

Sobolev-Type Inequalities on Musielak–Orlicz–Morrey Spaces of an Integral Form

Takao Ohno¹ · Tetsu Shimomura²

Received: 4 July 2022 / Revised: 21 October 2022 / Accepted: 24 October 2022 / Published online: 28 November 2022 © The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2022

Abstract

We give Sobolev-type inequalities for variable Riesz potentials $I_{\alpha(\cdot)} f$ of functions in Musielak–Orlicz–Morrey spaces of an integral form $\mathcal{L}^{\Phi,\omega}(G)$. As a corollary, we give Sobolev-type inequalities on $\mathcal{L}^{\Phi,\omega}(G)$ for double phase functions $\Phi(x, t) = t^{p(x)} + a(x)t^{q(x)}$.

Keywords Riesz potentials · Maximal functions · Sobolev's inequality · Musielak–Orlicz–Morrey spaces · Double phase functions

Mathematics Subject Classification 46E30 · 42B25

1 Introduction

Let G be an open bounded set in \mathbf{R}^N . Let $\alpha(\cdot)$ be a measurable function on G such that

 $0 < \inf_{x \in G} \alpha(x) \le \sup_{x \in G} \alpha(x) < N.$

Communicated by Yoshihiro Sawano.

☑ Takao Ohno t-ohno@oita-u.ac.jp

> Tetsu Shimomura tshimo@hiroshima-u.ac.jp

¹ Faculty of Education, Oita University, Dannoharu Oita-city 870-1192, Japan

² Department of Mathematics, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima 739-8524, Japan We define the Riesz potential of variable order $\alpha(\cdot)$ for a locally integrable function *f* on *G* by

$$I_{\alpha(\cdot)}f(x) = \int_G |x-y|^{\alpha(x)-N} f(y) \, dy;$$

when $\alpha(\cdot)$ is a constant α , this is simply written as $I_{\alpha} f$.

Sobolev-type inequalities for $I_{\alpha} f$ have been established on various function spaces by many researchers. Sobolev-type inequalities were studied on variable exponent Lebesgue spaces $L^{p(\cdot)}$ in [7, 9, 11], on two variable exponent Lebesgue spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$ in [12, 25], on variable exponent Morrey spaces $L^{p(\cdot),\nu}$ in [2, 13, 14, 22, 23, 28], on Musielak–Orlicz–Morrey spaces $L^{\Phi,\kappa}$ in [19, 20].

In the previous paper [32], we gave Sobolev-type inequalities for $I_{\alpha(\cdot)} f$ of functions in variable exponent Morrey spaces of an integral form $\mathcal{L}^{p(\cdot),\omega}(G)$, as an extension of [29, Theorem 5.4] from Morrey spaces of an integral form.

In this paper, we establish a Sobolev-type inequality for $I_{\alpha(\cdot)}f$ of functions in Musielak–Orlicz–Morrey spaces of an integral form $\mathcal{L}^{\Phi,\omega}(G)$ defined by general functions $\Phi(x, t)$ and $\omega(x, r)$ satisfying certain conditions (Theorem 4.5), as an extension of [32, Theorem 4.4]. To do this, we apply Hedberg's method ([17]) and the bound-edness of the maximal operator M in $\mathcal{L}^{\Phi,\omega}(G)$ (Theorem 3.4) which is an extension of [32, Theorem 3.5].

As an application of our general theory, we give Sobolev-type inequalities (Theorem 5.3) in the framework of double phase functions $\Phi(x, t)$ with variable exponents given by

$$\Phi(x,t) = t^{p(x)} + a(x)t^{q(x)},$$

where $p(\cdot)$ and $q(\cdot)$ satisfy log-Hölder conditions, p(x) < q(x) for $x \in G$ and $a(\cdot)$ is nonnegative, bounded and Hölder continuous of order $\theta \in (0, 1]$. For the studies by Mingione and collaborators, see [3, 4, 8]. We refer to [20, 27] for Sobolev's inequality and to, e.g., [6, 10, 16, 24, 30, 33] for the recent results.

Throughout the paper, we let *C* denote various constants independent of the variables in question and $C(a, b, \dots)$ be a constant that depends on a, b, \dots only. The symbol $g \sim h$ means that $C^{-1}h \leq g \leq Ch$ for some constant C > 0.

2 Musielak–Orlicz–Morrey Spaces of an Integral Form

To define the norm of Musielak–Orlicz–Morrey spaces of an integral form, let us consider a function

$$\Phi(x,t): G \times [0,\infty) \to [0,\infty)$$

satisfying the following conditions $(\Phi 1) - (\Phi 3)$:

(Φ 1) $\Phi(\cdot, t)$ is measurable on *G* for each $t \ge 0$ and $\Phi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in G$;

(Φ 2) there exists a constant $A_1 \ge 1$ such that

$$A_1^{-1} \leq \Phi(x, 1) \leq A_1$$
 for all $x \in G$;

(Φ 3) $t \mapsto \Phi(x, t)/t$ is uniformly almost increasing on $(0, \infty)$, namely there exists a constant $A_2 \ge 1$ such that

$$\Phi(x, t_1)/t_1 \le A_2 \Phi(x, t_2)/t_2$$
 for all $x \in G$ whenever $0 < t_1 < t_2$.

We write

$$\bar{\phi}(x,t) = \sup_{0 < s \le t} (\Phi(x,s)/s)$$

and

$$\overline{\Phi}(x,t) = \int_0^t \overline{\phi}(x,r) \, dr$$

for $x \in G$ and $t \ge 0$. Then $\overline{\Phi}(x, \cdot)$ is convex and

$$\Phi(x, t/2) \le \overline{\Phi}(x, t) \le A_2 \Phi(x, t) \tag{2.1}$$

for all $x \in G$ and $t \ge 0$ since $\overline{\phi}(x, \cdot)$ is increasing on $(0, \infty)$ for each $x \in G$.

For $x \in \mathbf{R}^N$ and r > 0, we denote by B(x, r) the open ball centered at x with radius r and $d_G = \sup\{|x - y| : x, y \in G\}$. For a set $E \subset \mathbf{R}^N$, |E| denotes the Lebesgue measure of E.

We also consider a weight function $\omega(x, r) : G \times (0, \infty) \to (0, \infty)$ satisfying the following conditions:

- (ω 0) $\omega(\cdot, r)$ is measurable on G for each r > 0 and $\omega(x, \cdot)$ is continuous on $(0, \infty)$ for each $x \in G$;
- (ω 1) $r \mapsto \omega(x, r)$ is uniformly almost increasing on $(0, \infty)$, namely there exists a constant $\tilde{c}_1 \ge 1$ such that

$$\omega(x, r_1) \le \tilde{c}_1 \omega(x, r_2)$$

for all $x \in G$ whenever $0 < r_1 < r_2 < \infty$; (ω 2) there exists a constant $\tilde{c}_2 > 1$ such that

$$\tilde{c}_2^{-1}\omega(x,r) \le \omega(x,2r) \le \tilde{c}_2\omega(x,r)$$

for all $x \in G$ whenever r > 0;

 $(\omega 3; \omega_0)$ there exist constants $\omega_0 > 0$ and $\tilde{c}_3 \ge 1$ such that

$$\tilde{c}_3^{-1}r^{\omega_0} \le \omega(x,r) \le \tilde{c}_3$$

for all $x \in G$ and $0 < r \leq 2d_G$.

Let $f^- := \inf_{x \in G} f(x)$ and $f^+ := \sup_{x \in G} f(x)$ for a measurable function f on G. Let us write that $L_c(t) = \log(c+t)$ for c > 1 and $t \ge 0$, $L_c^{(1)}(t) = L_c(t)$, $L_c^{(j+1)}(t) = L_c(L_c^{(j)}(t))$.

Example 2.1 Let $\sigma(\cdot)$ and $\beta(\cdot)$ be measurable functions on G such that $0 < \sigma^- \le \sigma^+ \le \omega_0$ and $-c(\omega_0 - \sigma(x)) \le \beta(x) \le c$ for all $x \in G$ and some constant c > 0. Then

$$\omega(x,r) = r^{\sigma(x)} L_e (1/r)^{\beta(x)}$$

satisfies (ω 0), (ω 1), (ω 2) and (ω 3; ω ₀).

Given $\Phi(x, t)$ and $\omega(x, r)$ as above, we define the $\mathcal{L}^{\Phi, \omega}$ norm by

$$\begin{split} \|f\|_{\mathcal{L}^{\Phi,\omega}(G)} &= \inf \left\{ \lambda > 0 \, ; \\ \sup_{x \in G} \left(\int_0^{2d_G} \frac{\omega(x,r)}{|B(x,r)|} \left(\int_{G \cap B(x,r)} \overline{\Phi}\left(y, |f(y)|/\lambda\right) \, dy \right) \, \frac{dr}{r} \right) \leq 1 \right\}, \end{split}$$

which is the Luxemburg norm ([18]). The space of all measurable functions f on G with $||f||_{\mathcal{L}^{\Phi,\omega}(G)} < \infty$ is denoted by $\mathcal{L}^{\Phi,\omega}(G)$. The space $\mathcal{L}^{\Phi,\omega}(G)$ is called a Musielak–Orlicz–Morrey space of an integral form. Here note that $2d_G$ can be replaced by κd_G with $\kappa > 1$. In case $\Phi(x, t) = t^{p(x)}$, $\mathcal{L}^{\Phi,\omega}(G)$ is denoted by $\mathcal{L}^{p(\cdot),\omega}(G)$ for simplicity. If $p(\cdot) \equiv p$, then we write $\mathcal{L}^{p(\cdot),\omega}(G) = \mathcal{L}^{p,\omega}(G)$.

Remark 2.2 If there exists a constant $C_0 > 0$ such that

$$\int_0^{2d_G} \omega(x,r) \, \frac{dr}{r} \le C_0$$

for all $x \in G$, then we see that $\mathcal{L}^{\Phi,\omega}(G) \neq \{0\}$ since

$$\int_0^{2d_G} \frac{\omega(x,r)}{|B(x,r)|} \left(\int_{G \cap B(x,r)} \overline{\Phi}(y,1) \ dy \right) \frac{dr}{r} \le A_1 A_2 \int_0^{2d_G} \omega(x,r) \ \frac{dr}{r} \le A_1 A_2 C_0$$

for all $x \in G$ by (2.1) and (Φ 2). See also [5, Lemma 1].

We shall also consider the following conditions for $\Phi(x, t)$: Let $p \ge 1, q \ge 1$ and $\nu > 0$ be given.

 $(\Phi 3; 0; p)$ $t \mapsto t^{-p} \Phi(x, t)$ is uniformly almost increasing on (0, 1], namely there exists a constant $A_{2,0,p} \ge 1$ such that

$$t_1^{-p} \Phi(x, t_1) \le A_{2,0,p} t_2^{-p} \Phi(x, t_2)$$
 for all $x \in G$ whenever $0 < t_1 < t_2 \le 1$;

 $(\Phi 3; \infty; q)$ $t \mapsto t^{-q} \Phi(x, t)$ is uniformly almost increasing on $[1, \infty)$, namely there exists a constant $A_{2,\infty,q} \ge 1$ such that

$$t_1^{-q} \Phi(x, t_1) \le A_{2,\infty,q} t_2^{-q} \Phi(x, t_2)$$
 for all $x \in G$ whenever $1 \le t_1 < t_2$;

(Φ 5; ν) for every $\gamma > 0$, there exists a constant $B_{\gamma,\nu} \ge 1$ such that

$$\Phi(x,t) \le B_{\gamma,\nu} \Phi(y,t)$$

whenever
$$x, y \in G$$
, $|x - y| \le \gamma t^{-\nu}$ and $t \ge 1$.

Remark 2.3 We refer to [1, p. 2544] and [15, Section 7.3] for $(\Phi 5; \nu)$. If $\Phi(x, t)$ satisfies $(\Phi 3; \infty; q)$, then it satisfies $(\Phi 3; \infty; q')$ for $1 \le q' \le q$. If $\Phi(x, t)$ satisfies $(\Phi 5; \nu)$, then it satisfies $(\Phi 5; \nu')$ for all $\nu' \ge \nu$.

We give some examples of $\Phi(x, t)$.

Example 2.4 Let $p(\cdot)$ and $q_j(\cdot)$, j = 1, ..., k be given measurable functions on G such that $1 < p^- \le p^+ < \infty$ and $-\infty < q_j^- \le q_j^+ < \infty$, j = 1, ..., k. Then,

$$\Phi_{p(\cdot),\{q_j(\cdot)\}}(x,t) = t^{p(x)} \prod_{j=1}^k \left(L_e^{(j)}(t) \right)^{q_j(x)}$$

satisfies (Φ 1), (Φ 2) and (Φ 3). This function satisfies (Φ 3; ∞ ; q) for $1 \le q < p^-$ in general and for $1 \le q \le p^-$ in case $q_i^- \ge 0$ for all j = 1, ..., k.

Moreover, we see that $\Phi_{p(\cdot),\{q_j(\cdot)\}}(x, t)$ satisfies $(\Phi 5; \nu)$ for every $\nu > 0$ if $p(\cdot)$ is log-Hölder continuous, namely

$$|p(x) - p(y)| \le \frac{C_p}{L_e(1/|x - y|)} \quad (x, y \in G)$$

with a constant $C_p \ge 0$ and $q_j(\cdot)$ is (j + 1)-log-Hölder continuous, namely

$$|q_j(x) - q_j(y)| \le \frac{C_j}{L_e^{(j+1)}(1/|x-y|)}$$
 $(x, y \in G)$

with constants $C_j \ge 0$ for each $j = 1, \ldots k$.

Example 2.5 Theorem 3.4 applies, e.g., to the following nondoubling functions

$$\Phi_1(t) = e^{p(x)t} - p(x)t - 1, \ \Phi_2(t) = e^t t^{p(x)}, \ \Phi_3(t) = e^{t^{p(x)}} - 1$$

which satisfy $(\Phi 1)$, $(\Phi 2)$ and $(\Phi 3)$. We refer to [21, Examples 3-5] for the conditions on *p* and *q* which $(\Phi 3; 0; p)$ and $(\Phi 3; \infty; q)$ hold.

Example 2.6 The double phase function with variable exponents

$$\Phi(x,t) = t^{p(x)} + a(x)t^{q(x)}, \ x \in G, \ t \ge 0,$$

where p(x) < q(x) for $x \in G$, $a(\cdot)$ is a nonnegative, bounded and Hölder continuous function of order $\theta \in (0, 1]$, was studied in [20]. We refer to [20, Lemma 5.1] and Section 5 for the conditions on $p(\cdot)$ and $q(\cdot)$ which (Φ 1), (Φ 2), (Φ 3), (Φ 3; 0; p^-), (Φ ; ∞ ; p^-) and (Φ 5; ν) hold.

3 Boundedness of the Maximal Operator

For a locally integrable function f on G, the Hardy-Littlewood maximal function Mf is defined by

$$Mf(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{G \cap B(x,r)} |f(y)| \, dy.$$

We know the boundedness of *M* on $\mathcal{L}^{p,\omega}(G)$.

Lemma 3.1 ([32, Lemma 3.2]) Suppose

 $(\omega 1')$ $r \mapsto r^{-\varepsilon_1} \omega(x, r)$ is uniformly almost increasing in $(0, d_G]$ for some $\varepsilon_1 > 0$. If p > 1, then there is a constant C > 0 such that

$$\|Mf\|_{\mathcal{L}^{p,\omega}(G)} \le C \|f\|_{\mathcal{L}^{p,\omega}(G)}$$

for all $f \in \mathcal{L}^{p,\omega}(G)$.

Remark 3.2 Note that $(\omega 1')$ implies $(\omega 1)$.

Let $\omega(x, r) = r^{\sigma(x)} L_e(1/r)^{\beta(x)}$ be as in Example 2.1. Then note that $(\omega 1')$ holds for $0 < \varepsilon_1 < \sigma^-$.

Lemma 3.3 Suppose $\Phi(x, t)$ satisfies $(\Phi 3; 0; p)$, $(\Phi 3; \infty; q)$ and $(\Phi 5; v)$ for $p \ge 1$, $q \ge 1$ and v > 0 satisfying $v \le q/\omega_0$. Set

$$I(f; x, r) = \frac{1}{|B(x, r)|} \int_{G \cap B(x, r)} f(y) \, dy$$

and

$$J(f; x, r) = \frac{1}{|B(x, r)|} \int_{G \cap B(x, r)} \Phi(y, f(y))^{1/p_0} dy$$

for $x \in G$ and $0 < r \le d_G$, where $1 \le p_0 \le \min(p, q)$. Then, given $L \ge 1$, there exist constants $C_1 = C(L) \ge 2$ and $C_2 > 0$ such that

$$\Phi(x, I(f; x, r)/C_1)^{1/p_0} \le C_2 J(f; x, r)$$

🖉 Springer

for all $x \in G$, $0 < r \le d_G$ and for all nonnegative measurable functions f on G such that $f(y) \ge 1$ or f(y) = 0 for each $y \in G$ and

$$\sup_{z \in G} \left(\int_0^{2d_G} \frac{\omega(z,t)}{|B(z,t)|} \left(\int_{G \cap B(z,t)} \Phi(y,f(y)) \, dy \right) \frac{dt}{t} \right) \le L. \tag{3.1}$$

Proof Given f as in the statement of the lemma, $x \in G$ and $0 < r < d_G$, set I = I(f; x, r) and J = J(f; x, r). Taking f, note that (3.1) implies

$$\frac{\omega(x,r)}{|B(x,r)|} \int_{G\cap B(x,r)} \Phi(y, f(y)) dy$$

$$\leq C_0 \int_r^{2r} \frac{\omega(x,t)}{|B(x,t)|} \left(\int_{G\cap B(x,t)} \Phi(y, f(y)) dy \right) \frac{dt}{t} \leq C_0 L,$$

so that

$$J \le C_0^{1/p_0} \omega(x, r)^{-1/p_0} L^{1/p_0}.$$
(3.2)

We treat only the case J > 1. Since $\Phi(x, t)^{1/p_0} \to \infty$ as $t \to \infty$ by $(\Phi 3; \infty; q)$ and $p_0 \le q$, there exists K > 1 such that

$$\Phi(x, K)^{1/p_0} = \Phi(x, 1)^{1/p_0} J.$$
(3.3)

With this *K*, we have by $(\Phi 3; \infty; q)$ and $p_0 \le q$

$$\int_{G \cap B(x,r)} f(y) \, dy \le K |B(x,r)| + A_{2,\infty,p_0}^{1/p_0} K \int_{G \cap B(x,r)} \frac{\Phi(y,f(y))^{1/p_0}}{\Phi(y,K)^{1/p_0}} \, dy.$$

Since K > 1, by $(\Phi 3; \infty; q)$, we have

$$\Phi(x,1)^{1/p_0}J = \Phi(x,K)^{1/p_0} \ge A_{2,\infty,q}^{-1/p_0}K^{q/p_0}\Phi(x,1)^{1/p_0},$$

so that, in view of (3.2) and (ω 3; ω_0),

$$K^q \le A_{2,\infty,q} J^{p_0} \le C_0 A_{2,\infty,q} \omega(x,r)^{-1} L \le C_0 A_{2,\infty,q} \tilde{c}_3 L r^{-\omega_0}$$

or $r \leq \gamma K^{-q/\omega_0}$ with $\gamma = (C_0 A_{2,\infty,q} \tilde{c}_3 L)^{1/\omega_0}$. Thus, if $|x - y| \leq r$, then

$$|x - y| \le \gamma K^{-q/\omega_0} \le \gamma K^{-\nu}$$

since $\nu \leq q/\omega_0$. Hence, by ($\Phi 5$; ν) with $B_{\gamma,\nu}^{1/p_0} = \beta$

$$\int_{G \cap B(x,r)} f(y) \, dy \le K |B(x,r)| \left\{ 1 + \left(A_1 A_{2,\infty,p_0} \right)^{1/p_0} \beta \right\}$$

Deringer

as in the proof of [20, Lemma 3.3]. See [21, Lemma 9] and [20, Lemma 3.3] for details.

In view of Lemmas 3.1 and 3.3, we show the boundedness of M on $\mathcal{L}^{\Phi,\omega}(G)$ as an extension of [32, Theorem 3.5].

Theorem 3.4 Suppose $\Phi(x, t)$ satisfies $(\Phi 3; 0; p)$, $(\Phi 3; \infty; q)$ and $(\Phi 5; v)$ for p > 1, q > 1 and v > 0 satisfying $v \le q/\omega_0$. Assume that $(\omega 1')$ holds. Then there is a constant C > 0 such that

$$\|Mf\|_{\mathcal{L}^{\Phi,\omega}(G)} \le C \|f\|_{\mathcal{L}^{\Phi,\omega}(G)}$$

for all $f \in \mathcal{L}^{\Phi,\omega}(G)$.

Proof Set $p_0 = \min(p, q)$. Then $p_0 > 1$. Consider the function

$$\Phi_0(x,t) = \Phi(x,t)^{1/p_0}.$$

Let *f* be a nonnegative measurable function on *G* with $||f||_{\mathcal{L}^{\Phi,\omega}(G)} \leq 1/2$. Let $f_1 = f \chi_{\{x \in G: f(x) \geq 1\}}, f_2 = f - f_1$. Applying Lemma 3.3 to f_1 and L = 1, there exist constants $C_1 \geq 2$ and $C_2 > 0$ such that

$$\Phi_0(x, Mf_1(x)/C_1) \leq C_2 M[\Phi_0(\cdot, f_1(\cdot))](x),$$

so that

$$\Phi(x, Mf_1(x)/C_1) \le C_2^{p_0} [M[\Phi_0(\cdot, f(\cdot))](x)]^{p_0}$$
(3.4)

for all $x \in G$.

On the other hand, since $Mf_2 \le 1$, we have by ($\Phi 2$) and ($\Phi 3$)

$$\Phi\left(x, Mf_2(x)/C_1\right) \le A_1 A_2 \tag{3.5}$$

for all $x \in G$.

By (2.1), (3.4), (3.5) and Lemma 3.1, we obtain

$$\begin{split} &\int_{0}^{2d_{G}} \frac{\omega(z,r)}{|B(z,r)|} \left(\int_{G \cap B(z,r)} \overline{\Phi} \left(x, Mf(x) / (2C_{1}) \right) \, dx \right) \frac{dr}{r} \\ &\leq \frac{A_{2}}{2} \left\{ \int_{0}^{2d_{G}} \frac{\omega(z,r)}{|B(z,r)|} \left(\int_{G \cap B(z,r)} \Phi \left(x, Mf_{1}(x) / C_{1} \right) \, dx \right) \frac{dr}{r} \\ &+ \int_{0}^{2d_{G}} \frac{\omega(z,r)}{|B(z,r)|} \left(\int_{G \cap B(z,r)} \Phi \left(x, Mf_{2}(x) / C_{1} \right) \, dx \right) \frac{dr}{r} \right\} \\ &\leq C \left\{ \int_{0}^{2d_{G}} \frac{\omega(z,r)}{|B(z,r)|} \left(\int_{G \cap B(z,r)} [M[\Phi_{0}(\cdot, f(\cdot))](x)]^{p_{0}} \, dx \right) \frac{dr}{r} + \int_{0}^{2d_{G}} \omega(z,r) \frac{dr}{r} \right\} \\ &\leq C \end{split}$$

🖄 Springer

for all $z \in G$ since there exists a constant $C_3 > 0$ such that

$$\int_0^{2d_G} \omega(z,r) \frac{dr}{r} = \int_0^{2d_G} r^{-\varepsilon_1} \omega(z,r) \cdot r^{\varepsilon_1} \frac{dr}{r} \le C \int_0^{2d_G} r^{\varepsilon_1} \frac{dr}{r} \le C_3 \quad (3.6)$$

for all $z \in G$ by $(\omega 1')$ and $(\omega 3; \omega_0)$. Thus, this theorem is proved.

4 Sobolev-Type Inequality

We recall the following lemma from [19].

Lemma 4.1 ([19, Lemma 5.1]) Let F(x, t) be a positive function on $G \times (0, \infty)$ satisfying the following conditions:

- (F1) $F(x, \cdot)$ is continuous on $(0, \infty)$ for each $x \in G$;
- (F2) there exists a constant $K_1 \ge 1$ such that

$$K_1^{-1} \le F(x, 1) \le K_1$$
 for all $x \in G$;

(F3) $t \mapsto t^{-\varepsilon'} F(x, t)$ is uniformly almost increasing for some $\varepsilon' > 0$; namely there exists a constant $K_2 \ge 1$ such that

$$t_1^{-\varepsilon'}F(x,t_1) \le K_2 t_2^{-\varepsilon'}F(x,t_2)$$
 for all $x \in G$ whenever $0 < t_1 < t_2$.

Set

$$F^{-1}(x, s) = \sup\{t > 0; F(x, t) < s\}$$

for $x \in G$ and s > 0. Then:

(1) $F^{-1}(x, \cdot)$ is nondecreasing. (2)

$$F^{-1}(x,\lambda t) \le (K_2\lambda)^{1/\varepsilon'} F^{-1}(x,t)$$
 (4.1)

for all
$$x \in G$$
, $t > 0$ and $\lambda \ge 1$.
(3)

$$F(x, F^{-1}(x, t)) = t$$

for all $x \in G$ and t > 0. (4)

$$K_2^{-1/\varepsilon'} t \le F^{-1}(x, F(x, t)) \le K_2^{2/\varepsilon'} t$$

for all $x \in G$ and t > 0.

(5)

$$\min\left\{1, \left(\frac{s}{K_1 K_2}\right)^{1/\varepsilon'}\right\} \le F^{-1}(x, s) \le \max\{1, (K_1 K_2 s)^{1/\varepsilon'}\}$$

for all $x \in G$ and s > 0.

Remark 4.2 Note that $F(x, t) = \Phi(x, t)$ is a function satisfying (F1), (F2) and (F3) with $K_1 = A_1$, $K_2 = A_2$ and $\varepsilon' = 1$.

We consider the following condition:

 $(\Phi\omega\alpha)$ there exist constants $\varepsilon_2 > 0$ and $A_4 \ge 1$ such that

$$r_2^{\varepsilon_2 + \alpha(x)} \Phi^{-1}(x, \omega(x, r_2)^{-1}) \le A_4 r_1^{\varepsilon_2 + \alpha(x)} \Phi^{-1}(x, \omega(x, r_1)^{-1})$$

for all $x \in G$ whenever $0 < r_1 < r_2 < d_G$.

Lemma 4.3 Suppose $\Phi(x, t)$ satisfies $(\Phi 3; \infty; q)$ and $(\Phi 5; v)$ for $q \ge 1$ and v > 0 satisfying $v \le q/\omega_0$. Assume that $(\Phi \omega \alpha)$ holds. Then there exists a constant C > 0 such that

$$\int_{G\setminus B(x,\delta)} |x-y|^{\alpha(x)-N} f(y) \, dy \le C\delta^{\alpha(x)} \Phi^{-1}(x,\omega(x,\delta)^{-1})$$

for all $x \in G$, $0 < \delta < d_G/2$ and nonnegative $f \in \mathcal{L}^{\Phi,\omega}(G)$ with $||f||_{\mathcal{L}^{\Phi,\omega}(G)} \leq 1$.

Proof Let *f* be a nonnegative measurable function with $||f||_{\mathcal{L}^{\Phi,\omega}(G)} \le 1/2$. Let $x \in G$ and $0 < \delta < d_G/2$. By (Φ 3) and (Φ 3; ∞ ; *q*),

$$\min\{1, (A_1A_2)^{-1}s\} \le F^{-1}(x, s) \le \max\{1, (A_1A_{2,\infty,q}s)^{1/q}\}$$

cf. Lemma 4.1 (5). Set

$$c_1 = \max\left\{A_1 A_2 \tilde{c}_3, \ (A_1 A_{2,\infty,q} \tilde{c}_3)^{-1} d_G^{\omega_0}\right\}.$$

Then we have by (ω 3; ω_0), Lemma 4.1 and the condition $\nu \leq q/\omega_0$

$$\Phi^{-1}\left(x, c_1\omega(x, |x-y|)^{-1}\right) \ge \min\{1, (A_1A_2)^{-1}c_1\tilde{c}_3^{-1}\} \ge 1$$

and

$$\Phi^{-1}\left(x, c_1\omega(x, |x-y|)^{-1}\right) \le \max\{1, (A_1A_{2,\infty,q}c_1\tilde{c}_3|x-y|^{-\omega_0})^{1/q}\}$$

= $(A_1A_{2,\infty,q}c_1\tilde{c}_3d_G^{-\omega_0})^{1/q}(|x-y|/d_G)^{-\omega_0/q}$
 $\le (A_1A_{2,\infty,q}c_1\tilde{c}_3d_G^{-\omega_0})^{1/q}(|x-y|/d_G)^{-1/\nu}$

Deringer

for all $x, y \in G$. Hence,

$$|x - y| \le c_2 \left\{ \Phi^{-1} \left(x, c_1 \omega(x, |x - y|)^{-1} \right) \right\}^{-\nu}$$

for all $x, y \in G$, where $c_2 = d_G (A_1 A_{2,\infty,q} c_1 \tilde{c}_3 d_G^{-\omega_0})^{\nu/q}$. We find by (Φ 3), (Φ 5; ν) and Lemma 4.1 (3)

$$\begin{split} &\int_{G\setminus B(x,\delta)} |x-y|^{\alpha(x)-N} f(y) \, dy \\ &\leq \int_{G\setminus B(x,\delta)} |x-y|^{\alpha(x)-N} \Phi^{-1} \left(x, c_1 \omega(x, |x-y|)^{-1} \right) \, dy \\ &+ A_2 \int_{G\setminus B(x,\delta)} |x-y|^{\alpha(x)-N} f(y) \\ &\times \frac{f(y)^{-1} \Phi(y, f(y))}{\left\{ \Phi^{-1} \left(x, c_1 \omega(x, |x-y|)^{-1} \right) \right\}^{-1} \Phi \left(y, \Phi^{-1} \left(x, c_1 \omega(x, |x-y|)^{-1} \right) \right)} \, dy \\ &\leq \int_{G\setminus B(x,\delta)} |x-y|^{\alpha(x)-N} \Phi^{-1} \left(x, c_1 \omega(x, |x-y|)^{-1} \right) \, dy \\ &+ C \int_{G\setminus B(x,\delta)} |x-y|^{\alpha(x)-N} \omega(x, |x-y|) \Phi^{-1} \left(x, c_1 \omega(x, |x-y|)^{-1} \right) \Phi(y, f(y)) \, dy \\ &= I_1 + C I_2. \end{split}$$

Let j_0 be the smallest integer such that $2^{j_0}\delta \ge d_G$. By (ω 1), (ω 2), (4.1) and ($\Phi\omega\alpha$), we obtain

$$\begin{split} I_1 &= \sum_{j=1}^{j_0} \int_{G \cap (B(x,2^j\delta) \setminus B(x,2^{j-1}\delta))} |x - y|^{\alpha(x) - N} \Phi^{-1} \left(x, c_1 \omega(x, |x - y|)^{-1} \right) \, dy \\ &\leq C \sum_{j=1}^{j_0} (2^j\delta)^{\alpha(x)} \Phi^{-1} \left(x, \omega(x, 2^j\delta)^{-1} \right) \\ &\leq C \delta^{\alpha(x)} \Phi^{-1}(x, \omega(x, \delta)^{-1}) \end{split}$$

as in the proof of [29, Lemma 4.2].

For I_2 , it follows from $(\Phi \omega \alpha)$, (4.1), ($\omega 1$) and ($\omega 2$) that

$$\begin{split} I_2 &\leq C\delta^{\alpha(x)}\Phi^{-1}(x,\omega(x,\delta)^{-1})\int_{G\setminus B(x,\delta)}\frac{\omega(x,|x-y|)}{|B(x,|x-y|)|}\Phi(y,f(y))\,dy\\ &\leq C\delta^{\alpha(x)}\Phi^{-1}(x,\omega(x,\delta)^{-1})\sum_{j=1}^{j_0}\frac{\omega(x,2^j\delta)}{|B(x,2^j\delta)|}\int_{G\cap B(x,2^j\delta)}\Phi(y,f(y))\,dy\\ &\leq C\delta^{\alpha(x)}\Phi^{-1}(x,\omega(x,\delta)^{-1}) \end{split}$$

as in the proof of [29, Lemma 4.2]. Thus, the present lemma is proved.

Deringer

To state our main theorem, we consider a function

$$\Psi(x,t): G \times [0,\infty) \to [0,\infty)$$

that satisfies $(\Phi 1) - (\Phi 3)$ and

 $(\Psi \Phi)$ there exists a constant $A' \ge 1$ such that

$$\Psi\left(x,t\left(\omega^{-1}\left(x,\Phi(x,t)^{-1}\right)\right)^{\alpha(x)}\right) \le A'\Phi(x,t)$$

for all $x \in G$ and $t \ge 1$.

Remark 4.4 In [26], we considered the condition like $(\Psi \Phi)$ for Musielak–Orlicz spaces.

We give a Sobolev-type inequality for $I_{\alpha(\cdot)}f$ of functions in $\mathcal{L}^{\Phi,\omega}(G)$ by Theorem 3.4, as an extension of [32, Theorem 4.4].

Theorem 4.5 Suppose $\Phi(x, t)$ satisfies $(\Phi 3; 0; p)$, $(\Phi 3; \infty; q)$ and $(\Phi 5; v)$ for p > 1, q > 1 and v > 0 satisfying $v \le q/\omega_0$. Assume that $(\omega 1')$ and $(\Phi \omega \alpha)$ hold. Then there exists a constant C > 0 such that

$$\|I_{\alpha(\cdot)}f\|_{\mathcal{L}^{\Psi,\omega}(G)} \le C\|f\|_{\mathcal{L}^{\Phi,\omega}(G)}$$

for all $f \in \mathcal{L}^{\Phi,\omega}(G)$.

Proof Let f be a nonnegative measurable function on G such that $||f||_{\mathcal{L}^{\Phi,\omega}(G)} \leq 1$. We may assume that

$$\sup_{z \in G} \int_0^{2d_G} \frac{\omega(z,r)}{|B(z,r)|} \left(\int_{G \cap B(z,r)} \Phi\left(x, Mf(x)\right) \, dx \right) \frac{dr}{r} \le 1 \tag{4.2}$$

by Theorem 3.4. Let $x \in G$ and $0 < \delta < d_G/2$. By Lemma 4.3, we find

$$\begin{split} I_{\alpha(\cdot)}f(x) &= \int_{G \cap B(x,\delta)} |x-y|^{\alpha(x)-N} f(y) \, dy + \int_{G \setminus B(x,\delta)} |x-y|^{\alpha(x)-N} f(y) \, dy \\ &\leq C \left\{ \delta^{\alpha(x)} M f(x) + \delta^{\alpha(x)} \Phi^{-1}(x, \omega(x,\delta)^{-1}) \right\}. \end{split}$$

If $\omega^{-1}(x, \Phi(x, Mf(x))^{-1}) \ge d_G/2$, then, taking $\delta = d_G/2$, we have $I_{\alpha(\cdot)}f(x) \le C$ by Lemma 4.1, (ω_1) and $(\omega_3; \omega_0)$. If $\omega^{-1}(x, \Phi(x, Mf(x))^{-1}) < d_G/2$, then take $\delta = \omega^{-1}(x, \Phi(x, Mf(x))^{-1})$. Then we have

$$I_{\alpha(\cdot)}f(x) \le CMf(x) \left(\omega^{-1}\left(x, \Phi(x, Mf(x))^{-1}\right)\right)^{\alpha(x)}$$

🖄 Springer

by Lemma 4.1. Therefore, we obtain

$$I_{\alpha(\cdot)}f(x) \leq C_1' \max\left\{ Mf(x) \left(\omega^{-1} \left(x, \Phi(x, Mf(x))^{-1} \right) \right)^{\alpha(x)}, 1 \right\},$$

so that by $(\Psi \Phi)$, we have

$$\Psi\left(x, I_{\alpha(\cdot)}f(x)/C_{1}'\right) \leq C\left\{\Psi\left(x, Mf(x)\left(\omega^{-1}\left(x, \Phi(x, Mf(x))^{-1}\right)\right)^{\alpha(x)}\right) + 1\right\}$$
$$\leq C\left\{\Phi\left(x, Mf(x)\right) + 1\right\}.$$

Hence, it follows from (4.2) and (3.6) that

$$\begin{split} &\int_{0}^{2d_{G}} \frac{\omega(z,r)}{|B(z,r)|} \left(\int_{G \cap B(z,r)} \Psi\left(x, I_{\alpha(\cdot)}f(x)/C_{1}'\right) dx \right) \frac{dr}{r} \\ &\leq C \left\{ \int_{0}^{2d_{G}} \frac{\omega(z,r)}{|B(z,r)|} \left(\int_{G \cap B(z,r)} \Phi\left(x, Mf(x)\right) dx \right) \frac{dr}{r} + \int_{0}^{2d_{G}} \omega(z,r) \frac{dr}{r} \right\} \\ &\leq C \end{split}$$

for all $z \in G$. Thus, we complete the proof.

Remark 4.6 When $\Phi(x, t) = t^{p(x)}$, Theorem 4.5 was proved in [32, Theorem 4.4].

Remark 4.7 Let $\Phi_{p(\cdot),\{q_j(\cdot)\}}(x,t) = t^{p(x)} \prod_{i=1}^k (L_e^{(j)}(t))^{q_j(x)}$ and $\omega(x,r) =$ $r^{\sigma(x)}L_{\ell}(1/r)^{\beta(x)}$.

Set

$$\Psi(x,t) = \left[\Phi_{p(\cdot),\{q_j(\cdot)\}}(x,t)\right]^{p^*(x)/p(x)} L_e(t)^{p^*(x)\alpha(x)\beta(x)/\sigma(x)},$$

where $1/p^*(x) = 1/p(x) - \alpha(x)/\sigma(x)$. Then $\Psi(x, t)$ satisfies condition ($\Psi\Phi$) (see [31, Remark 3.14]).

5 Double Phase Functions with Variable Exponents

In this section, let

$$\omega(x,r) = r^{\sigma(x)} L_e(1/r)^{\beta(x)}$$

be as in Example 2.1 (Remark 3.2) and let $p(\cdot)$ and $q(\cdot)$ be real valued measurable functions on G such that

(P1) $1 \le p^- \le p^+ < \infty$, (Q1) $1 \le q^- \le q^+ < \infty$.

We assume that

(P2) $p(\cdot)$ is log-Hölder continuous, that is,

$$|p(x) - p(y)| \le \frac{C_p}{L_e(1/|x - y|)} \quad (x, y \in G)$$

with a constant $C_p \ge 0$, and (Q2) $q(\cdot)$ is log-Hölder continuous, that is,

$$|q(x) - q(y)| \le \frac{C_q}{L_e(1/|x - y|)} \quad (x, y \in G)$$

with a constant $C_q \ge 0$.

As an example and application, we consider the case where $\Phi(x, t)$ is a double phase function with variable exponents given by

$$\Phi(x,t) = t^{p(x)} + a(x)t^{q(x)}, \ x \in G, \ t \ge 0,$$

where p(x) < q(x) for $x \in G$, $a(\cdot)$ is nonnegative, bounded and Hölder continuous of order $\theta \in (0, 1]$ (cf. [20, 33]).

This $\Phi(x, t)$ satisfies (Φ 1), (Φ 2), (Φ 3; 0; p^-) and (Φ 3; ∞ ; p^-). $\Phi(x, t)$ also satisfies (Φ 5; ν) for $\nu \ge \sup_{x \in G_0} (q(x) - p(x))/\theta$; see [20, Lemma 5.1].

Let $G_0 = \{x \in G : a(x) > 0\}.$

In view of Theorem 3.4, we have the boundedness of the maximal operator on $\mathcal{L}^{\Phi,\omega}(G)$ in the framework of double phase functions Φ .

Theorem 5.1 If $p^- > 1$ and $\sup_{x \in G_0} (q(x) - p(x))/\theta \le p^-/\omega_0$, then there exists a constant C > 0 such that

$$\|Mf\|_{\mathcal{L}^{\Phi,\omega}(G)} \le C \|f\|_{\mathcal{L}^{\Phi,\omega}(G)}$$

for all $f \in \mathcal{L}^{\Phi,\omega}(G)$.

Let $p^*(x)$ and $q^*(x)$ be defined by

$$\frac{1}{p^*(x)} = \frac{1}{p(x)} - \frac{\alpha(x)}{\sigma(x)}$$

when $1/p(x) - \alpha(x)/\sigma(x) > 0$, and

$$\frac{1}{q^*(x)} = \frac{1}{q(x)} - \frac{\alpha(x)}{\sigma(x)}$$

when $1/q(x) - \alpha(x)/\sigma(x) > 0$. In this section, set

$$\Psi(x,t) = t^{p^*(x)} L_e(t)^{\alpha(x)p^*(x)\beta(x)/\sigma(x)} + \left(a(x)^{1/q(x)}t\right)^{q^*(x)} L_e\left(a(x)^{1/q(x)}t\right)^{\alpha(x)q^*(x)\beta(x)/\sigma(x)}$$

for $x \in G$ and $t \ge 0$.

🖄 Springer

Lemma 5.2 ([20, Lemma 5.6 (1), (3)])

- (1) If $\inf_{x \in G_0}(\sigma(x)/q(x) \alpha(x)) > 0$ and $\inf_{x \in G \setminus G_0}(\sigma(x)/p(x) \alpha(x)) > 0$, then $(\Phi \omega \alpha)$ holds.
- (2) $\Psi(x, t)$ satisfies $(\Psi \Phi)$.

Finally, by Lemma 5.2 and Theorem 4.5, we obtain a Sobolev inequality in our setting.

Theorem 5.3 If $p^- > 1$, $\inf_{x \in G_0}(\sigma(x)/q(x) - \alpha(x)) > 0$, $\inf_{x \in G \setminus G_0}(\sigma(x)/p(x) - \alpha(x)) > 0$ and $\sup_{x \in G_0}(q(x) - p(x))/\theta \le p^-/\omega_0$, then there exists a constant C > 0 such that

$$\|I_{\alpha(\cdot)}f\|_{\mathcal{L}^{\Psi,\omega}(G)} \le C\|f\|_{\mathcal{L}^{\Phi,\omega}(G)}$$

for all $f \in \mathcal{L}^{\Phi,\omega}(G)$.

Acknowledgements We would like to express our thanks to the referees for their kind comments.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

- Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A.: Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces. J. Funct. Anal. 275(9), 2538–2571 (2018)
- Almeida, A., Hasanov, J., Samko, S.: Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 15, 195–208 (2008)
- Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equs. 57(2), 62 (2018)
- Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St Petersburg Math. J. 27, 347–379 (2016)
- Burenkov, V.I., Guliyev, H.V.: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces. Studia Math. 163(2), 157–176 (2004)
- Byun, S.S., Lee, H.S.: Calderón-Zygmund estimates for elliptic double phase problems with variable exponents. J. Math. Anal. Appl. 501, 124015 (2021)
- Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable L^p spaces. Rev. Mat. Iberoamericana 23(3), 743–770 (2007)
- Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215(2), 443–496 (2015)
- Diening, L.: Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L^{p(.)} and W^k, p^(.). Math. Nachr. 263(1), 31–43 (2004)
- De Filippis, C., Mingione, G.: Lipschitz bounds and nonautonomous integrals. Arch. Ration. Mech. Anal. 242, 973–1057 (2021)
- Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potential space of variable exponent. Math. Nachr. 279(13–14), 1463–1473 (2006)
- Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent. J. Math. Anal. Appl. 366, 391–417 (2010)
- Guliyev, V.S., Hasanov, J., Samko, S.: Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces. Math. Scand. 107, 285–304 (2010)

- Guliyev, V.S., Hasanov, J., Samko, S.: Boundedness of the maximal potential and Singular integral operators in the generalized variable exponent Morrey type spaces. J. Math. Sci. 170(4), 423–443 (2010)
- Harjulehto, P., Hästö, P.: Orlicz spaces and generalized Orlicz spaces. Lecture Notes in Mathematics, vol. 2236. Springer, Cham (2019)
- Hästö, P., Ok, J.: Maximal regularity for local minimizers of non-autonomous functionals. J. Eur. Math. Soc. 24(4), 1285–1334 (2022)
- 17. Hedberg, L.I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36, 505-510 (1972)
- Krasnoesl'skii, M.A., Rutickii, Ya.B.: Convex Functions and Orlicz Spaces. P. Noordhoff Ltd., Groningen (1961)
- Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137, 76–96 (2013)
- Maeda, F.-Y., Mizuta Y., Ohno T., Shimomura T.: Sobolev's inequality for double phase functionals with variable exponents, Forum Math. 31 517–527 (2019)
- Maeda, F.-Y., Ohno, T., Shimomura, T.: Boundedness of the maximal operator on Musielak-Orlicz-Morrey spaces. Tohoku Math. J. 69, 483–495 (2017)
- Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent. Complex Vari. Elliptic Equ. 56(7–9), 671–695 (2011)
- Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in Rⁿ. Rev. Mat. Complut. 25(2), 413–434 (2012)
- 24. Mizuta Y., Nakai E., Ohno T., Shimomura T.: Campanato-Morrey spaces for the double phase functionals with variable exponents, Nonlinear Anal. **197**, 111827, 19 (2020)
- 25. Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space $L^{p(\cdot)}(\log L)^{q(\cdot)}$. J. Math. Anal. Appl. **345**, 70–85 (2008)
- Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev inequalities for Musielak-Orlicz spaces. Manuscripta Math. 155, 209–227 (2018)
- Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's theorem for double phase functionals. Math. Ineq. Appl. 23, 17–33 (2020)
- Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent. J. Math. Soc. Japan 60, 583–602 (2008)
- Mizuta, Y., Shimomura, T.: Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form. Math. Nachr. 283(9), 1336–1352 (2010)
- Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities in the unit ball for double phase functionals, J. Math. Anal. Appl. 501 124133, 17 (2021)
- Ohno, T., Shimomura, T.: Sobolev's inequality for Musielak-Orlicz-Morrey spaces over metric measure spaces. J. Aust. Math. Soc. 110, 371–385 (2021)
- Ohno, T., Shimomura, T.: Sobolev-type inequalities on variable exponent Morrey spaces of an integral form. Ricerche Mat. 71, 189–204 (2022)
- Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(1), 710–728 (2020)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.