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Abstract
We give Sobolev-type inequalities for variable Riesz potentials Iα(·) f of functions
in Musielak–Orlicz–Morrey spaces of an integral form L�,ω(G). As a corollary, we
give Sobolev-type inequalities on L�,ω(G) for double phase functions �(x, t) =
t p(x) + a(x)tq(x).
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1 Introduction

Let G be an open bounded set in RN . Let α(·) be a measurable function on G such
that

0 < inf
x∈G α(x) ≤ sup

x∈G
α(x) < N .
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We define the Riesz potential of variable order α(·) for a locally integrable function
f on G by

Iα(·) f (x) =
∫
G

|x − y|α(x)−N f (y) dy;

when α(·) is a constant α, this is simply written as Iα f .
Sobolev-type inequalities for Iα f have been established on various function spaces

by many researchers. Sobolev-type inequalities were studied on variable exponent
Lebesgue spaces L p(·) in [7, 9, 11], on two variable exponent Lebesgue spaces
L p(·)(log L)q(·) in [12, 25], on variable exponent Morrey spaces L p(·),ν in [2, 13,
14, 22, 23, 28], on Musielak–Orlicz–Morrey spaces L�,κ in [19, 20].

In the previous paper [32], we gave Sobolev-type inequalities for Iα(·) f of functions
in variable exponent Morrey spaces of an integral form Lp(·),ω(G), as an extension of
[29, Theorem 5.4] from Morrey spaces of an integral form.

In this paper, we establish a Sobolev-type inequality for Iα(·) f of functions in
Musielak–Orlicz–Morrey spaces of an integral formL�,ω(G) defined by general func-
tions �(x, t) and ω(x, r) satisfying certain conditions (Theorem 4.5), as an extension
of [32, Theorem 4.4]. To do this, we apply Hedberg’s method ([17]) and the bound-
edness of the maximal operator M in L�,ω(G) (Theorem 3.4) which is an extension
of [32, Theorem 3.5].

As an application of our general theory, we give Sobolev-type inequalities (Theo-
rem 5.3) in the framework of double phase functions �(x, t) with variable exponents
given by

�(x, t) = t p(x) + a(x)tq(x),

where p(·) and q(·) satisfy log-Hölder conditions, p(x) < q(x) for x ∈ G and a(·) is
nonnegative, bounded and Hölder continuous of order θ ∈ (0, 1]. For the studies by
Mingione and collaborators, see [3, 4, 8]. We refer to [20, 27] for Sobolev’s inequality
and to, e.g., [6, 10, 16, 24, 30, 33] for the recent results.

Throughout the paper, we let C denote various constants independent of the vari-
ables in question and C(a, b, · · · ) be a constant that depends on a, b, · · · only. The
symbol g ∼ h means that C−1h ≤ g ≤ Ch for some constant C > 0.

2 Musielak–Orlicz–Morrey Spaces of an Integral Form

To define the norm of Musielak–Orlicz–Morrey spaces of an integral form, let us
consider a function

�(x, t) : G × [0,∞) → [0,∞)

satisfying the following conditions (�1) – (�3):

(�1) �( · , t) is measurable onG for each t ≥ 0 and�(x, · ) is continuous on [0,∞)

for each x ∈ G;
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(�2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ �(x, 1) ≤ A1 for all x ∈ G;

(�3) t �→ �(x, t)/t is uniformly almost increasing on (0,∞), namely there exists
a constant A2 ≥ 1 such that

�(x, t1)/t1 ≤ A2�(x, t2)/t2 for all x ∈ G whenever 0 < t1 < t2.

We write

φ̄(x, t) = sup
0<s≤t

(�(x, s)/s)

and

�(x, t) =
∫ t

0
φ̄(x, r) dr

for x ∈ G and t ≥ 0. Then �(x, ·) is convex and

�(x, t/2) ≤ �(x, t) ≤ A2�(x, t) (2.1)

for all x ∈ G and t ≥ 0 since φ̄(x, ·) is increasing on (0,∞) for each x ∈ G.
For x ∈ RN and r > 0, we denote by B(x, r) the open ball centered at x with radius

r and dG = sup{|x − y| : x, y ∈ G}. For a set E ⊂ RN , |E | denotes the Lebesgue
measure of E .

We also consider a weight function ω(x, r) : G × (0,∞) → (0,∞) satisfying the
following conditions:

(ω0) ω( · , r) is measurable on G for each r > 0 and ω(x, · ) is continuous on
(0,∞) for each x ∈ G;

(ω1) r �→ ω(x, r) is uniformly almost increasing on (0,∞), namely there exists a
constant c̃1 ≥ 1 such that

ω(x, r1) ≤ c̃1ω(x, r2)

for all x ∈ G whenever 0 < r1 < r2 < ∞;
(ω2) there exists a constant c̃2 > 1 such that

c̃−1
2 ω(x, r) ≤ ω(x, 2r) ≤ c̃2ω(x, r)

for all x ∈ G whenever r > 0;
(ω3;ω0) there exist constants ω0 > 0 and c̃3 ≥ 1 such that

c̃−1
3 rω0 ≤ ω(x, r) ≤ c̃3

for all x ∈ G and 0 < r ≤ 2dG .
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Let f − := infx∈G f (x) and f + := supx∈G f (x) for a measurable function f on
G. Let us write that Lc(t) = log(c + t) for c > 1 and t ≥ 0, L(1)

c (t) = Lc(t),
L( j+1)
c (t) = Lc(L

( j)
c (t)).

Example 2.1 Let σ(·) and β(·) be measurable functions on G such that 0 < σ− ≤
σ+ ≤ ω0 and −c(ω0 − σ(x)) ≤ β(x) ≤ c for all x ∈ G and some constant c > 0.
Then

ω(x, r) = rσ(x)Le(1/r)
β(x)

satisfies (ω0), (ω1), (ω2) and (ω3;ω0).

Given �(x, t) and ω(x, r) as above, we define the L�,ω norm by

‖ f ‖L�,ω(G) = inf

{
λ > 0 ;

sup
x∈G

(∫ 2dG

0

ω(x, r)

|B(x, r)|
(∫

G∩B(x,r)
� (y, | f (y)|/λ) dy

)
dr

r

)
≤ 1

}
,

which is the Luxemburg norm ([18]). The space of all measurable functions f on
G with ‖ f ‖L�,ω(G) < ∞ is denoted by L�,ω(G). The space L�,ω(G) is called a
Musielak–Orlicz–Morrey space of an integral form.Here note that 2dG can be replaced
by κdG with κ > 1. In case �(x, t) = t p(x), L�,ω(G) is denoted by Lp(·),ω(G) for
simplicity. If p(·) ≡ p, then we write Lp(·),ω(G) = Lp,ω(G).

Remark 2.2 If there exists a constant C0 > 0 such that

∫ 2dG

0
ω(x, r)

dr

r
≤ C0

for all x ∈ G, then we see that L�,ω(G) = {0} since
∫ 2dG

0

ω(x, r)

|B(x, r)|
(∫

G∩B(x,r)
� (y, 1) dy

)
dr

r
≤ A1A2

∫ 2dG

0
ω(x, r)

dr

r
≤ A1A2C0

for all x ∈ G by (2.1) and (�2). See also [5, Lemma 1].

We shall also consider the following conditions for �(x, t): Let p ≥ 1, q ≥ 1 and
ν > 0 be given.

(�3; 0; p) t �→ t−p�(x, t) is uniformly almost increasing on (0, 1], namely there
exists a constant A2,0,p ≥ 1 such that

t−p
1 �(x, t1) ≤ A2,0,p t

−p
2 �(x, t2) for all x ∈ G whenever 0 < t1 < t2 ≤ 1;
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(�3;∞; q) t �→ t−q�(x, t) is uniformly almost increasing on [1,∞), namely there
exists a constant A2,∞,q ≥ 1 such that

t−q
1 �(x, t1) ≤ A2,∞,q t

−q
2 �(x, t2) for all x ∈ G whenever 1 ≤ t1 < t2;

(�5; ν) for every γ > 0, there exists a constant Bγ,ν ≥ 1 such that

�(x, t) ≤ Bγ,ν�(y, t)

whenever x, y ∈ G, |x − y| ≤ γ t−ν and t ≥ 1.

Remark 2.3 We refer to [1, p. 2544] and [15, Section 7.3] for (�5; ν). If �(x, t)
satisfies (�3;∞; q), then it satisfies (�3;∞; q ′) for 1 ≤ q ′ ≤ q. If �(x, t) satisfies
(�5; ν), then it satisfies (�5; ν′) for all ν′ ≥ ν.

We give some examples of �(x, t).

Example 2.4 Let p(·) and q j (·), j = 1, . . . , k be given measurable functions on G
such that 1 < p− ≤ p+ < ∞ and −∞ < q−

j ≤ q+
j < ∞, j = 1, . . . k. Then,

�p(·),{q j (·)}(x, t) = t p(x)
k∏
j=1

(
L( j)
e (t)

)q j (x)

satisfies (�1), (�2) and (�3). This function satisfies (�3;∞; q) for 1 ≤ q < p− in
general and for 1 ≤ q ≤ p− in case q−

j ≥ 0 for all j = 1, . . . , k.
Moreover, we see that �p(·),{q j (·)}(x, t) satisfies (�5; ν) for every ν > 0 if p(·) is

log-Hölder continuous, namely

|p(x) − p(y)| ≤ Cp

Le(1/|x − y|) (x, y ∈ G)

with a constant Cp ≥ 0 and q j (·) is ( j + 1)-log-Hölder continuous, namely

|q j (x) − q j (y)| ≤ C j

L( j+1)
e (1/|x − y|)

(x, y ∈ G)

with constants C j ≥ 0 for each j = 1, . . . k.

Example 2.5 Theorem 3.4 applies, e.g., to the following nondoubling functions

�1(t) = ep(x)t − p(x)t − 1, �2(t) = et t p(x), �3(t) = et
p(x) − 1

which satisfy (�1), (�2) and (�3). We refer to [21, Examples 3-5] for the conditions
on p and q which (�3; 0; p) and (�3;∞; q) hold.
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Example 2.6 The double phase function with variable exponents

�(x, t) = t p(x) + a(x)tq(x), x ∈ G, t ≥ 0,

where p(x) < q(x) for x ∈ G, a(·) is a nonnegative, bounded and Hölder continuous
function of order θ ∈ (0, 1], was studied in [20]. We refer to [20, Lemma 5.1] and
Section 5 for the conditions on p(·) and q(·) which (�1), (�2), (�3), (�3; 0; p−),
(�;∞; p−) and (�5; ν) hold.

3 Boundedness of theMaximal Operator

For a locally integrable function f on G, the Hardy-Littlewood maximal function M f
is defined by

M f (x) = sup
r>0

1

|B(x, r)|
∫
G∩B(x,r)

| f (y)| dy.

We know the boundedness of M on Lp,ω(G).

Lemma 3.1 ([32, Lemma 3.2]) Suppose

(ω1′) r �→ r−ε1ω(x, r) is uniformly almost increasing in (0, dG ] for some ε1 > 0.

If p > 1, then there is a constant C > 0 such that

‖M f ‖Lp,ω(G) ≤ C‖ f ‖Lp,ω(G)

for all f ∈ Lp,ω(G).

Remark 3.2 Note that (ω1′) implies (ω1).
Let ω(x, r) = rσ(x)Le(1/r)β(x) be as in Example 2.1. Then note that (ω1′) holds

for 0 < ε1 < σ−.

Lemma 3.3 Suppose �(x, t) satisfies (�3; 0; p), (�3;∞; q) and (�5; ν) for p ≥ 1,
q ≥ 1 and ν > 0 satisfying ν ≤ q/ω0. Set

I ( f ; x, r) = 1

|B(x, r)|
∫
G∩B(x,r)

f (y) dy

and

J ( f ; x, r) = 1

|B(x, r)|
∫
G∩B(x,r)

�
(
y, f (y)

)1/p0 dy

for x ∈ G and 0 < r ≤ dG, where 1 ≤ p0 ≤ min(p, q). Then, given L ≥ 1, there
exist constants C1 = C(L) ≥ 2 and C2 > 0 such that

�
(
x, I ( f ; x, r)/C1

)1/p0 ≤ C2 J ( f ; x, r)
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for all x ∈ G, 0 < r ≤ dG and for all nonnegative measurable functions f on G such
that f (y) ≥ 1 or f (y) = 0 for each y ∈ G and

sup
z∈G

(∫ 2dG

0

ω(z, t)

|B(z, t)|
(∫

G∩B(z,t)
� (y, f (y)) dy

)
dt

t

)
≤ L. (3.1)

Proof Given f as in the statement of the lemma, x ∈ G and 0 < r < dG , set
I = I ( f ; x, r) and J = J ( f ; x, r). Taking f , note that (3.1) implies

ω(x, r)

|B(x, r)|
∫
G∩B(x,r)

� (y, f (y)) dy

≤ C0

∫ 2r

r

ω(x, t)

|B(x, t)|
(∫

G∩B(x,t)
� (y, f (y)) dy

)
dt

t
≤ C0L,

so that

J ≤ C1/p0
0 ω(x, r)−1/p0L1/p0 . (3.2)

We treat only the case J > 1. Since �(x, t)1/p0 → ∞ as t → ∞ by (�3;∞; q)

and p0 ≤ q, there exists K > 1 such that

�(x, K )1/p0 = �(x, 1)1/p0 J . (3.3)

With this K , we have by (�3;∞; q) and p0 ≤ q

∫
G∩B(x,r)

f (y) dy ≤ K |B(x, r)| + A1/p0
2,∞,p0

K
∫
G∩B(x,r)

�
(
y, f (y)

)1/p0
�(y, K )1/p0

dy.

Since K > 1, by (�3;∞; q), we have

�(x, 1)1/p0 J = �(x, K )1/p0 ≥ A−1/p0
2,∞,q K

q/p0�(x, 1)1/p0 ,

so that, in view of (3.2) and (ω3;ω0),

Kq ≤ A2,∞,q J
p0 ≤ C0A2,∞,qω(x, r)−1L ≤ C0A2,∞,q c̃3Lr

−ω0

or r ≤ γ K−q/ω0 with γ = (C0A2,∞,q c̃3L)1/ω0 . Thus, if |x − y| ≤ r , then

|x − y| ≤ γ K−q/ω0 ≤ γ K−ν

since ν ≤ q/ω0. Hence, by (�5; ν) with B1/p0
γ,ν = β

∫
G∩B(x,r)

f (y) dy ≤ K |B(x, r)|
{
1 + (

A1A2,∞,p0

)1/p0 β
}
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as in the proof of [20, Lemma 3.3]. See [21, Lemma 9] and [20, Lemma 3.3] for details.
��

In view of Lemmas 3.1 and 3.3, we show the boundedness of M on L�,ω(G) as an
extension of [32, Theorem 3.5].

Theorem 3.4 Suppose�(x, t) satisfies (�3; 0; p), (�3;∞; q)and (�5; ν) for p > 1,
q > 1 and ν > 0 satisfying ν ≤ q/ω0. Assume that (ω1′) holds. Then there is a
constant C > 0 such that

‖M f ‖L�,ω(G) ≤ C‖ f ‖L�,ω(G)

for all f ∈ L�,ω(G).

Proof Set p0 = min(p, q). Then p0 > 1. Consider the function

�0(x, t) = �(x, t)1/p0 .

Let f be a nonnegative measurable function on G with ‖ f ‖L�,ω(G) ≤ 1/2. Let
f1 = f χ{x∈G: f (x)≥1}, f2 = f − f1. Applying Lemma 3.3 to f1 and L = 1, there exist
constants C1 ≥ 2 and C2 > 0 such that

�0
(
x, M f1(x)/C1

) ≤ C2M[�0
(·, f1(·)

)](x),
so that

�
(
x, M f1(x)/C1

) ≤ C p0
2 [M[�0 (·, f (·))](x)]p0 (3.4)

for all x ∈ G.
On the other hand, since M f2 ≤ 1, we have by (�2) and (�3)

�
(
x, M f2(x)/C1

) ≤ A1A2 (3.5)

for all x ∈ G.
By (2.1), (3.4), (3.5) and Lemma 3.1, we obtain

∫ 2dG

0

ω(z, r)

|B(z, r)|
(∫

G∩B(z,r)
� (x, M f (x)/(2C1)) dx

)
dr

r

≤ A2

2

{∫ 2dG

0

ω(z, r)

|B(z, r)|
(∫

G∩B(z,r)
� (x, M f1(x)/C1) dx

)
dr

r

+
∫ 2dG

0

ω(z, r)

|B(z, r)|
(∫

G∩B(z,r)
� (x, M f2(x)/C1) dx

)
dr

r

}

≤ C

{∫ 2dG

0

ω(z, r)

|B(z, r)|
(∫

G∩B(z,r)
[M[�0 (·, f (·))](x)]p0 dx

)
dr

r
+

∫ 2dG

0
ω(z, r)

dr

r

}

≤ C
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for all z ∈ G since there exists a constant C3 > 0 such that

∫ 2dG

0
ω(z, r)

dr

r
=

∫ 2dG

0
r−ε1ω(z, r) · rε1

dr

r
≤ C

∫ 2dG

0
rε1

dr

r
≤ C3 (3.6)

for all z ∈ G by (ω1′) and (ω3;ω0). Thus, this theorem is proved. ��

4 Sobolev-Type Inequality

We recall the following lemma from [19].

Lemma 4.1 ([19, Lemma 5.1]) Let F(x, t) be a positive function on G × (0,∞)

satisfying the following conditions:

(F1) F(x, · ) is continuous on (0,∞) for each x ∈ G;
(F2) there exists a constant K1 ≥ 1 such that

K−1
1 ≤ F(x, 1) ≤ K1 for all x ∈ G;

(F3) t �→ t−ε′
F(x, t) is uniformly almost increasing for some ε′ > 0; namely there

exists a constant K2 ≥ 1 such that

t−ε′
1 F(x, t1) ≤ K2t

−ε′
2 F(x, t2) for all x ∈ G whenever 0 < t1 < t2.

Set

F−1(x, s) = sup{t > 0 ; F(x, t) < s}

for x ∈ G and s > 0. Then:

(1) F−1(x, ·) is nondecreasing.
(2)

F−1(x, λt) ≤ (K2λ)1/ε
′
F−1(x, t) (4.1)

for all x ∈ G, t > 0 and λ ≥ 1.
(3)

F(x, F−1(x, t)) = t

for all x ∈ G and t > 0.
(4)

K−1/ε′
2 t ≤ F−1(x, F(x, t)) ≤ K 2/ε′

2 t

for all x ∈ G and t > 0.
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(5)

min

{
1,

(
s

K1K2

)1/ε′}
≤ F−1(x, s) ≤ max{1, (K1K2s)

1/ε′ }

for all x ∈ G and s > 0.

Remark 4.2 Note that F(x, t) = �(x, t) is a function satisfying (F1), (F2) and (F3)
with K1 = A1, K2 = A2 and ε′ = 1.

We consider the following condition:

(�ωα) there exist constants ε2 > 0 and A4 ≥ 1 such that

rε2+α(x)
2 �−1(x, ω(x, r2)

−1) ≤ A4r
ε2+α(x)
1 �−1(x, ω(x, r1)

−1)

for all x ∈ G whenever 0 < r1 < r2 < dG .

Lemma 4.3 Suppose �(x, t) satisfies (�3;∞; q) and (�5; ν) for q ≥ 1 and ν > 0
satisfying ν ≤ q/ω0. Assume that (�ωα) holds. Then there exists a constant C > 0
such that

∫
G\B(x,δ)

|x − y|α(x)−N f (y) dy ≤ Cδα(x)�−1(x, ω(x, δ)−1)

for all x ∈ G, 0 < δ < dG/2 and nonnegative f ∈ L�,ω(G) with ‖ f ‖L�,ω(G) ≤ 1.

Proof Let f be a nonnegative measurable function with ‖ f ‖L�,ω(G) ≤ 1/2. Let x ∈ G
and 0 < δ < dG/2. By (�3) and (�3;∞; q),

min{1, (A1A2)
−1s} ≤ F−1(x, s) ≤ max{1, (A1A2,∞,qs)

1/q};

cf. Lemma 4.1 (5). Set

c1 = max
{
A1A2c̃3, (A1A2,∞,q c̃3)

−1dω0
G

}
.

Then we have by (ω3;ω0), Lemma 4.1 and the condition ν ≤ q/ω0

�−1
(
x, c1ω(x, |x − y|)−1

)
≥ min{1, (A1A2)

−1c1c̃
−1
3 } ≥ 1

and

�−1
(
x, c1ω(x, |x − y|)−1

)
≤ max{1, (A1A2,∞,qc1c̃3|x − y|−ω0)1/q}
= (A1A2,∞,qc1c̃3d

−ω0
G )1/q(|x − y|/dG)−ω0/q

≤ (A1A2,∞,qc1c̃3d
−ω0
G )1/q(|x − y|/dG)−1/ν
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for all x, y ∈ G. Hence,

|x − y| ≤ c2
{
�−1

(
x, c1ω(x, |x − y|)−1

)}−ν

for all x, y ∈ G, where c2 = dG(A1A2,∞,qc1c̃3d
−ω0
G )ν/q . We find by (�3), (�5; ν)

and Lemma 4.1 (3)

∫
G\B(x,δ)

|x − y|α(x)−N f (y) dy

≤
∫
G\B(x,δ)

|x − y|α(x)−N�−1
(
x, c1ω(x, |x − y|)−1

)
dy

+ A2

∫
G\B(x,δ)

|x − y|α(x)−N f (y)

× f (y)−1�(y, f (y)){
�−1

(
x, c1ω(x, |x − y|)−1

)}−1
�

(
y,�−1

(
x, c1ω(x, |x − y|)−1

)) dy

≤
∫
G\B(x,δ)

|x − y|α(x)−N�−1
(
x, c1ω(x, |x − y|)−1

)
dy

+ C
∫
G\B(x,δ)

|x − y|α(x)−Nω(x, |x − y|)�−1
(
x, c1ω(x, |x − y|)−1

)
�(y, f (y)) dy

= I1 + C I2.

Let j0 be the smallest integer such that 2 j0δ ≥ dG . By (ω1), (ω2), (4.1) and (�ωα),
we obtain

I1 =
j0∑
j=1

∫
G∩(B(x,2 j δ)\B(x,2 j−1δ))

|x − y|α(x)−N�−1
(
x, c1ω(x, |x − y|)−1

)
dy

≤ C
j0∑
j=1

(2 jδ)α(x)�−1
(
x, ω(x, 2 jδ)−1

)

≤ Cδα(x)�−1(x, ω(x, δ)−1)

as in the proof of [29, Lemma 4.2].
For I2, it follows from (�ωα), (4.1), (ω1) and (ω2) that

I2 ≤ Cδα(x)�−1(x, ω(x, δ)−1)

∫
G\B(x,δ)

ω(x, |x − y|)
|B(x, |x − y|)|�(y, f (y)) dy

≤ Cδα(x)�−1(x, ω(x, δ)−1)

j0∑
j=1

ω(x, 2 jδ)

|B(x, 2 jδ)|
∫
G∩B(x,2 j δ)

�(y, f (y)) dy

≤ Cδα(x)�−1(x, ω(x, δ)−1)

as in the proof of [29, Lemma 4.2]. Thus, the present lemma is proved. ��
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To state our main theorem, we consider a function

�(x, t) : G × [0,∞) → [0,∞)

that satisfies (�1) – (�3) and

(��) there exists a constant A′ ≥ 1 such that

�

(
x, t

(
ω−1

(
x,�(x, t)−1

))α(x)
)

≤ A′�(x, t)

for all x ∈ G and t ≥ 1.

Remark 4.4 In [26], we considered the condition like (��) for Musielak–Orlicz
spaces.

We give a Sobolev-type inequality for Iα(·) f of functions in L�,ω(G) by Theorem
3.4, as an extension of [32, Theorem 4.4].

Theorem 4.5 Suppose�(x, t) satisfies (�3; 0; p), (�3;∞; q)and (�5; ν) for p > 1,
q > 1 and ν > 0 satisfying ν ≤ q/ω0. Assume that (ω1′) and (�ωα) hold. Then there
exists a constant C > 0 such that

‖Iα(·) f ‖L�,ω(G) ≤ C‖ f ‖L�,ω(G)

for all f ∈ L�,ω(G).

Proof Let f be a nonnegative measurable function on G such that ‖ f ‖L�,ω(G) ≤ 1.
We may assume that

sup
z∈G

∫ 2dG

0

ω(z, r)

|B(z, r)|
(∫

G∩B(z,r)
� (x, M f (x)) dx

)
dr

r
≤ 1 (4.2)

by Theorem 3.4. Let x ∈ G and 0 < δ < dG/2. By Lemma 4.3, we find

Iα(·) f (x) =
∫
G∩B(x,δ)

|x − y|α(x)−N f (y) dy +
∫
G\B(x,δ)

|x − y|α(x)−N f (y) dy

≤ C
{
δα(x)M f (x) + δα(x)�−1(x, ω(x, δ)−1)

}
.

If ω−1
(
x,�(x, M f (x))−1

) ≥ dG/2, then, taking δ = dG/2, we have Iα(·) f (x) ≤ C
by Lemma 4.1, (ω1) and (ω3;ω0). If ω−1

(
x,�(x, M f (x))−1

)
< dG/2, then take

δ = ω−1
(
x,�(x, M f (x))−1

)
. Then we have

Iα(·) f (x) ≤ CM f (x)
(
ω−1

(
x,�(x, M f (x))−1

))α(x)
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by Lemma 4.1. Therefore, we obtain

Iα(·) f (x) ≤ C ′
1 max

{
M f (x)

(
ω−1

(
x,�(x, M f (x))−1

))α(x)
, 1

}
,

so that by (��), we have

�
(
x, Iα(·) f (x)/C ′

1

) ≤ C

{
�

(
x, M f (x)

(
ω−1

(
x,�(x, M f (x))−1

))α(x)
)

+ 1

}

≤ C
{
�

(
x, M f (x)

) + 1
}
.

Hence, it follows from (4.2) and (3.6) that

∫ 2dG

0

ω(z, r)

|B(z, r)|
(∫

G∩B(z,r)
�

(
x, Iα(·) f (x)/C ′

1

)
dx

)
dr

r

≤ C

{∫ 2dG

0

ω(z, r)

|B(z, r)|
(∫

G∩B(z,r)
� (x, M f (x)) dx

)
dr

r
+

∫ 2dG

0
ω(z, r)

dr

r

}

≤ C

for all z ∈ G. Thus, we complete the proof. ��
Remark 4.6 When �(x, t) = t p(x), Theorem 4.5 was proved in [32, Theorem 4.4].

Remark 4.7 Let �p(·),{q j (·)}(x, t) = t p(x)
∏k

j=1

(
L( j)
e (t)

)q j (x) and ω(x, r) =
rσ(x)Le(1/r)β(x).

Set

�(x, t) = [
�p(·),{q j (·)}(x, t)

]p∗(x)/p(x)
Le(t)

p∗(x)α(x)β(x)/σ (x),

where 1/p∗(x) = 1/p(x) − α(x)/σ (x). Then �(x, t) satisfies condition (��) (see
[31, Remark 3.14]).

5 Double Phase Functions with Variable Exponents

In this section, let

ω(x, r) = rσ(x)Le(1/r)
β(x)

be as in Example 2.1 (Remark 3.2) and let p(·) and q(·) be real valued measurable
functions on G such that

(P1) 1 ≤ p− ≤ p+ < ∞,

(Q1) 1 ≤ q− ≤ q+ < ∞.

We assume that

(P2) p(·) is log-Hölder continuous, that is,
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|p(x) − p(y)| ≤ Cp

Le(1/|x − y|) (x, y ∈ G)

with a constant Cp ≥ 0, and
(Q2) q(·) is log-Hölder continuous, that is,

|q(x) − q(y)| ≤ Cq

Le(1/|x − y|) (x, y ∈ G)

with a constant Cq ≥ 0.

As an example and application, we consider the case where �(x, t) is a double
phase function with variable exponents given by

�(x, t) = t p(x) + a(x)tq(x), x ∈ G, t ≥ 0,

where p(x) < q(x) for x ∈ G, a(·) is nonnegative, bounded and Hölder continuous
of order θ ∈ (0, 1] (cf. [20, 33]).

This �(x, t) satisfies (�1), (�2), (�3; 0; p−) and (�3;∞; p−). �(x, t) also
satisfies (�5; ν) for ν ≥ supx∈G0

(q(x) − p(x))/θ ; see [20, Lemma 5.1].
Let G0 = {x ∈ G : a(x) > 0}.
In view of Theorem 3.4, we have the boundedness of the maximal operator on

L�,ω(G) in the framework of double phase functions �.

Theorem 5.1 If p− > 1 and supx∈G0
(q(x) − p(x))/θ ≤ p−/ω0, then there exists a

constant C > 0 such that

‖M f ‖L�,ω(G) ≤ C‖ f ‖L�,ω(G)

for all f ∈ L�,ω(G).

Let p∗(x) and q∗(x) be defined by

1

p∗(x)
= 1

p(x)
− α(x)

σ (x)

when 1/p(x) − α(x)/σ (x) > 0, and

1

q∗(x)
= 1

q(x)
− α(x)

σ (x)

when 1/q(x) − α(x)/σ (x) > 0. In this section, set

�(x, t) = t p
∗(x)Le(t)

α(x)p∗(x)β(x)/σ (x)

+
(
a(x)1/q(x)t

)q∗(x)
Le

(
a(x)1/q(x)t

)α(x)q∗(x)β(x)/σ (x)

for x ∈ G and t ≥ 0.
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Lemma 5.2 ([20, Lemma 5.6 (1), (3)])

(1) If infx∈G0(σ (x)/q(x) − α(x)) > 0 and infx∈G\G0(σ (x)/p(x) − α(x)) > 0,
then (�ωα) holds.

(2) �(x, t) satisfies (��).

Finally, by Lemma 5.2 and Theorem 4.5, we obtain a Sobolev inequality in our
setting.

Theorem 5.3 If p− > 1, infx∈G0(σ (x)/q(x) − α(x)) > 0, infx∈G\G0(σ (x)/p(x) −
α(x)) > 0 and supx∈G0

(q(x)− p(x))/θ ≤ p−/ω0, then there exists a constant C > 0
such that

‖Iα(·) f ‖L�,ω(G) ≤ C‖ f ‖L�,ω(G)

for all f ∈ L�,ω(G).
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