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Abstract
It is well-known that atomic decomposition is an important tool to study the bound-
edness of some singular integral operators on Hardy spaces. Moreover, to study the
boundedness of an operator in the Journé class, Fefferman R. builded a criterion
by considering its action on rectangle atoms only. In this paper, we mainly estab-
lish atomic decomposition of multi-parameter mixed Hardy space which has been
developed recently.

Keywords Mixed Hardy space · Weighted · Atomic decomposition

Mathematics Subject Classification 42B35 · 42B30 · 42B25 · 42B20

1 Introduction

Multi-parameter harmonic analysis containing multi-parameter function spaces and
boundedness of operators have been extensively studied over the past decades. We
refer readers to the work in [1, 2, 7–10, 12, 13, 15, 21–23, 25, 27, 29–32, 34–37,
39–47, 49–52].

The product Hardy space was first introduced in [25, 38]. Immediately after, Chang
and Fefferman R. developed this theory in [4–6]. At the same time, Fefferman and
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Stein studied product convolution singular integral operators which satisfy analogous
conditions of double Hilbert transform [18]. In [33], Journé generalized this result to
product non-convolution singular integral operators and proved the L∞ → BMO
boundedness for such operators, which opened the door to prove the product H p

boundedness of operators in the Journé’s class. Besides that, authors in [11, 37,
48] studied weighted multi-parameter Hardy spaces. For more results about multi-
parameter Hardy spaces, we refer readers to [1–3, 11, 12, 20, 21, 25, 26, 28–31,
35–37, 46, 48].

Recently, the theory of multi-parameter mixed Hardy space has been developed in
[14]. To be more precise, let ψ(1)

0 , ψ(1) ∈ S(Rn1) with

supp
̂
ψ

(1)
0 ⊆ {ξ ∈ R

n1 : |ξ | ≤ 2}; ̂
ψ

(1)
0 (ξ) = 1, if |ξ | ≤ 1, (1.1)

and

supp̂ψ(1) ⊆ {ξ ∈ R
n1 : 1

2
≤ |ξ | ≤ 2}, (1.2)

and

|̂ψ(1)
0 (ξ)|2 +

∞∑

j=1

|̂ψ(1)(2− jξ)|2 = 1, for all ξ ∈ R
n1 . (1.3)

Let ψ(2) ∈ S(Rn2) with

supp̂ψ(2) ⊆ {ξ ∈ R
n2 : 1

2
≤ |ξ | ≤ 2}, (1.4)

and

∑

j∈Z
|̂ψ(2)(2− jξ)|2 = 1, for all ξ ∈ R

n2 \ {0}. (1.5)

Then, for j, k ∈ Z, j ≥ 1, set that ψ
(1)
j (x) = 2 jn1ψ(1)(2 j x), ψ

(2)
k (x) =

2kn2ψ(2)(2k x) and that ψ j,k(x, y) = ψ
(1)
j (x)ψ(2)

k (y), ψ0,k(x, y) = ψ
(1)
0 (x)ψ(2)

k (y).
Denote that S0(R

n1+n2) = { f ∈ S(Rn1+n2) : ∫
R
n2 f (x1, x2)xα

2 dx2 = 0, ∀ |α| ≥
0, ∀ x1 ∈ R

n1}. For i = 1, 2 and any j ∈ Z, denote that�ni
j = {I : I are dyadic cubes

in R
ni with the side length l(I ) = 2− j , and the left lower corners of I are xI = 2− j�,

� ∈ Z
ni }, � j,k = �

n1
j × �

n2
k , and that � = ∪ j,k∈Z� j,k .

The following discrete multi-parameter Calderón’s reproducing formula was
obtained in [16]:
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Theorem A Suppose that ψ
(1)
0 ,ψ(1) ∈ S(Rn1) and ψ(2) ∈ S(Rn2) satisfy

conditions in (1.1)–(1.3) and (1.4)–(1.5), respectively. Then

f (x1, x2) =
∑

j∈N,k∈Z

∑

I×J∈� j,k

|I ||J |(ψ j ,k ∗ f )(xI , xJ ) × ψ j,k (x1 − xI , x2 − xJ ), (1.6)

where the series converges in L2(Rn1+n2),S0(R
n1+n2) andS ′

0(R
n1+n2), the dual space

of S0(R
n1+n2).

We recall some definitions of product weights in two parameter setting [24]. For
1 < p < ∞, a nonnegative locally integrable function ω ∈ Ap(R

n1 × R
n2) if there

exists a constant C > 0 such that

( 1

|R|
∫

R
ω(x)dx

)( 1

|R|
∫

R
ω(x)−1/(p−1)dx

)p−1
< C

for any dyadic rectangle R, that is R ∈ �. We say that ω ∈ A1(R
n1 × R

n2) if there
exists a constant C > 0 such that

Msω(x) ≤ Cω(x), a.e. x ∈ R
n1+n2 ,

where Ms is the strong maximal function defined by

Ms f (x) = sup
x∈R∈�

1

|R|
∫

R
| f (y)|dy.

Finally, define that ω ∈ A∞(Rn1 × R
n2) by

A∞(Rn1 × R
n2) =

⋃

1≤p<∞
Ap(R

n1 × R
n2).

In this paper, the classical Muckenhoupt’s weights on R
n is denoted by Ap(R

n).
Given a weight ω on R

n , for 0 < r < ∞, Lr
ω(Rn) is defined by

Lr
ω(Rn) = { f :

∫

Rn
| f (x)|rω(x)dx < ∞}.

Based on the discrete Calderón’s identity (1.6), weighted mixed Hardy spaces are
introduced in [14].

Definition 1.1 Let 0 < p < ∞ and ω ∈ A∞(Rn1 × R
n2). Suppose that ψ

(1)
0 ,ψ(1) ∈

S(Rn1) and ψ(2) ∈ S(Rn2) satisfy conditions in (1.1)–(1.3) and (1.4)–(1.5), respec-
tively. The weighted multi-parameter mixed Hardy space H p

mix (ω, R
n1 × R

n2)

is defined to be the set of f ∈ S ′
0(R

n1+n2) such that ‖ f ‖H p
mix (ω,Rn1×R

n2 ) =
‖S( f )(x)‖L p

ω(Rn1+n2 ) < ∞, where
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S( f )(x) =
( ∑

j∈N,k∈Z

∑

I×J∈�
n1
j ×�

n2
k

|ψ j,k ∗ f (xI , xJ )|2χI (x1)χJ (x2)
) 1

2
. (1.7)

It is well-known that atomic decomposition plays an important role in studying
the boundedness of singular operators, and it is much more complicated in multi-
parameter setting. In the present paper, we consider the atomic decomposition of
H p
mix (ω, R

n1 × R
n2). The atoms of H p

mix (ω, R
n1 × R

n2) are defined as follows.

Definition 1.2 Let 0 < p ≤ 1. A function a(x1, x2) is said to be an atom for
H p
mix (ω, R

n1 × R
n2) if it satisfies the following properties:

(1) a(x1, x2) is supported in an open set 	 ⊆ R
n1+n2 with finite measure.

(2) ‖a‖L2
ω(Rn1+n2 ) ≤ ω(	)

1
2− 1

p .

(3) a can be further decomposed as

a =
∑

R⊂M(	)

aR

with

∑

R⊂M(	)

‖aR‖2L2
ω(Rn1+n2 )

� ω(	)
1− 2

p , (1.8)

where aR are named as rectangle-atoms associated with the dyadic rectangles R =
I × J , and supported in τ R for some positive integer τ > 1 independent of a and aR ,
and M(	) is the set of all maximal dyadic rectangles in 	. Furthermore, aR has the
following vanishing moment conditions:

(i) in the x2 direction,

for a.e. x1 ∈ τ I ,
∫

aR(x1, x2)x
α
2 dx2 = 0, 0 ≤ |α| ≤ N 2

p =
[
2n2
p

− n2

]
.

(ii) in the x1 direction, there exists a positive constant �, when �(I ) < �,

for a.e. x2 ∈ τ J ,

∫
aR(x1, x2)x

β
1 dx1 = 0, 0 ≤ |β| ≤ N 1

p =
[
2n1
p

− n1

]
.

Theorem 1.1 Let 0 < p ≤ 1, ω ∈ A2(R
n1 × R

n2). Then there exists a constant
cp,n1,n2,ω, such that for all H p

mix (ω, R
n1 × R

n2) atoms a,

‖a‖H p
mix (ω,Rn1×R

n2 ) ≤ cp,n1,n2,ω.

It has been proved in [14] that L2
ω(Rn1+n2) ∩ H p

mix (ω, R
n1 × R

n2) is dense in
H p
mix (ω, R

n1 × R
n2) for all 0 < p < ∞. Once we obtain the atomic decomposition

in this dense set, it is easy to generalize to whole space.
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Theorem 1.2 Let 0 < p ≤ 1 and ω ∈ A2(R
n1 ×R

n2). Then f ∈ H p
mix (ω, R

n1 ×R
n2)

if and only if there exist a sequence {ak} of H p
mix (ω, R

n1 ×R
n2) atoms and a sequence

{λk} of real numbers satisfying ∑
k∈Z |λk |p ≤ C‖ f ‖p

H p
mix (ω,Rn1×R

n2 )
such that

f (x) =
∑

k∈Z
λkak(x), in H p

mix (ω, R
n1 × R

n2),

where the series also converges to f in L2
ω(Rn1+n2).

One will see that the above atomic decomposition theorem is very useful to prove
the boundedness of some kinds of singular operators, such as multi-pseudodifferential
operators, and those in mixed Journé class. It will be exhibited in our following papers.
As a direct application of Theorem 1.1 and Theorem 1.2, we have the following results.

Theorem 1.3 Let 0 < p ≤ 1 and ω ∈ A2(R
n1 × R

n2). Assume that T is a lin-
ear singular integral operator bounded on L2

ω(Rn1+n2). Then T is bounded on
H p
mix (ω, R

n1 × R
n2) if and only if

sup{‖T (a)‖H p
mix (ω,Rn1×R

n2 ) : a is any atom of H p
mix (ω, R

n1 × R
n2)} < ∞. (1.9)

We now describe the strategy of this paper. In Section 2, we mainly prove the uni-
form boundedness of atoms on H p

mix (ω, R
n1 ×R

n2). Comparison with the unweighted
case, the uniformboundedness of atomsonweightedmixedHardy spaces ismuchmore
involved. In Section 3, we establish atomic decomposition on H p

mix (ω, R
n1 × R

n2).
The proof of Theorem 1.3 is also placed in this section.

2 The Uniform Boundedness of Atoms

In this section,wemainly discuss the uniformboundedness of atoms on H p
mix (ω, R

n1×
R
n2)when 0 < p ≤ 1. First of all, let’s recall a key theorem discovered by Journé. For

this, given any open set 	 ⊆ R
n1+n2 , denote that M1(	) the collection of all dyadic

rectangles R = I × J ⊆ 	, R ∈ �, which are maximal in the x1 direction. Define
M2(	) similarly. It is easy to see that M(	) ⊆ M1(	) and M(	) ⊆ M2(	).

Define that

	̃ =
{
x ∈ R

n1+n2 : Mω
s (χ	)(x) >

1

(10τ)n1+n2

}
,

and similarly for ˜̃	,
˜̃̃
	. Here,Mω

s (g)(x) is aweighted strongMaximal function defined
by

Mω
s (g)(x) = sup

x∈R

1

ω(R)

∫

R
|g(y)|ω(y)dy.
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Obviously, 	 ⊆ 	̃ ⊆ ˜̃	 ⊆ ˜̃̃
	. By the weighted strong maximal theorem (see [17]),

one has ω(
˜̃̃
	) � ω(	).

For any R ∈ M(	), let Ĩ ⊆ R
n1 be the largest dyadic cube containing I such

that R̃ = Ĩ × J ⊆ 	̃, and J̃ be the largest dyadic cube containing J such that
˜̃R = Ĩ × J̃ ⊆ ˜̃	. Define γ = γ (R) = �( Ĩ )

�(I ) and γ ′ = γ ′(R) = �( J̃ )
�(J )

. The following
weighted version of Journé’s lemma is in [19].

Lemma 2.1 Let 	 be an open set in R
n1+n2 . If ω ∈ A∞(Rn1 × R

n2), then for any
η > 0

∑

R∈M2(	)

ω(R)γ (R)−η ≤ Cηω(	).

Proof of Theorem 1.1: Let a be any H p
mix (ω, R

n1 × R
n2) atom supported on an open

set 	 ⊆ R
n1+n2 with ω(	) < ∞.

Firstly, by L2
ω boundedness of operator S and condition 2 in the Definition 1.2, it

is easy to have that

∫

˜̃̃
	

S(a)(x)pω(x)dx ≤ ω(
˜̃̃
	)1−p/2‖S(a)(·)‖p

L2
ω(Rn1+n2 )

≤ Cω(	)1−p/2‖a‖p
L2

ω(Rn1+n2 )
≤ C .

Then this theorem will be proved if we obtain that

∫

˜̃̃
	
c S(a)(x)pω(x)dx < C, (2.1)

whereC is a positive constant independent of a. According to the Definition 1.2, there
are some rectangle atoms aR such that a = ∑

R∈M(	) aR . Then (2.1) follows from

∑

R⊂M(	)

∫

˜̃̃
	
c S(aR)(x)pω(x)dx ≤ C . (2.2)

For any R ∈ M(	) centered at (x0, y0), we now estimate
∫
˜̃̃
	
c S(aR)(x)pω(x)dx .

Note that R̃ ∈ M1(	̃), ˜̃R ∈ M2(
˜̃	) and 10τ ˜̃R ⊆ ˜̃̃

	. Hence one has that

∫

˜̃̃
	
c S(aR)(x)pω(x)dx ≤

∫

(10τ Ĩ )c×R
n2
S(aR)(x)pω(x)dx

+
∫

R
n1×(10τ J̃ )c

S(aR)(x)pω(x)dx

= I + I I .
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To estimate the first term, we split it into two terms as follows:

I =
∫

(10τ Ĩ )c×(10τ J )c
S(aR)(x)pω(x)dx +

∫

(10τ Ĩ )c×(10τ J )

S(aR)(x)pω(x)dx

= U (R) + V (R).

Recall that S(aR)(x1, x2) =
( ∑

j∈N,k∈Z
∑

I ′×J ′∈�
n1
j ×�

n2
k

|ψ j,k ∗ aR(xI ′ , xJ ′)|2

χI ′(x1)χJ ′(x2)
) 1

2
. Note that, for any fixed j, k, the rectangles in �

n1
j × �

n2
k are

disjoint. Hence one can rewrite S(aR) as follows:

S(aR)(x1, x2) =
⎛

⎜⎝
∑

j∈N,k∈Z
|

∑

I ′×J ′∈�
n1
j ×�

n2
k

ψ j,k ∗ aR(xI ′ , xJ ′)χI ′(x1)χJ ′(x2)|2
⎞

⎟⎠

1
2

.

According to side length of I , there are two cases: �(I ) ≥ � and �(I ) < �.

We now discuss the first case: �(I ) ≥ �. ForU (R), using the cancellation condition
of aR in the x2 direction and the Taylor’s Theorem, one has that

|ψ j,k ∗ aR(xI ′ , xJ ′)| = |
∫

ψ
(1)
j (xI ′ − y1)[ψk(xJ ′ − y2)

−
∑

|α|≤N2
p

2k|α|(y0 − y2)
α(Dαψ(2))k

(xJ ′ − y0)]aR(y)dy|
= |

∫
ψ

(1)
j (xI ′ − y1)

∑

|α|=N2
p+1

2k|α|(y0 − y2)
α(Dαψ(2))k

(xJ ′ − y0 − θ(y2 − y0)]aR(y)dy|

for some θ ∈ (0, 1). Set N = N 2
p + 1. It implies that

|ψ j,k ∗ aR(xI ′ , xJ ′)| �
∫

2 jn1

(1 + 2 j |xI ′ − y1|)n1+L

2k(n2+N )�(J )N

(1 + 2k |xJ ′ − y0 − θ(y2 − y0)|)n2+L
|aR(y)|dy

for any positive integer L . Note that |xJ ′ − x2| ≤ 2−k if x2 ∈ J ′, which yields that
1 + 2k |xJ ′ − y0 − θ(y2 − y0)| ≈ 1 + 2k |x2 − y0 − θ(y2 − y0)| ≈ 1 + 2k |x2 − y0|
since x2 ∈ (10τ J )c. Similarly, 1 + 2 j |xI ′ − y1| ≈ 1 + 2 j |x1 − x0|. Hence when
(x1, x2) ∈ (10τ Ĩ )c × (10τ J )c,
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|ψ j,k ∗ aR(xI ′ , xJ ′)|
� 2 jn1

(1 + 2 j |x1 − x0|)n1+L

2k(n2+N )�(J )N

(1 + 2k |x2 − y0|)n2+L

∫
|aR(y)|dy (2.3)

≤ 2− j L

|x1 − x0|n1+L

2k(n2+N )�(J )N

(1 + 2k |x2 − y0|)n2+L
‖aR‖L2

ω(Rn1+n2 )(ω
−1(R))

1
2

by Hölder’s inequality. Moreover, by a standard estimate, if L > N , one has that

∑

k∈Z

2k(n2+N )

(1 + 2k |x2 − y0|)n2+L
� 1

|x2 − y0|n2+N
.

Therefore,

U (R) =
∫

(10τ Ĩ )c×(10τ J )c

( ∑

j∈N,k∈Z

∑

I ′×J ′∈�
n1
j ×�

n2
k

|ψ j,k ∗ aR(xI ′ , xJ ′ )|2χI ′ (x1)χJ ′ (x2)
) p

2
ω(x)dx

�
∫

(
�( Ĩ )
�(I ) I )

c×(10τ J )c

1

|x1 − x0|(n1+L)p

�(J )Np

|x2 − y0|(n2+N )p
ω(x1, x2)dx

·‖aR‖p
L2

ω(Rn1+n2 )
(ω−1(R))

p
2

≤
∞∑

i=0

∞∑

s=0

∫

|x1−x0|≈2i �( Ĩ )

∫

|x2−y0|≈2s�(J )

1

|x1 − x0|(n1+L)p

�(J )Np

|x2 − y0|(n2+N )p
ω(x1, x2)dx · ‖aR‖p

L2
ω(Rn1+n2 )

(ω−1(R))
p
2

≈
∞∑

i=0

∞∑

s=0

(2i�( Ĩ ))−(n1+L)p(2s�(J ))−(n2+N )p�(J )Np‖aR‖p
L2

ω(Rn1+n2 )
(ω−1(R))

p
2

·ω(2i
�( Ĩ )

�(I )
I × 2s J )

�
∞∑

i=0

∞∑

s=0

(2i�( Ĩ ))−(n1+L)p(2s�(J ))−(n2+N )p�(J )Np‖aR‖p
L2

ω(Rn1+n2 )
(ω−1(R))

p
2

·22in122sn2 ( �( Ĩ )

�(I )
)2n1ω(I × J )

� �( Ĩ )−(n1+L)p�(J )−n2 p‖aR‖p
L2

ω(Rn1+n2 )
(ω−1(R))

p
2

(
�( Ĩ )

�(I )

)2n1

ω(I × J )

by choosing L such that (n1 + L)p − 2n1 > 0. Hence,

U (R) � (
�( Ĩ )

�(I )
)−[(n1+L)p−2n1]|R|−p‖aR‖p

L2
ω(Rn1+n2 )

(ω−1(R))
p
2 ω(I × J )
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since �(I ) ≥ �. At last, since ω−1(R) � |R|2ω(R)−1 when ω ∈ A2(R
n1 × R

n2), we
have that

U (R) � γ (R)−[(n1+L)p−2n1]ω(R)1−
p
2 ‖aR‖p

L2
ω(Rn1+n2 )

,

where γ (R) = �( Ĩ )
�(I ) .

We now discuss V (R). In a fashion similar to obtain (2.3), one has that

|ψ j,k ∗ aR(xI ′ , xJ ′)| ≤
∫

|ψ j (xI ′ − y1)||
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|dy1

�
∫

2 jn1

(1 + 2 j |xI ′ − y1|)n1+L
|
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|dy1

� 2 jn1

(1 + 2 j |x1 − x0|)n1+L

∫

τ I
|
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|dy1.

It yields that

|
∑

I ′×J ′∈�
n1
j ×�

n2
k

ψ j,k ∗ a(xI ′ , xJ ′)χI ′(x1)χJ ′(x2)|

� 2 jn1

(1 + 2 j |x1 − x0|)n1+L

∫

τ I

∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|χJ ′(x2)dy1.

Hence

∑

j∈N,k∈Z
|

∑

I ′×J ′∈�
n1
j ×�

n2
k

ψ j,k ∗ f (xI ′ , xJ ′)χI ′(x1)χJ ′(x2)|2

�
∑

j∈N,k∈Z

(
2 jn1

(1+2 j |x1−x0|)n1+L

)2
⎛

⎜⎝
∫

τ I

∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|χJ ′(x2)dy1

⎞

⎟⎠

2

.

Then,

V (R) �
∫

(10τ Ĩ )c×(10τ J )

( ∑

j∈N,k∈Z
(

2 jn1

(1 + 2 j |x1 − x0|)n1+L
)2

×
⎛

⎜⎝
∫

τ I

∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|χJ ′ (x2)dy1)
2

⎞

⎟⎠

p/2

ω(x1, x2)dx

�
∞∑

i=0

∫

|x1−x0|≈2i �( Ĩ )

∫

10τ J

(
1

|x1 − x0|(n1+L)

)p

123
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×
⎛

⎜⎝
∑

k∈Z

⎛

⎜⎝
∫

τ I

∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|χJ ′ (x2)dy1

⎞

⎟⎠

2⎞

⎟⎠

p/2

ω(x1, x2)dx

≤ 1

�( Ĩ )Lp

∞∑

i=0

2−Lpi
∫

|x1−x0|≈2i �( Ĩ )

∫

10τ J

×
(∑

k∈Z
(

1

|x1 − x0|n1
∫

τ I

∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|χJ ′ (x2)dy1)
2
)p/2

ω(x1, x2)dx

≤ 1

�( Ĩ )Lp

∞∑

i=0

2−Lpi
∫

|x1−x0|≈2i �( Ĩ )

∫

10τ J

×
(∑

k∈Z

(M(1)(
∑

J ′∈�
n2
k

|
∫

ψk(xJ ′−y2)aR(·, y2)dy2|χJ ′ (x2)
)2

(x1)

)p/2

ω(x1, x2)dx,

where M(1) is the Hardy-Littlewood maximal operator associated with the first
direction x1. By Hölder’s inequality and L2 boundedness of M(1), one has that

∫

|x1−x0|≈2i �( Ĩ )

∫

10τ J

(∑

k∈Z

(M(1)(
∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR

(·, y2)dy2|χJ ′(x2)
)2

(x1)

)p/2

· ω(x1, x2)dx

≤ ω

(
2i�( Ĩ )

�(I )
I , 10τ J

)1− p
2

( ∫ ∫ ∑

k∈Z
(M(1)

( ∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR

(·, y2)dy2|χJ ′(x2)

)2

(x1)ω(x1, x2)dx

)p/2

� ω(
2i�( Ĩ )

�(I )
I , 10τ J )1−

p
2

( ∫ ∫ ∑

k∈Z

( ∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR(x1, y2)dy2|χJ ′(x2)

)2

ω(x1, x2)dx

)p/2

� ω

(
2i�( Ĩ )

�(I )
I , 10τ J

)1− p
2

‖aR‖p
L2

ω(Rn1+n2 )

�
(
2i�( Ĩ )

�(I )

)2n1(1− p
2 )

ω(R)1−
p
2 ‖aR‖p

L2
ω(Rn1+n2 )

.
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It gives that

V (R) � 1

�( Ĩ )Lp

∞∑

i=0

2−Lpi (

2i�

(
Ĩ )

�(I )

)2n1(1− p
2 )

ω(R)1−
p
2 ‖aR‖p

L2
ω(Rn1+n2 )

� γ (R)−(n1+L)p+2n1ω(R)1−
p
2 ‖aR‖p

L2
ω(Rn1+n2 )

,

since �(I ) ≥ �.
For the second case �(I ) < �, in a fashion similar to case one, using the cancellation

condition of aR in two directions and Taylor’s Theorem, one has that

|ψ j,k ∗ aR(xI ′ , xJ ′)|

� 2 j(n1+N ′)�(I )N
′

(1 + 2 j |x1 − x0|)n1+L

2k(n2+N )�(J )N

(1 + 2k |x2 − y0|)n2+L
‖aR‖L2

ω(Rn1+n2 )(ω
−1(R))

1
2 ,

where N ′ = N 1
p + 1. It follows that

U (R) �
∫

(
�( Ĩ )
�(I ) I )

c×(10τ J )c

�(I )N
′ p

|x1 − x0|(n1+N ′)p
�(J )Np

|x2 − y0|(n2+N )p
ω(x1, x2)dx

·‖aR‖p
L2ω(Rn1+n2 )

(ω−1(R))
p
2

≤
∞∑

i=0

∞∑

s=0

∫

|x1−x0|≈2i �( Ĩ )

∫

|x2−y0|≈2s�(J )

�(I )N
′ p

|x1 − x0|(n1+N ′)p
�(J )Np

|x2 − y0|(n2+N )p
ω(x1, x2)dx

·‖aR‖p
L2ω(Rn1+n2 )

(ω−1(R))
p
2

�
∞∑

i=0

∞∑

s=0

(2i �( Ĩ ))−(n1+N ′)p�(I )N
′ p(2s�(J ))−(n2+N )p�(J )Np‖aR‖p

L2ω(Rn1+n2 )
(ω−1(R))

p
2

·22in122sn2 ( �( Ĩ )

�(I )
)2n1ω(I × J )

� γ (R)−[(n1+N ′)p−2n1]ω(R)
1− p

2 ‖aR‖p
L2ω(Rn1+n2 )

,

since (n1 + N ′)p − 2n1 > 0.
For V (R), let x1 ∈ (10τ Ĩ )c. Similarly, for any positive integer L ,

|ψ j,k ∗ aR(xI ′ , xJ ′ )| � 2 j(n1+N )�(I )N

(1 + 2 j |x1 − x0|)n1+L

∫

τ I
|
∫

ψk (xJ ′ − y2)aR(y1, y2)dy2|dy1.

It yields that

123



182 Page 12 of 20 W. Ding, F. Zou

|
∑

I ′×J ′∈�
n1
j ×�

n2
k

ψ j,k ∗ a(xI ′ , xJ ′)χI ′(x1)χJ ′(x2)|

� 2 j(n1+N )�(I )N

(1 + 2 j |x1 − x0|)n1+L

∫

τ I

∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|χJ ′(x2)dy1.

Then

∑

j∈N,k∈Z
|

∑

I ′×J ′∈�
n1
j ×�

n2
k

ψ j ,k ∗ f (xI ′ , xJ ′ )χI ′ (x1)χJ ′ (x2)|2

�
∑

j∈N,k∈Z
(

2 j(n1+N )�(I )N

(1 + 2 j |x1 − x0|)n1+L
)2(

∫

τ I

∑

J ′∈�
n2
k

|
∫

ψk (xJ ′ − y2)aR(y1, y2)dy2|χJ ′ (x2)dy1)2.

Thus

V (R)

�
∫

(10τ Ĩ )c×(10τ J )

( ∑

j∈N,k∈Z

(
2 j(n1+N )�(I )N

(1 + 2 j |x1 − x0|)n1+L

)2

(∫

τ I

∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|χJ ′(x2)dy1

)2)p/2

ω(x1, x2)dx

�
∞∑

i=0

∫

|x1−x0|≈2i �( Ĩ )

∫

10τ J

(
�(I )N

|x1 − x0|(n1+N )

)p

(∑

k∈Z

( ∫

τ I

∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR(y1, y2)dy2|χJ ′(x2)dy1

)2)p/2

ω(x1, x2)dx

≤
(

�(I )N

�( Ĩ )N

)p ∞∑

i=0

2−Npi
∫

|x1−x0|≈2i �( Ĩ )

∫

10τ J

(∑

k∈Z
(M(1)

( ∑

J ′∈�
n2
k

|
∫

ψk(xJ ′ − y2)aR(·, y2)dy2|χJ ′(x2)

)2

(x1)

)p/2

ω(x1, x2)dx

�
(

�(I )N

�( Ĩ )N

)p ∞∑

i=0

2−Npiω

(
2i�( Ĩ )

�(I )
I , 10τ J

)1− p
2 ‖aR‖p

L2
ω(Rn1+n2 )

� γ (R)−(n1+N )p+2n1ω(R)1−
p
2 ‖aR‖p

L2
ω(Rn1+n2 )

.

Hence, we obtain that

I � (
�( Ĩ )

�(I )
)−(n1+N ′)p+2n1ω(R)1−

p
2 ‖aR‖p

L2
ω(Rn1+n2 )

.
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Similarly,

I I � γ ′(R)−(n2+N )p+2n2ω(R)1−
p
2 ‖aR‖p

L2
ω(Rn1+n2 )

.

By weighted version of Journé’s Lemma 2.1, one has that

∑

R∈M(	)

∫

˜̃̃
	
c |S(aR)(x)|pω(x)dx

�
∑

R∈M(	)

γ (R)−(n1 p+N ′ p−2n1)ω(R)1−
p
2 ‖aR‖p

L2
ω(Rn1+n2 )

+
∑

R∈M(	)

γ ′(R)−(n2 p+Np−2n2)ω(R)1−
p
2 ‖aR‖p

L2
ω(Rn1+n2 )

≤ ( ∑

R∈M1(	)

γ (R)−(n1 p+N ′ p−2n1)p′
ω(R)

)1/p′
⎛

⎝
∑

R∈M(	)

‖aR‖2L2
ω(Rn1+n2 )

⎞

⎠
p/2

+( ∑

R∈M2(	)

γ ′(R)−(n2 p+Np−2n2)ω(R)
)1/p′

⎛

⎝
∑

R∈M(	)

‖aR‖2L2
ω(Rn1+n2 )

⎞

⎠
p/2

� ω(	)1−p/2

⎛

⎝
∑

R∈M(	)

‖aR‖2L2
ω(Rn1+n2 )

⎞

⎠
p/2

≤ C,

where p′ = 2
2−p satisfying p

2 + 1
p′ = 1. Thus we obtain (2.2) and then finish the

proof. ��

3 Atomic Decomposition

To discuss the atomic decomposition of H p
mix (ω, R

n1 × R
n2), we need a new discrete

Calderón-type identity composed by some test functions with compact supports which
wasobtained in [14]. Todo this, given apositive integerM large enough, letφ(1)

0 , φ(1) ∈
S(Rn1) satisfy that

suppφ(1)
0 ⊆ {x ∈ R

n1 : |x | ≤ 1};
∫

φ
(1)
0 = 1, (3.1)

and

suppφ(1) ⊆ {x ∈ R
n1 : |x | ≤ 1};

∫
φ(1)(x)xαdx = 0, for all |α| ≤ M, (3.2)
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182 Page 14 of 20 W. Ding, F. Zou

and

|̂φ(1)
0 (ξ)|2 +

∞∑

j=1

|̂φ(1)(2− jξ)|2 = 1, for all ξ ∈ R
n1 . (3.3)

Let φ(2) ∈ S(Rn2) with

suppφ(2) ⊆ {x ∈ R
n2 : |x | ≤ 1};

∫
φ(2)(x)xαdx = 0, for all |α| ≤ M, (3.4)

and

∑

j∈Z
|̂φ(2)(2− jξ)|2 = 1, for all ξ ∈ R

n2 \ {0}. (3.5)

Theorem 3.1 For 0 < p ≤ 1, let φ
(1)
0 , φ(1) ∈ S(Rn1) and φ(2) ∈ S(Rn2) satisfy

conditions (3.1)–(3.3) and (3.4)–(3.5), respectively. Suppose thatω ∈ A2(R
n1 ×R

n2).
Then for any f ∈ L2

ω(Rn1+n2)∩ H p
mix (ω, R

n1 ×R
n2), there exists f̃ ∈ L2

ω(Rn1+n2)∩
H p
mix (ω, R

n1 × R
n2) such that

f (x) =
∑

j∈N,k∈Z

∑

I×J∈�
n1
j+N×�

n2
k+N

|I ||J |(φ j,k ∗ f̃ )(xI , xJ ) × φ j,k(x1 − xI , x2 − xJ ),

(3.6)

where the series converges in L2
ω(Rn1+n2) and H p

mix (ω, R
n1 × R

n2), and N is some
large positive integer independent of f . Moreover,

‖ f̃ ‖L2
ω(Rn1+n2 ) ≈ ‖ f ‖L2

ω(Rn1+n2 )

and

‖ f̃ ‖H p
mix (ω,Rn1×R

n2 ) ≈ ‖ f ‖H p
mix (ω,Rn1×R

n2 ).

Proof of Theorem 1.2: For f ∈ L2
ω(Rn1+n2) ∩ H p

mix (ω, R
n1 × R

n2), let S̃( f )(x) =( ∑
j∈N,k∈Z

∑

I×J∈�
n1
j+N×�

n2
k+N

|(φ j,k ∗ f̃ )(xI , xJ |2χIχJ
)1/2, where φ j,k satisfies the con-

ditions of Theorem 3.1. Firstly, rewrite (3.6)as follows:

f (x) =
∑

j=0,k∈Z

∑

I×J∈�
n1
j+N×�

n2
k+N

|I ||J |(φ j,k ∗ f̃ )(xI , xJ ) × φ j,k(x1 − xI , x2 − xJ )

+
∑

j>1,k∈Z

∑

I×J∈�
n1
j+N×�

n2
k+N

|I ||J |(φ j,k ∗ f̃ )(xI , xJ ) × φ j,k(x1 − xI , x2 − xJ )

= f1(x) + f2(x).
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We now decompose f1 into atoms. For any i ∈ Z, set that

	i = {x ∈ R
n1+n2 : S̃( f )(x) > 2i }.

Bi = {R : R ∈ �
n1
j+N × �

n2
k+N , j = 0, k ∈ Z,

ω(R ∩ 	i ) >
1

2
ω(R), ω(R ∩ 	i+1) ≤ 1

2
ω(R)},

and

	̃i = {x ∈ R
n1+n2 : Mω

s (χ	i ) >
1

10N (n1+n2)
}.

Obviously, ∪R∈Bi R ⊆ 	̃i . For R ∈ �
n1
j+N × �

n2
k+N , denote φR = φ j,k . Then one can

rewrite f1 as following

f1(x) =
+∞∑

i=−∞

∑

R∈Bi

|R|(φR ∗ f̃ )(xI , xJ ) × φR(x1 − xI , x2 − xJ ) =
∑

i

λi ai (x).

Set

	̃
′
i =

{
x ∈ R

n1+n2 : Ms(χ	̃i
) >

1

10N (n1+n2)

}
.

Note that if (x1, x2) ∈ suppφR(·−xI , ·−xJ ), one has that |x1−xI | ≤ 2− j , |x2−xJ | ≤
2−k , which implies that suppφR(· − xI , · − xJ ) ⊆ 10N R ⊆ 	̃

′
i . By the weighted

boundedness of Ms , one has that ω(	̃′
i ) ≈ ω(	̃i ). Denote that

λi = Cω(	̃′
i )

1
p− 1

2 ‖
( ∑

R∈Bi

|φR ∗ f̃ (xI , xJ )χR(x)|2
) 1

2 ‖L2
ω(Rn1+n2 ),

and

ai (x) = 1

λi

∑

R∈Bi

|R|(φR ∗ f̃ )(xI , xJ )φR(x1 − xI , x2 − xJ ).

Then one has that

f1(x) =
∑

i

λi ai (x).

We now check that every ai is an atom H p
mix (ω, R

n1 ×R
n2). Firstly, supp ai ⊆ 	̃′

i .
Moreover, by the duality argument,

‖ai‖L2
ω(Rn1+n2 ) = 1

λi
sup

‖g‖
L2
ω−1 (Rn1+n2 )

≤1
|
∫

(
∑

R∈Bi

|R|
(
φR ∗ f̃

)
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(xI , xJ )φR(x1 − xI , x2 − xJ ))g(x)dx |
= 1

λi
sup

‖g‖
L2
ω−1 (Rn1+n2 )

≤1
|
∫ ∑

R∈Bi

(φR ∗ f̃ )(xI , xJ ) × φ̃R ∗ g(xI , xJ )χR(x)dx |

≤ 1

λi
sup

‖g‖
L2
ω−1 (Rn1+n2 )

≤1

∫ ( ∑

R∈Bi

|(φR ∗ f̃ )(xI , xJ )|2χR(x)ω(x)
)1/2

( ∑

R∈Bi

|(φ̃R ∗ g)(xI , xJ )|2χR(x)ω−1(x)
)1/2dx,

which yields that ‖ai‖L2
ω(Rn1+n2 ) ≤ ω(	̃′

i )
1
2− 1

p .
Furthermore, for Q ∈ M(	i ), if we set that

ai,Q(x) = 1

λi

∑

R∈Bi ,R⊆Q

|Q|(φR ∗ f̃ )(xI , xJ )φR(x1 − xI , x2 − xJ ),

then ai = ∑
Q∈M(	i )

ai,Q , and supp ai,Q ⊆ 2N+4Q. Moreover, the side length of Q
in the first direction is 2−N denoted by � since Q ∈ Bi , and there is no any vanishing
moment in this direction. While ai,Q satisfies vanishing moment in x2 direction. On
the other hand, by the duality argument again,

‖ai,Q‖2L2
ω(Rn1+n2 )

≤ 1

λi

∫ ∑

R∈Bi ,R⊆Q

|(φR ∗ f̃ )(xI , xJ )|2χR(x)ω(x)dx .

It gives that

∑

Q∈M(	i )

‖ai,Q‖2L2
ω(Rn1+n2 )

� 1

λ2i

∫ ∑

R∈Bi

|(φR ∗ f̃ )(xI , xJ )|2χR(x)ω(x)dx

� ω(	′
i )
1− 2

p .

For
∑

i λ
p
i , using ω(R ∩ 	̃i\	i+1) > 1

2ω(R) when R ∈ Bi , one has that

‖
( ∑

R∈Bi

|φR ∗ f̃ (xI , xJ )χR(x)|2
) 1

2 ‖2L2
ω(Rn1+n2 )

=
∑

R∈Bi

ω(R)|(φR ∗ f̃ )(xI , xJ )|2

≤ 2
∑

R∈Bi

ω(R ∩ 	̃i\	i+1)|(φR ∗ f̃ )(xI , xJ )|2

= 2
∫

	̃i\	i+1

∑

R∈Bi

|(φR ∗ f̃ )(xI , xJ )|2χR(x)ω(x)dx
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≤ 22(i+1)+1ω(	̃i ).

Hence

∑

i

λ
p
i ≤ C

∑

i

2piω(	i ) ≤ C‖S̃( f )‖p
L p

ω(Rn1+n2 )
≤ C‖ f ‖p

H p
mix (ω,Rn1×R

n2 )
(3.7)

with a constant C independent of f .
Similarly, one can obtain the atomic decompositions of f2. Different from the

above, the rectangle atoms decomposed from f2 have desired vanishing moment both
in two directions. The results that

∑
i

λi ai (x) → f in H p
mix (ω, R

n1 × R
n2) and in

L2
ω(Rn1+n2) are followed from (3.7) and duality argument, respectively.
For f ∈ H p

mix (ω, R
n1 × R

n2), by the density, there are { fi }i≥0 ⊆ L2
ω(Rn1+n2) ∩

H p
mix (ω, R

n1 ×R
n2) such that ‖ fi‖H p

mix (ω,Rn1×R
n2 ) ≤ 2−i+1‖ f ‖H p

mix (ω,Rn1×R
n2 ), and

f (x) = ∑
i≥0 fi (x) in H p

mix (ω, R
n1 ×R

n2). Since fi ∈ L2(Rn1+n2)∩H p
mix (ω, R

n1 ×
R
n2), we can decompose fi into atoms to obtain that

fi (x) =
∑

k

λ
(i)
k a(i)

k (x), in H p
mix (ω, R

n1 × R
n2), and

∑

k

|λ(i)
k |p ≤ C‖ fi‖p

H p
mix (ω,Rn1×R

n2 )
,

where C is a absolute constant, which yields that

f (x) =
∑

i≥0

∑

k

λ
(i)
k a(i)

k (x).

Moreover,

∑

i≥0

∑

k

|λ(i)
k |p ≤

∑

i≥0

C‖ fi‖p
H p
mix (ω,Rn1×R

n2 )

≤ C
∑

i≥0

2−i+1‖ f ‖p
H p
mix (ω,Rn1×R

n2 )
� ‖ f ‖p

H p
mix (ω,Rn1×R

n2 )
.

The converse is obvious by Theorem 1.1.
This completes the proof. ��

Proof of Theorem 1.3: If T is bounded on H p
mix (ω, R

n1 × R
n2), then (1.9) is obtained

by Theorem 1.1 directly. For the converse, let f ∈ L2
ω(Rn1+n2) ∩ H p

mix (ω, R
n1 ×

R
n2), then by Theorem 1.2, there exists a sequence atoms {ak} such that f (x) =∑
k∈Z λkak(x) in L2

ω(Rn1+n2), where the real numbers sequence {λk} satisfies∑
k∈Z |λk |p � ‖ f ‖p

H p
mix (ω,Rn1×R

n2 )
. Since T is bounded on L2

ω(Rn1+n2), one

has T ( f )(x) = ∑
λkT (ak)(x) in L2

ω(Rn1+n2), which implies that this series
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(subsequence) converges almost everywhere. Hence,

‖T ( f )‖p
H p
mix (ω,Rn1×R

n2 )
≤

∑
|λk |p‖T (ak)‖p

H p
mix (ω,Rn1×R

n2 )
� ‖ f ‖p

H p
mix (ω,Rn1×R

n2 )
.

by (1.9).
This completes the proof. ��
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