1 Introduction

Let G be an open bounded set in \(\textbf{R}^N\). Let \(\alpha (\cdot )\) be a measurable function on G such that

$$\begin{aligned} 0<\inf _{x \in G} \alpha (x)\le \sup _{x \in G} \alpha (x)<N. \end{aligned}$$

We define the Riesz potential of variable order \(\alpha (\cdot )\) for a locally integrable function f on G by

$$\begin{aligned} I_{\alpha (\cdot )}f(x) = \int _{G} |x-y|^{\alpha (x)-N} f(y)\, dy; \end{aligned}$$

when \(\alpha (\cdot )\) is a constant \(\alpha \), this is simply written as \(I_{\alpha }f\).

Sobolev-type inequalities for \(I_{\alpha }f\) have been established on various function spaces by many researchers. Sobolev-type inequalities were studied on variable exponent Lebesgue spaces \(L^{p(\cdot )}\) in [7, 9, 11], on two variable exponent Lebesgue spaces \(L^{p(\cdot )}(\log L)^{q(\cdot )}\) in [12, 25], on variable exponent Morrey spaces \(L^{p(\cdot ), \nu }\) in [2, 13, 14, 22, 23, 28], on Musielak–Orlicz–Morrey spaces \(L^{\Phi ,\kappa }\) in [19, 20].

In the previous paper [32], we gave Sobolev-type inequalities for \(I_{\alpha (\cdot )}f\) of functions in variable exponent Morrey spaces of an integral form \({\mathcal {L}}^{p(\cdot ),\omega }(G)\), as an extension of [29, Theorem 5.4] from Morrey spaces of an integral form.

In this paper, we establish a Sobolev-type inequality for \(I_{\alpha (\cdot )}f\) of functions in Musielak–Orlicz–Morrey spaces of an integral form \({\mathcal {L}}^{\Phi ,\omega }(G)\) defined by general functions \(\Phi (x,t)\) and \(\omega (x,r)\) satisfying certain conditions (Theorem 4.5), as an extension of [32, Theorem 4.4]. To do this, we apply Hedberg’s method ([17]) and the boundedness of the maximal operator M in \({\mathcal {L}}^{\Phi ,\omega }(G)\) (Theorem 3.4) which is an extension of [32, Theorem 3.5].

As an application of our general theory, we give Sobolev-type inequalities (Theorem 5.3) in the framework of double phase functions \(\Phi (x,t)\) with variable exponents given by

$$\begin{aligned} \Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}, \end{aligned}$$

where \(p(\cdot )\) and \(q(\cdot )\) satisfy log-Hölder conditions, \(p(x)<q(x)\) for \(x\in G\) and \(a(\cdot )\) is nonnegative, bounded and Hölder continuous of order \(\theta \in (0,1]\). For the studies by Mingione and collaborators, see [3, 4, 8]. We refer to [20, 27] for Sobolev’s inequality and to, e.g., [6, 10, 16, 24, 30, 33] for the recent results.

Throughout the paper, we let C denote various constants independent of the variables in question and \(C(a,b,\cdots )\) be a constant that depends on \(a,b,\cdots \) only. The symbol \(g\sim h\) means that \(C^{-1}h\le g\le Ch\) for some constant \(C>0\).

2 Musielak–Orlicz–Morrey Spaces of an Integral Form

To define the norm of Musielak–Orlicz–Morrey spaces of an integral form, let us consider a function

$$\begin{aligned} \Phi (x,t) : G \times [0, \infty ) \rightarrow [0, \infty ) \end{aligned}$$

satisfying the following conditions (\(\Phi \)1) – (\(\Phi \)3):

(\(\Phi \)1):

\(\Phi (\, \cdot \, , t)\) is measurable on G for each \(t \ge 0\) and \(\Phi (x,\, \cdot \, )\) is continuous on \([0, \infty )\) for each \(x \in G\);

(\(\Phi \)2):

there exists a constant \(A_1 \ge 1\) such that

$$\begin{aligned} A_1^{-1} \le \Phi (x,1) \le A_1 \quad \text {for all} \ x \in G; \end{aligned}$$
(\(\Phi 3\)):

\(t \mapsto \Phi (x,t)/t\) is uniformly almost increasing on \((0, \infty )\), namely there exists a constant \(A_2 \ge 1\) such that

$$\begin{aligned} \Phi (x,t_1)/t_1 \le A_2 \Phi (x,t_2)/t_2 \quad \text {for all} \ x \in G \ \text {whenever} \ 0< t_1 < t_2. \end{aligned}$$

We write

$$\begin{aligned} {\bar{\phi }}(x,t) = \sup _{0 < s \le t} (\Phi (x,s)/s) \end{aligned}$$

and

$$\begin{aligned} {\overline{\Phi }}(x,t) = \int _0^t {\bar{\phi }}(x,r)\, dr \end{aligned}$$

for \(x \in G\) and \(t \ge 0\). Then \({\overline{\Phi }}(x, \cdot )\) is convex and

$$\begin{aligned} \Phi (x,t/2) \le {\overline{\Phi }}(x,t) \le A_2 \Phi (x,t) \end{aligned}$$
(2.1)

for all \(x \in G\) and \(t \ge 0\) since \({\bar{\phi }}(x,\cdot )\) is increasing on \((0,\infty )\) for each \(x\in G\).

For \(x \in \textbf{R}^N\) and \(r>0\), we denote by B(xr) the open ball centered at x with radius r and \(d_{G}=\sup \{|x-y| : x, y \in G \}\). For a set \(E\subset \textbf{R}^N\), |E| denotes the Lebesgue measure of E.

We also consider a weight function \(\omega (x,r) : G \times (0,\infty ) \rightarrow (0, \infty )\) satisfying the following conditions:

(\(\omega 0\)):

\(\omega (\, \cdot \, , r)\) is measurable on G for each \(r>0\) and \(\omega (x,\, \cdot \, )\) is continuous on \((0, \infty )\) for each \(x \in G\);

(\(\omega 1\)):

\(r \mapsto \omega (x,r)\) is uniformly almost increasing on \((0, \infty )\), namely there exists a constant \({\tilde{c}}_1 \ge 1\) such that

$$\begin{aligned} \omega (x,r_1) \le {\tilde{c}}_1 \omega (x,r_2) \end{aligned}$$

for all \(x \in G\) whenever \(0< r_1< r_2< \infty \);

(\(\omega 2\)):

there exists a constant \({\tilde{c}}_2>1\) such that

$$\begin{aligned} {\tilde{c}}_2^{-1} \omega (x, r) \le \omega (x, 2r) \le {\tilde{c}}_2 \omega (x, r) \end{aligned}$$

for all \(x \in G\) whenever \(r>0\);

(\(\omega 3; \omega _0\)):

there exist constants \(\omega _0>0\) and \({\tilde{c}}_3 \ge 1\) such that

$$\begin{aligned} {\tilde{c}}_3^{-1} r^{\omega _0} \le \omega (x,r) \le {\tilde{c}}_3 \end{aligned}$$

for all \(x \in G\) and \(0<r \le 2d_G\).

Let \(f^- := \inf _{x\in G} f(x)\) and \(f^+ := \sup _{x\in G} f(x)\) for a measurable function f on G. Let us write that \(L_{c}(t) = \log (c + t)\) for \(c >1\) and \(t \ge 0\), \(L_{c}^{(1)}(t) = L_c(t)\), \(L_{c}^{(j+1)}(t) = L_c( L_c^{(j)}(t))\).

Example 2.1

Let \(\sigma (\cdot )\) and \(\beta (\cdot )\) be measurable functions on G such that \(0<\sigma ^- \le \sigma ^+ \le \omega _0\) and \(-c(\omega _0-\sigma (x))\le \beta (x)\le c\) for all \(x\in G\) and some constant \(c >0\). Then

$$\begin{aligned} \omega (x,r) = r^{\sigma (x)}L_e(1/r)^{\beta (x)} \end{aligned}$$

satisfies (\(\omega 0\)), (\(\omega 1\)), (\(\omega 2\)) and (\(\omega 3; \omega _0\)).

Given \(\Phi (x,t)\) and \(\omega (x,r)\) as above, we define the \({\mathcal {L}}^{\Phi ,\omega }\) norm by

$$\begin{aligned} \Vert f \Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)}&= \inf \biggl \{ \lambda > 0\, ; \\&\sup _{x\in G}\left( \int _0^{2d_G} \frac{\omega (x,r)}{|B(x,r)|} \left( \int _{G\cap B(x, r)}{\overline{\Phi }} \left( y,|f(y)|/\lambda \right) \,dy \right) \, \frac{dr}{r} \right) \le 1 \biggl \}, \end{aligned}$$

which is the Luxemburg norm ([18]). The space of all measurable functions f on G with \(\Vert f \Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)} < \infty \) is denoted by \({\mathcal {L}}^{\Phi ,\omega }(G)\). The space \({\mathcal {L}}^{\Phi ,\omega }(G)\) is called a Musielak–Orlicz–Morrey space of an integral form. Here note that \(2d_G\) can be replaced by \(\kappa d_G\) with \(\kappa >1\). In case \(\Phi (x,t)=t^{p(x)}\), \({\mathcal {L}}^{\Phi ,\omega }(G)\) is denoted by \({\mathcal {L}}^{p(\cdot ),\omega }(G)\) for simplicity. If \(p(\cdot ) \equiv p\), then we write \({\mathcal {L}}^{p(\cdot ),\omega }(G)={\mathcal {L}}^{p,\omega }(G)\).

Remark 2.2

If there exists a constant \(C_0>0\) such that

$$\begin{aligned} \int _{0}^{2d_G}\omega (x,r)\, \frac{dr}{r}\le C_0 \end{aligned}$$

for all \(x\in G\), then we see that \({\mathcal {L}}^{\Phi ,\omega }(G)\ne \{0\}\) since

$$\begin{aligned} \int _0^{2d_G} \frac{\omega (x,r)}{|B(x,r)|} \left( \int _{G\cap B(x, r)}{\overline{\Phi }} \left( y,1\right) \,dy \right) \, \frac{dr}{r}&\le A_1A_2 \int _{0}^{2d_G}\omega (x,r)\, \frac{dr}{r} \le A_1A_2C_0 \end{aligned}$$

for all \(x\in G\) by (2.1) and (\(\Phi \)2). See also [5, Lemma 1].

We shall also consider the following conditions for \(\Phi (x,t)\): Let \(p \ge 1\), \(q \ge 1\) and \(\nu >0\) be given.

(\(\Phi 3;0; p\)):

\(t \mapsto t^{-p}\Phi (x,t)\) is uniformly almost increasing on (0, 1], namely there exists a constant \(A_{2,0,p} \ge 1\) such that

$$\begin{aligned} t_1^{-p} \Phi (x,t_1) \le A_{2,0,p}\, t_2^{-p}\, \Phi (x,t_2) \quad \text {for all} \ x \in G \ \text {whenever} \ 0< t_1 < t_2 \le 1 ; \end{aligned}$$
(\(\Phi 3;\infty ; q\)):

\(t \mapsto t^{-q}\Phi (x,t)\) is uniformly almost increasing on \([1, \infty )\), namely there exists a constant \(A_{2,\infty ,q} \ge 1\) such that

$$\begin{aligned} t_1^{-q}\Phi (x,t_1) \le A_{2,\infty ,q}\, t_2^{-q}\Phi (x,t_2) \quad \text {for all} \ x \in G \ \text {whenever} \ 1 \le t_1 < t_2 ; \end{aligned}$$
\((\Phi 5;\nu )\):

for every \(\gamma >0\), there exists a constant \(B_{\gamma , \nu } \ge 1\) such that

$$\begin{aligned} \Phi (x,t) \le B_{\gamma , \nu } \Phi (y,t) \end{aligned}$$

whenever \(x, y \in G\), \(|x-y| \le \gamma t^{-\nu }\) and \(t \ge 1\).

Remark 2.3

We refer to [1, p. 2544] and [15, Section 7.3] for \((\Phi 5;\nu )\). If \(\Phi (x,t)\) satisfies \((\Phi 3;\infty ;q)\), then it satisfies \((\Phi 3;\infty ;q')\) for \(1 \le q' \le q\). If \(\Phi (x,t)\) satisfies \((\Phi 5;\nu )\), then it satisfies \((\Phi 5;\nu ')\) for all \(\nu ' \ge \nu \).

We give some examples of \( \Phi (x,t)\).

Example 2.4

Let \(p(\cdot )\) and \(q_j(\cdot )\), \(j=1, \ldots , k\) be given measurable functions on G such that \(1<p^-\le p^+<\infty \) and \(-\infty<q_j^-\le q_j^+<\infty \), \(j=1,\, \ldots \, k\). Then,

$$\begin{aligned} \Phi _{p(\cdot ),\{q_j(\cdot )\}}(x,t) = t^{p(x)} \prod _{j=1}^k \bigl ( L_{e}^{(j)}(t) \bigr )^{q_j(x)} \end{aligned}$$

satisfies (\(\Phi \)1), (\(\Phi \)2) and (\(\Phi 3\)). This function satisfies (\(\Phi 3;\infty ; q\)) for \(1\le q < p^-\) in general and for \(1 \le q \le p^-\) in case \(q_{j}^- \ge 0\) for all \(j=1, \ldots , k\).

Moreover, we see that \(\Phi _{p(\cdot ),\{q_j(\cdot )\}}(x,t)\) satisfies \((\Phi 5;\nu )\) for every \(\nu >0\) if \(p(\cdot )\) is log-Hölder continuous, namely

$$\begin{aligned} |p(x) - p(y)| \le \frac{C_{p}}{L_e (1/|x-y|)} \quad (x,\, y \in G) \end{aligned}$$

with a constant \(C_{p} \ge 0\) and \(q_{j}(\cdot )\) is \((j+1)\)-log-Hölder continuous, namely

$$\begin{aligned} |q_{j}(x) - q_{j}(y)| \le \frac{C_{j}}{L_e^{(j+1)} (1/|x-y|)} \quad (x,\, y \in G) \end{aligned}$$

with constants \(C_{j} \ge 0\) for each \(j=1, \ldots k\).

Example 2.5

Theorem 3.4 applies, e.g., to the following nondoubling functions

$$\begin{aligned} \Phi _1 (t) = e^{p(x)t}-p(x)t-1, \ \Phi _2 (t) = e^{t}t^{p(x)}, \ \Phi _3 (t) = e^{t^{p(x)}}-1 \end{aligned}$$

which satisfy (\(\Phi \)1), (\(\Phi \)2) and (\(\Phi \)3). We refer to [21, Examples 3-5] for the conditions on p and q which (\(\Phi 3;0; p\)) and (\(\Phi 3;\infty ; q\)) hold.

Example 2.6

The double phase function with variable exponents

$$\begin{aligned} \Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}, \ x \in G, \ t \ge 0 , \end{aligned}$$

where \(p(x)<q(x)\) for \(x\in G\), \(a(\cdot )\) is a nonnegative, bounded and Hölder continuous function of order \(\theta \in (0,1]\), was studied in [20]. We refer to [20, Lemma 5.1] and Section 5 for the conditions on \(p(\cdot )\) and \(q(\cdot )\) which \((\Phi 1)\), \((\Phi 2)\), \((\Phi 3)\), \((\Phi 3;0;p^-)\), \((\Phi ;\infty ;p^-)\) and \((\Phi 5; \nu )\) hold.

3 Boundedness of the Maximal Operator

For a locally integrable function f on G, the Hardy-Littlewood maximal function Mf is defined by

$$\begin{aligned} Mf(x)=\sup _{r >0}\frac{1}{|B(x,r)|} \int _{G\cap B(x,r)} |f(y)|\, dy. \end{aligned}$$

We know the boundedness of M on \({\mathcal {L}}^{p,\omega }(G)\).

Lemma 3.1

([32, Lemma 3.2]) Suppose

\((\omega 1')\):

\(r \mapsto r^{-\varepsilon _{1}}\omega (x, r)\) is uniformly almost increasing in \((0,d_G]\) for some \(\varepsilon _1>0\).

If \(p>1\), then there is a constant \(C >0\) such that

$$\begin{aligned} \Vert Mf \Vert _{{\mathcal {L}}^{p,\omega }(G)} \le C \Vert f \Vert _{{\mathcal {L}}^{p,\omega }(G)} \end{aligned}$$

for all \(f \in {\mathcal {L}}^{p,\omega }(G)\).

Remark 3.2

Note that (\(\omega 1'\)) implies (\(\omega 1\)).

Let \(\omega (x,r) = r^{\sigma (x)} L_{e}(1/r)^{\beta (x)}\) be as in Example 2.1. Then note that (\(\omega 1'\)) holds for \(0<\varepsilon _1<\sigma ^-\).

Lemma 3.3

Suppose \(\Phi (x,t)\) satisfies \((\Phi 3;0;p)\), \((\Phi 3;\infty ;q)\) and \((\Phi 5;\nu )\) for \(p \ge 1\), \(q \ge 1\) and \(\nu >0\) satisfying \(\nu \le q/\omega _0\). Set

$$\begin{aligned} I(f;x,r) = \frac{1}{|B(x,r)|} \int _{G\cap B(x,r)} f(y)\, dy \end{aligned}$$

and

$$\begin{aligned} J(f;x,r) = \frac{1}{|B(x,r)|} \int _{G\cap B(x,r)} \Phi \bigl ( y, f(y) \bigr )^{1/p_0}\, dy \end{aligned}$$

for \(x \in G\) and \(0<r \le d_G\), where \(1 \le p_0 \le \min (p,\, q)\). Then, given \(L \ge 1\), there exist constants \(C_1 = C(L) \ge 2\) and \(C_2>0\) such that

$$\begin{aligned} \Phi \bigl ( x, I(f;x,r)/C_1 \bigr )^{1/p_0} \le C_2 J(f;x,r) \end{aligned}$$

for all \(x \in G\), \(0<r \le d_G\) and for all nonnegative measurable functions f on G such that \(f(y) \ge 1\) or \(f(y)=0\) for each \(y \in G\) and

$$\begin{aligned} \sup _{z\in G}\left( \int _0^{2d_G} \frac{\omega (z,t)}{|B(z,t)|} \left( \int _{G\cap B(z, t)}\Phi \left( y,f(y)\right) \,dy \right) \, \frac{dt}{t} \right) \le L. \end{aligned}$$
(3.1)

Proof

Given f as in the statement of the lemma, \(x \in G\) and \(0<r <d_G\), set \(I = I(f;x,r)\) and \(J = J(f;x,r)\). Taking f, note that (3.1) implies

$$\begin{aligned}&\frac{\omega (x,r)}{|B(x,r)|} \int _{G\cap B(x,r)}\Phi \left( y,f(y)\right) \,dy \\&\le C_0\int _{r}^{2r} \frac{\omega (x,t)}{|B(x,t)|} \left( \int _{G\cap B(x, t)}\Phi \left( y,f(y)\right) \,dy \right) \, \frac{dt}{t}\le C_0L, \end{aligned}$$

so that

$$\begin{aligned} J \le C_0^{1/p_0}\omega (x,r)^{-1/p_0}L^{1/p_0}. \end{aligned}$$
(3.2)

We treat only the case \(J >1\). Since \(\Phi (x,t)^{1/p_0} \rightarrow \infty \) as \(t \rightarrow \infty \) by \((\Phi 3;\infty ;q)\) and \(p_0\le q\), there exists \(K > 1\) such that

$$\begin{aligned} \Phi (x,K)^{1/p_0} = \Phi (x,1)^{1/p_0} J. \end{aligned}$$
(3.3)

With this K, we have by \((\Phi 3;\infty ;q)\) and \(p_0\le q\)

$$\begin{aligned} \int _{G\cap B(x,r)} f(y)\, dy&\le K |B(x,r)| + A_{2,\infty ,p_0}^{1/p_0} K \int _{G\cap B(x,r)} \frac{\Phi \bigl ( y, f(y) \bigr )^{1/p_0} }{\Phi (y,K)^{1/p_0} }\, dy. \end{aligned}$$

Since \(K >1\), by \((\Phi 3;\infty ;q)\), we have

$$\begin{aligned} \Phi (x,1)^{1/p_0}J = \Phi (x,K)^{1/p_0} \ge A_{2,\infty ,q}^{-1/p_0}K^{q/p_0}\Phi (x,1)^{1/p_0}, \end{aligned}$$

so that, in view of (3.2) and \((\omega 3;\omega _0)\),

$$\begin{aligned} K^{q} \le A_{2,\infty ,q}J^{p_0} \le C_0A_{2,\infty ,q} \omega (x,r)^{-1}L \le C_0A_{2,\infty ,q}{\tilde{c}}_3 L r^{-\omega _0} \end{aligned}$$

or \(r \le \gamma K^{-q/\omega _0}\) with \(\gamma = (C_0A_{2,\infty ,q}{\tilde{c}}_3L)^{1/\omega _0}\). Thus, if \(|x-y| \le r\), then

$$\begin{aligned} |x-y| \le \gamma K^{-q/\omega _0} \le \gamma K^{-\nu } \end{aligned}$$

since \(\nu \le q/\omega _0\). Hence, by (\(\Phi 5; \nu \)) with \(B_{\gamma , \nu }^{1/p_0}=\beta \)

$$\begin{aligned} \begin{aligned} \int _{G\cap B(x,r)} f(y)\, dy&\le K|B(x,r)| \left\{ 1 + \left( A_1A_{2,\infty ,p_0}\right) ^{1/p_0} \beta \right\} \end{aligned} \end{aligned}$$

as in the proof of [20, Lemma 3.3]. See [21, Lemma 9] and [20, Lemma 3.3] for details. \(\square \)

In view of Lemmas 3.1 and 3.3, we show the boundedness of M on \({\mathcal {L}}^{\Phi ,\omega }(G)\) as an extension of [32, Theorem 3.5].

Theorem 3.4

Suppose \(\Phi (x,t)\) satisfies \((\Phi 3;0;p)\), \((\Phi 3;\infty ;q)\) and \((\Phi 5;\nu )\) for \(p > 1\), \(q > 1\) and \(\nu >0\) satisfying \(\nu \le q/\omega _0\). Assume that \((\omega 1')\) holds. Then there is a constant \(C >0\) such that

$$\begin{aligned} \Vert Mf \Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)} \le C \Vert f \Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)} \end{aligned}$$

for all \(f \in {\mathcal {L}}^{\Phi ,\omega }(G)\).

Proof

Set \(p_0 = \min (p,\, q)\). Then \(p_0 >1\). Consider the function

$$\begin{aligned} \Phi _0(x,t) = \Phi (x,t)^{1/p_0}. \end{aligned}$$

Let f be a nonnegative measurable function on G with \(\Vert f \Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)} \le 1/2\). Let \(f_1 = f \chi _{\{ x\in G:f(x) \ge 1 \}}\), \(f_2 = f - f_1\). Applying Lemma 3.3 to \(f_1\) and \(L = 1\), there exist constants \(C_1\ge 2\) and \(C_2>0\) such that

$$\begin{aligned} \Phi _0 \bigl ( x, Mf_1(x)/C_1 \bigr ) \le C_2 M [\Phi _0 \bigl ( \cdot , f_1( \cdot ) \bigr )] (x), \end{aligned}$$

so that

$$\begin{aligned} \Phi \bigl ( x, Mf_1(x)/C_1 \bigr ) \le C_2^{p_0} \left[ M [\Phi _0 \left( \cdot , f( \cdot ) \right) ](x) \right] ^{p_0} \end{aligned}$$
(3.4)

for all \(x \in G\).

On the other hand, since \(Mf_2\le 1\), we have by \((\Phi 2)\) and \((\Phi 3)\)

$$\begin{aligned} \Phi \bigl ( x, Mf_2(x)/C_1 \bigr ) \le A_1A_2 \end{aligned}$$
(3.5)

for all \(x \in G\).

By (2.1), (3.4), (3.5) and Lemma 3.1, we obtain

$$\begin{aligned}&\int _0^{2d_G} \frac{\omega (z,r)}{|B(z,r)|} \left( \int _{G\cap B(z, r)}{\overline{\Phi }} \left( x,Mf(x)/(2C_1)\right) \,dx \right) \, \frac{dr}{r} \\&\quad \le \frac{A_2}{2}\biggl \{\int _0^{2d_G} \frac{\omega (z,r)}{|B(z,r)|} \left( \int _{G\cap B(z, r)}\Phi \left( x,Mf_1(x)/C_1\right) \,dx \right) \, \frac{dr}{r} \\&\qquad +\int _0^{2d_G} \frac{\omega (z,r)}{|B(z,r)|} \left( \int _{G\cap B(z, r)}\Phi \left( x,Mf_2(x)/C_1\right) \,dx \right) \, \frac{dr}{r} \biggl \} \\&\quad \le C\left\{ \int _0^{2d_G} \frac{\omega (z,r)}{|B(z,r)|} \left( \int _{G\cap B(z, r)} \left[ M [\Phi _0 \left( \cdot , f( \cdot ) \right) ](x) \right] ^{p_0}\,dx \right) \, \frac{dr}{r} +\int _0^{2d_G} \omega (z,r)\, \frac{dr}{r} \right\} \\&\quad \le C \end{aligned}$$

for all \(z\in G\) since there exists a constant \(C_3>0\) such that

$$\begin{aligned} \int _0^{2d_G} \omega (z,r)\, \frac{dr}{r} =\int _0^{2d_G} r^{-\varepsilon _1}\omega (z,r)\cdot r^{\varepsilon _1}\, \frac{dr}{r} \le C\int _0^{2d_G} r^{\varepsilon _1}\, \frac{dr}{r} \le C_3 \end{aligned}$$
(3.6)

for all \(z\in G\) by (\(\omega 1'\)) and \((\omega 3;\omega _0)\). Thus, this theorem is proved. \(\square \)

4 Sobolev-Type Inequality

We recall the following lemma from [19].

Lemma 4.1

([19, Lemma 5.1]) Let F(xt) be a positive function on \(G \times (0, \infty )\) satisfying the following conditions:

(F1):

\(F(x,\, \cdot \, )\) is continuous on \((0, \infty )\) for each \(x \in G\);

(F2):

there exists a constant \(K_1 \ge 1\) such that

$$\begin{aligned} K_1^{-1} \le F(x,1) \le K_1 \quad \text {for all} \ x \in G; \end{aligned}$$
(F3):

\(t \mapsto t^{-\varepsilon '}F(x,t)\) is uniformly almost increasing for some \(\varepsilon ' >0\); namely there exists a constant \(K_2 \ge 1\) such that

$$\begin{aligned} t_1^{-\varepsilon '}F(x,t_1) \le K_2 t_2^{-\varepsilon '}F(x,t_2) \quad \text {for all} \ x \in G \ \text {whenever} \ 0< t_1 < t_2. \end{aligned}$$

Set

$$\begin{aligned} F^{-1}(x,s) = \sup \{t >0\, ;\, F(x,t) < s \} \end{aligned}$$

for \(x \in G\) and \(s >0\). Then:

(1):

\(F^{-1}(x, \cdot )\) is nondecreasing.

(2):
$$\begin{aligned} F^{-1}(x,\lambda t) \le (K_2 \lambda )^{1/\varepsilon '} F^{-1}(x,t) \end{aligned}$$
(4.1)

for all \(x \in G\), \(t >0\) and \(\lambda \ge 1\).

(3):
$$\begin{aligned} F(x,F^{-1}(x,t)) = t \end{aligned}$$

for all \(x \in G\) and \(t >0\).

(4):
$$\begin{aligned} K_2^{-1/\varepsilon '} t \le F^{-1}(x,F(x,t)) \le K_2^{2/\varepsilon '} t \end{aligned}$$

for all \(x \in G\) and \(t >0\).

(5):
$$\begin{aligned} \min \left\{ 1, \left( \frac{s}{K_1 K_2} \right) ^{1/\varepsilon '} \right\} \le F^{-1}(x,s) \le \max \{1, (K_1 K_2 s)^{1/\varepsilon '} \} \end{aligned}$$

for all \(x \in G\) and \(s>0\).

Remark 4.2

Note that \(F(x,t)=\Phi (x,t)\) is a function satisfying (F1), (F2) and (F3) with \(K_1=A_1, K_2=A_2\) and \(\varepsilon ' =1\).

We consider the following condition:

\((\Phi \omega \alpha )\):

there exist constants \(\varepsilon _2 >0\) and \(A_4\ge 1\) such that

$$\begin{aligned} r_2^{\varepsilon _2+\alpha (x)} \Phi ^{-1}(x,\omega (x,r_2)^{-1}) \le A_4 r_1 ^{\varepsilon _2+\alpha (x)} \Phi ^{-1}(x,\omega (x,r_1 )^{-1}) \end{aligned}$$

for all \(x \in G\) whenever \(0< r_1< r_2 < d_G\).

Lemma 4.3

Suppose \(\Phi (x,t)\) satisfies \((\Phi 3;\infty ;q)\) and \((\Phi 5;\nu )\) for \(q \ge 1\) and \(\nu >0\) satisfying \(\nu \le q/\omega _0\). Assume that \((\Phi \omega \alpha )\) holds. Then there exists a constant \(C >0\) such that

$$\begin{aligned} \int _{G\setminus B(x,\delta )} |x-y|^{\alpha (x)-N}f(y)\, dy \le C \delta ^{\alpha (x)} \Phi ^{-1}(x,\omega (x,\delta )^{-1}) \end{aligned}$$

for all \(x\in G\), \(0<\delta <d_{G}/2\) and nonnegative \(f \in {\mathcal {L}}^{\Phi ,\omega }(G)\) with \(\Vert f\Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)}\le 1\).

Proof

Let f be a nonnegative measurable function with \(\Vert f\Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)}\le 1/2\). Let \(x\in G\) and \(0<\delta <d_{G}/2\). By \((\Phi 3)\) and \((\Phi 3;\infty ;q)\),

$$\begin{aligned} \min \{1, (A_1 A_2)^{-1}s\} \le F^{-1}(x,s) \le \max \{1, (A_1 A_{2,\infty ,q} s)^{1/q}\}; \end{aligned}$$

cf. Lemma 4.1 (5). Set

$$\begin{aligned} c_1= \max \left\{ A_1A_2 {\tilde{c}}_3,\, (A_1A_{2,\infty ,q}{\tilde{c}}_3)^{-1}d_G^{\omega _0} \right\} . \end{aligned}$$

Then we have by (\(\omega 3; \omega _0\)), Lemma 4.1 and the condition \(\nu \le q/\omega _0\)

$$\begin{aligned} \Phi ^{-1}\left( x,c_1\omega (x,|x-y|)^{-1}\right) \ge \min \{1, (A_1 A_2)^{-1} c_1{\tilde{c}}_3^{-1}\} \ge 1 \end{aligned}$$

and

$$\begin{aligned} \Phi ^{-1}\left( x,c_1\omega (x,|x-y|)^{-1}\right)&\le \max \{1, (A_1 A_{2,\infty ,q} c_1{\tilde{c}}_3 |x-y|^{-\omega _0} )^{1/q} \} \\&= (A_1 A_{2,\infty ,q} c_1{\tilde{c}}_3 d_G^{-\omega _0} )^{1/q} (|x-y|/d_G)^{-\omega _0/q} \\&\le (A_1 A_{2,\infty ,q} c_1{\tilde{c}}_3 d_G^{-\omega _0} )^{1/q} (|x-y|/d_G)^{-1/\nu } \end{aligned}$$

for all \(x, y\in G\). Hence,

$$\begin{aligned} |x-y| \le c_2 \left\{ \Phi ^{-1}\left( x,c_1\omega (x,|x-y|)^{-1}\right) \right\} ^{-\nu } \end{aligned}$$

for all \(x, y\in G\), where \(c_2=d_G (A_1A_{2,\infty ,q} c_1 {\tilde{c}}_3 d_G^{-\omega _0})^{\nu /q}\). We find by \((\Phi 3)\), \((\Phi 5;\nu )\) and Lemma 4.1 (3)

$$\begin{aligned}&\int _{G\setminus B(x,\delta )} |x-y|^{\alpha (x)-N}f(y)\, dy \\&\quad \le \int _{G \setminus B(x,\delta )} |x-y|^{\alpha (x)-N} \Phi ^{-1}\left( x,c_1\omega (x,|x-y|)^{-1}\right) \, dy \\&\quad +A_2\int _{G \setminus B(x,\delta )} |x-y|^{\alpha (x)-N}f(y) \\&\quad {}\times \frac{f(y)^{-1}\Phi (y,f(y))}{\left\{ \Phi ^{-1}\left( x,c_1\omega (x,|x-y|)^{-1}\right) \right\} ^{-1} \Phi \left( y, \Phi ^{-1}\left( x,c_1\omega (x,|x-y|)^{-1}\right) \right) }\, dy\\&\quad \le \int _{G \setminus B(x,\delta )} |x-y|^{\alpha (x)-N} \Phi ^{-1}\left( x,c_1\omega (x,|x-y|)^{-1}\right) \, dy \\&\quad +C\int _{G \setminus B(x,\delta )} |x-y|^{\alpha (x)-N}\omega (x,|x-y|) \Phi ^{-1}\left( x,c_1\omega (x,|x-y|)^{-1}\right) \Phi (y,f(y))\, dy\\&\quad = I_1+ C I_2. \end{aligned}$$

Let \(j_0\) be the smallest integer such that \(2^{j_0}\delta \ge d_G\). By \((\omega 1)\), \((\omega 2)\), (4.1) and \((\Phi \omega \alpha )\), we obtain

$$\begin{aligned} I_1&= \sum _{j=1}^{j_0}\int _{G\cap (B(x,2^{j}\delta )\setminus B(x,2^{j-1}\delta ))} |x-y|^{\alpha (x)-N} \Phi ^{-1}\left( x,c_1\omega (x,|x-y|)^{-1}\right) \, dy \\&\le C\sum _{j=1}^{j_0}(2^{j}\delta )^{\alpha (x)} \Phi ^{-1}\left( x,\omega (x,2^{j}\delta )^{-1}\right) \\&\le C \delta ^{\alpha (x)} \Phi ^{-1}(x,\omega (x,\delta )^{-1}) \end{aligned}$$

as in the proof of [29, Lemma 4.2].

For \(I_2\), it follows from \((\Phi \omega \alpha )\), (4.1), \((\omega 1)\) and \((\omega 2)\) that

$$\begin{aligned} I_2&\le C \delta ^{\alpha (x)} \Phi ^{-1}(x,\omega (x,\delta )^{-1}) \int _{G \setminus B(x,\delta )} \frac{\omega (x,|x-y|)}{|B(x,|x-y|)|}\Phi (y,f(y))\, dy \\&\le C\delta ^{\alpha (x)} \Phi ^{-1}(x,\omega (x,\delta )^{-1})\sum _{j=1}^{j_0} \frac{\omega (x,2^j\delta )}{|B(x,2^j\delta )|} \int _{G\cap B(x,2^j\delta )} \Phi (y,f(y))\, dy \\&\le C\delta ^{\alpha (x)} \Phi ^{-1}(x,\omega (x,\delta )^{-1}) \end{aligned}$$

as in the proof of [29, Lemma 4.2]. Thus, the present lemma is proved. \(\square \)

To state our main theorem, we consider a function

$$\begin{aligned} \Psi (x,t) : G \times [0, \infty ) \rightarrow [0, \infty ) \end{aligned}$$

that satisfies \((\Phi 1)\)\((\Phi 3)\) and

\((\Psi \Phi )\):

there exists a constant \(A' \ge 1\) such that

$$\begin{aligned} \Psi \left( x,t \left( \omega ^{-1} \left( x, \Phi (x, t)^{-1} \right) \right) ^{\alpha (x)} \right) \le A'\Phi (x,t) \end{aligned}$$

for all \(x\in G\) and \(t\ge 1\).

Remark 4.4

In [26], we considered the condition like \((\Psi \Phi )\) for Musielak–Orlicz spaces.

We give a Sobolev-type inequality for \(I_{\alpha (\cdot )}f\) of functions in \({\mathcal {L}}^{\Phi ,\omega }(G)\) by Theorem 3.4, as an extension of [32, Theorem 4.4].

Theorem 4.5

Suppose \(\Phi (x,t)\) satisfies \((\Phi 3;0;p)\), \((\Phi 3;\infty ;q)\) and \((\Phi 5;\nu )\) for \(p > 1\), \(q > 1\) and \(\nu >0\) satisfying \(\nu \le q/\omega _0\). Assume that \((\omega 1')\) and \((\Phi \omega \alpha )\) hold. Then there exists a constant \(C>0\) such that

$$\begin{aligned} \Vert I_{\alpha (\cdot )}f\Vert _{{\mathcal {L}}^{\Psi ,\omega }(G)} \le C\Vert f\Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)} \end{aligned}$$

for all \(f\in {\mathcal {L}}^{\Phi ,\omega }(G)\).

Proof

Let f be a nonnegative measurable function on G such that \(\Vert f\Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)}\le 1\). We may assume that

$$\begin{aligned} \sup _{z\in G}\int _0^{2d_G} \frac{\omega (z,r)}{|B(z,r)|} \left( \int _{G\cap B(z, r)}\Phi \left( x,Mf(x)\right) \,dx \right) \, \frac{dr}{r}\le 1 \end{aligned}$$
(4.2)

by Theorem 3.4. Let \(x\in G\) and \(0<\delta <d_G/2\). By Lemma 4.3, we find

$$\begin{aligned} I_{\alpha (\cdot )}f(x)&=\int _{G\cap B(x,\delta )} |x-y|^{\alpha (x)-N}f(y)\, dy +\int _{G\setminus B(x,\delta )} |x-y|^{\alpha (x)-N}f(y)\, dy \\&\le C\left\{ \delta ^{\alpha (x)}Mf(x)+\delta ^{\alpha (x)} \Phi ^{-1}(x,\omega (x,\delta )^{-1}) \right\} . \end{aligned}$$

If \(\omega ^{-1}\left( x, \Phi (x,Mf(x))^{-1}\right) \ge d_G/2\), then, taking \(\delta =d_G/2\), we have \(I_{\alpha (\cdot )}f(x)\le C\) by Lemma 4.1, \((\omega 1)\) and \((\omega 3;\omega _0)\). If \(\omega ^{-1}\left( x, \Phi (x,Mf(x))^{-1}\right) <d_G/2\), then take \(\delta =\omega ^{-1}\left( x, \Phi (x,Mf(x))^{-1}\right) \). Then we have

$$\begin{aligned} I_{\alpha (\cdot )}f(x)\le CMf(x) \left( \omega ^{-1}\left( x, \Phi (x, Mf(x))^{-1} \right) \right) ^{\alpha (x)} \end{aligned}$$

by Lemma 4.1. Therefore, we obtain

$$\begin{aligned} I_{\alpha (\cdot )}f(x) \le C_1' \max \left\{ Mf(x) \left( \omega ^{-1}\left( x, \Phi (x, Mf(x))^{-1} \right) \right) ^{\alpha (x)}, 1 \right\} , \end{aligned}$$

so that by (\(\Psi \Phi \)), we have

$$\begin{aligned} \Psi \left( x, I_{\alpha (\cdot )}f(x)/C_1' \right)&\le C \left\{ \Psi \left( x, Mf(x) \left( \omega ^{-1}\left( x, \Phi (x, Mf(x))^{-1} \right) \right) ^{\alpha (x)} \right) + 1 \right\} \\&\le C \left\{ \Phi \bigl ( x, Mf(x) \bigr ) + 1 \right\} . \end{aligned}$$

Hence, it follows from (4.2) and (3.6) that

$$\begin{aligned}&\int _0^{2d_G} \frac{\omega (z,r)}{|B(z,r)|} \left( \int _{G\cap B(z, r)} \Psi \left( x, I_{\alpha (\cdot )}f(x)/C_1' \right) \,dx \right) \, \frac{dr}{r} \\&\quad \le C\left\{ \int _0^{2d_G} \frac{\omega (z,r)}{|B(z,r)|} \left( \int _{G\cap B(z, r)}\Phi \left( x,Mf(x)\right) \,dx \right) \, \frac{dr}{r} +\int _0^{2d_G} \omega (z,r)\, \frac{dr}{r} \right\} \\&\quad \le C \end{aligned}$$

for all \(z\in G\). Thus, we complete the proof. \(\square \)

Remark 4.6

When \(\Phi (x,t)=t^{p(x)}\), Theorem 4.5 was proved in [32, Theorem 4.4].

Remark 4.7

Let \(\Phi _{p(\cdot ),\{q_j(\cdot )\}}(x,t) = t^{p(x)} \prod _{j=1}^k \bigl ( L_{e}^{(j)}(t) \bigr )^{q_j(x)}\) and \(\omega (x,r) = r^{\sigma (x)} L_{e}(1/r)^{\beta (x)}\).

Set

$$\begin{aligned} \Psi (x,t)= \bigl [ \Phi _{p(\cdot ),\{q_j(\cdot )\}}(x,t) \bigr ]^{p^*(x)/p(x)} L_e(t)^{p^*(x)\alpha (x) \beta (x)/\sigma (x)} , \end{aligned}$$

where \(1/p^*(x)=1/p(x)-\alpha (x)/\sigma (x)\). Then \(\Psi (x,t)\) satisfies condition (\(\Psi \Phi \)) (see [31, Remark 3.14]).

5 Double Phase Functions with Variable Exponents

In this section, let

$$\begin{aligned} \omega (x,r) = r^{\sigma (x)} L_{e}(1/r)^{\beta (x)} \end{aligned}$$

be as in Example 2.1 (Remark 3.2) and let \(p(\cdot )\) and \(q(\cdot )\) be real valued measurable functions on G such that

(P1):

\(1 \le p^- \le p^+ < \infty ,\)

(Q1):

\(1 \le q^- \le q^+ < \infty .\)

We assume that

(P2):

\(p(\cdot )\) is log-Hölder continuous, that is,

$$\begin{aligned} |p(x) - p(y)| \le \frac{C_{p}}{L_{e}(1/|x-y|)} \quad (x,\, y \in G) \end{aligned}$$

with a constant \(C_{p} \ge 0\), and

(Q2):

\(q(\cdot )\) is log-Hölder continuous, that is,

$$\begin{aligned} |q(x) - q(y)| \le \frac{C_{q}}{L_{e}(1/|x-y|)} \quad (x,\, y \in G) \end{aligned}$$

with a constant \(C_{q} \ge 0\).

As an example and application, we consider the case where \(\Phi (x,t)\) is a double phase function with variable exponents given by

$$\begin{aligned} \Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}, \ x \in G, \ t \ge 0 ,\end{aligned}$$

where \(p(x)<q(x)\) for \(x\in G\), \(a(\cdot )\) is nonnegative, bounded and Hölder continuous of order \(\theta \in (0,1]\) (cf. [20, 33]).

This \(\Phi (x,t)\) satisfies \((\Phi 1)\), \((\Phi 2)\), \((\Phi 3;0;p^-)\) and \((\Phi 3;\infty ;p^-)\). \(\Phi (x,t)\) also satisfies \((\Phi 5; \nu )\) for \(\nu \ge \sup _{x\in G_0}(q(x)-p(x))/\theta \); see [20, Lemma 5.1].

Let \(G_0=\{ x \in G: a(x)>0 \}\).

In view of Theorem 3.4, we have the boundedness of the maximal operator on \({\mathcal {L}}^{\Phi ,\omega }(G)\) in the framework of double phase functions \(\Phi \).

Theorem 5.1

If \(p^->1\) and \(\sup _{x\in G_0}(q(x)-p(x))/\theta \le p^-/\omega _0\), then there exists a constant \(C>0\) such that

$$\begin{aligned} \Vert Mf \Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)} \le C \Vert f \Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)} \end{aligned}$$

for all \(f \in {\mathcal {L}}^{\Phi ,\omega }(G)\).

Let \(p^*(x)\) and \(q^*(x)\) be defined by

$$\begin{aligned} \frac{1}{p^*(x)} = \frac{1}{p(x)} - \frac{\alpha (x)}{\sigma (x)} \end{aligned}$$

when \(1/p(x) - \alpha (x)/\sigma (x)>0\), and

$$\begin{aligned} \frac{1}{q^*(x)} = \frac{1}{q(x)} - \frac{\alpha (x)}{\sigma (x)} \end{aligned}$$

when \(1/q(x) - \alpha (x)/\sigma (x)>0\). In this section, set

$$\begin{aligned} \Psi (x,t)&= t^{p^*(x)} L_{e}(t)^{\alpha (x) p^*(x)\beta (x)/\sigma (x)}\\&\quad + \left( a(x)^{1/q(x)} t\right) ^{q^*(x)} L_{e}\left( a(x)^{1/q(x)}t\right) ^{\alpha (x) q^*(x)\beta (x)/\sigma (x)} \end{aligned}$$

for \(x \in G\) and \(t \ge 0\).

Lemma 5.2

([20, Lemma 5.6 (1), (3)])

(1):

If \(\inf _{x\in G_0}(\sigma (x)/q(x) - \alpha (x))>0\) and \(\inf _{x\in G \setminus G_0}(\sigma (x)/p(x) - \alpha (x))>0\), then \((\Phi \omega \alpha )\) holds.

(2):

\(\Psi (x,t)\) satisfies \((\Psi \Phi )\).

Finally, by Lemma 5.2 and Theorem 4.5, we obtain a Sobolev inequality in our setting.

Theorem 5.3

If \(p^->1\), \(\inf _{x\in G_0}(\sigma (x)/q(x) - \alpha (x))>0\), \(\inf _{x\in G \setminus G_0}(\sigma (x)/p(x) - \alpha (x))>0\) and \(\sup _{x\in G_0}(q(x)-p(x))/\theta \le p^-/\omega _0\), then there exists a constant \(C>0\) such that

$$\begin{aligned} \Vert I_{\alpha (\cdot )}f\Vert _{{\mathcal {L}}^{\Psi ,\omega }(G)} \le C\Vert f\Vert _{{\mathcal {L}}^{\Phi ,\omega }(G)} \end{aligned}$$

for all \(f\in {\mathcal {L}}^{\Phi ,\omega }(G)\).