}\), and \({\text {supp}}a_{i,Q}\subseteq 2^{N+4}Q\). Moreover, the side length of Q in the first direction is \(2^{-N}\) denoted by \(\varrho \) since \(Q\in {\mathcal {B}}_i\), and there is no any vanishing moment in this direction. While \(a_{i,Q}\) satisfies vanishing moment in \(x_{2}\) direction. On the other hand, by the duality argument again,

$$\begin{aligned} \Vert a_{i,Q}\Vert ^{2}_{L_{\omega }^2({\mathbb {R}}^{n_{1}+n_{2}})} \le \frac{1}{\lambda _{i}}\int \sum _{R\in {\mathcal {B}}_i,R\subseteq Q}|(\phi _{R}*{\tilde{f}})(x_{I},x_{J})|^{2}\chi _{R}(x)\omega (x)\textrm{d}x. \end{aligned}$$

It gives that

$$\begin{aligned}\sum _{Q\in {\mathcal {M}}(\Omega _i)}\Vert a_{i,Q}\Vert _{L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})}^{2}\lesssim & {} \frac{1}{\lambda ^{2}_{i}}\int \sum _{R\in {\mathcal {B}}_i}|(\phi _{R}*{\tilde{f}})(x_{I},x_{J})|^{2}\chi _{R}(x)\omega (x)\textrm{d}x\\\lesssim & {} \omega (\Omega '_i)^{1-\frac{2}{p}}. \end{aligned}$$

For \(\sum _{i} \lambda ^{p}_{i}\), using \(\omega (R\cap {\tilde{\Omega }}_{i}\backslash \Omega _{i+1})>\frac{1}{2}\omega (R)\) when \(R\in B_{i}\), one has that

$$\begin{aligned}{} & {} \Vert \Big (\sum _{R\in {\mathcal {B}}_i}|\phi _{R}*{\tilde{f}}(x_{I},x_{J})\chi _{R}(x)|^{2}\Big )^{\frac{1}{2}}\Vert ^{2} _{L_{\omega }^2({\mathbb {R}}^{n_{1}+n_{2}})}\\= & {} \sum _{R\in {\mathcal {B}}_i}\omega (R)|(\phi _{R}*{\tilde{f}})(x_{I},x_{J})|^{2} \\\le & {} 2\sum _{R\in {\mathcal {B}}_i}\omega (R\cap {\tilde{\Omega }}_{i}\backslash \Omega _{i+1})|(\phi _{R}*{\tilde{f}})(x_{I},x_{J})|^{2}\\= & {} 2\int _{{\tilde{\Omega }}_{i}\backslash \Omega _{i+1}}\sum _{R\in {\mathcal {B}}_i}|(\phi _{R}*{\tilde{f}})(x_{I},x_{J})|^{2}\chi _{R}(x)\omega (x)\textrm{d}x \\\le & {} 2^{2(i+1)+1}\omega ({\tilde{\Omega }}_{i}). \end{aligned}$$

Hence

$$\begin{aligned} \sum _{i} \lambda _{i}^{p} \le C\sum _{i}2^{pi}\omega (\Omega _i)\le C \Vert {\tilde{S}}(f)\Vert ^{p}_{L_{\omega }^{p}({\mathbb {R}}^{n_{1}+n_{2}})} \le C\Vert f\Vert ^{p}_{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})} \end{aligned}$$
(3.7)

with a constant C independent of f.

Similarly, one can obtain the atomic decompositions of \(f_{2}\). Different from the above, the rectangle atoms decomposed from \(f_{2}\) have desired vanishing moment both in two directions. The results that \(\sum \limits _{i}\lambda _{i}a_{i}(x)\rightarrow f\) in \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) and in \(L_{\omega }^2({\mathbb {R}}^{n_{1}+n_{2}})\) are followed from (3.7) and duality argument, respectively.

For \(f\in H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\), by the density, there are \(\{f_{i}\}_{i\ge 0}\subseteq L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})\cap H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\) such that \(\Vert f_{i}\Vert _{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}\le 2^{-i+1}\Vert f\Vert _{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}\), and \(f(x)=\sum _{i\ge 0}f_{i}(x)\) in \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\). Since \(f_{i}\in L^{2}({\mathbb {R}}^{n_{1}+n_{2}})\cap H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\), we can decompose \(f_{i}\) into atoms to obtain that

$$\begin{aligned}{} & {} f_{i}(x)=\sum _{k}\lambda ^{(i)}_{k}a^{(i)}_{k}(x),\ \hbox {in}\ H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}}),\ \ \hbox {and} \\{} & {} \quad \sum _{k}|\lambda ^{(i)}_{k}|^{p}\le C\Vert f_{i}\Vert ^{p}_{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}, \end{aligned}$$

where C is a absolute constant, which yields that

$$\begin{aligned} f(x)=\sum _{i\ge 0}\sum _{k}\lambda ^{(i)}_{k}a^{(i)}_{k}(x). \end{aligned}$$

Moreover,

$$\begin{aligned}\sum \limits _{i\ge 0}\sum \limits _{k}|\lambda ^{(i)}_{k}|^{p}\le & {} \sum \limits _{i\ge 0}C\Vert f_{i}\Vert ^{p}_{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}\\\le & {} C\sum \limits _{i\ge 0}2^{-i+1}\Vert f\Vert ^{p}_{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}\lesssim \Vert f\Vert ^{p}_{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}.\end{aligned}$$

The converse is obvious by Theorem .

This completes the proof. \(\square \)

Proof of Theorem 1.3:

If T is bounded on \(H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\), then (1.9) is obtained by Theorem  directly. For the converse, let \(f\in L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})\cap H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})\), then by Theorem 1.2, there exists a sequence atoms \(\{a_{k}\}\) such that \(f(x)=\sum _{k\in {\mathbb {Z}}}\lambda _{k}a_{k}(x)\) in \(L_{\omega }^{2}({\mathbb {R}}^{n_{1}+n_{2}})\), where the real numbers sequence \(\{\lambda _{k}\}\) satisfies \(\sum _{k\in {\mathbb {Z}}}|\lambda _{k}|^{p}\lesssim \Vert f\Vert ^{p}_{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}\). Since T is bounded on \(L_{\omega }^2({\mathbb {R}}^{n_{1}+n_{2}})\), one has \(T(f)(x)=\sum \lambda _{k}T(a_{k})(x)\) in \(L_{\omega }^2({\mathbb {R}}^{n_{1}+n_{2}})\), which implies that this series (subsequence) converges almost everywhere. Hence,

$$\begin{aligned} \Vert T(f)\Vert ^{p}_{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}\le \sum |\lambda _{k}|^{p}\Vert T(a_{k})\Vert ^{p}_{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}\lesssim \Vert f\Vert ^{p}_{H^{p}_{mix}(\omega ,{\mathbb {R}}^{n_{1}}\times {\mathbb {R}}^{n_{2}})}. \end{aligned}$$

by (1.9).

This completes the proof. \(\square \)