1 Introduction

The Randić index, also known as the connectivity index or the branching index, was introduced by the chemist Randić [22] in 1975, which has been extensively utilized in applications for chemistry, biology, and complex network [8, 12, 13, 23]. In addition, various mathematical, physical, and chemical properties of the Randić index have been established in decades [7, 14, 18, 24, 27]. The formula of the Randić index for a graph \(G=(V_{G},E_{G})\) is given by

$$\begin{aligned} R=R(G)=\sum _{uv\in E_G}(d_ud_v)^{-\frac{1}{2}}, \end{aligned}$$

where \(d_u\) and \(d_v\) denote the degrees of vertices \(u,v\in V_G\), respectively.

Ballobás and Erdös [2] generalized the Randić index by replacing \(-\frac{1}{2}\) with a real number \(\alpha \) and named it the general Randić index, which is defined as

$$\begin{aligned} R_{\alpha }=R_{\alpha }(G)=\sum _{uv\in E_G}(d_ud_v)^{\alpha }. \end{aligned}$$

A key turning point involving the mathematical investigation of the general Randić index appeared in the second half of the 1990s, when a significant and ever growing research on this matter started, causing numerous publications (see [4, 9, 10, 14, 20] and the reference therein).

Regarding the problem of extremal trees on the Randić index and the general Randić index, researchers have tried to find precise bounds of R(G) and \(R_{\alpha }(G)\) with some given graph parameters, such as the matching number [16, 21], the number of pendent vertices [5, 28], and the degree sequence [25]. Recently, the relationship between topological indices and domination number has become an interesting research topic and has attracted lots of attention [3, 6, 11, 15, 17, 19, 26]. Bermudo et al. [1] got the extremal trees of Randić index with a given domination number. Naturally, we intend to generalize their results by considering the general Randić index.

First, some terminology and notations need to be introduced. A set \(D\subseteq V_G\) is called a dominating set in G if every vertex in \(V_G{\setminus } D\) is adjacent to at least one vertex in D. The domination number of G, denoted by \(\gamma (G)\), is defined as the minimum cardinality among all dominating sets D of G, i.e., \(\gamma (G)=\min _{D\subseteq V_G}\lbrace |D| \rbrace \). A vertex \(v\in V_{G}\) is called a pendent vertex if \(d_v=1\), while it is called a support vertex if v is a neighbor of a pendent vertex. The set of neighbors of v is \(N(v)=\lbrace u\in V_G|~uv\in E_G \rbrace \). The diameter of a tree is the longest path between two pendent vertices. Besides, \(G-\lbrace v\rbrace \) denote the graph obtained from G by deleting the vertex v together with its incident edges.

In this paper, we determine the upper bound of \(R_{\alpha }(G)\) with \(\alpha \in [\alpha _1,0)\) of trees in terms of domination number, where \(\alpha _1\approx -0.5287\) is the unique nonzero root of the equation \(27^\alpha -6^\alpha -4^\alpha +2^\alpha =0\). Moreover, the lower bound of \(R_{\alpha }(G)\) with \(\alpha \in [\alpha _2,0)\) of trees in terms of domination number is also obtained, where \(\alpha _2\approx -0.5696\) is the unique nonzero root of the equation \(2\cdot 4^\alpha +2^{\alpha +1}-3^\alpha -2\cdot 6^\alpha -1=0\). Finally, we characterize the corresponding extremal trees.

2 The Upper Bound on the \(R_{\alpha }(G)\) with \(\alpha \in [\alpha _1,0)\) of Trees in Terms of Domination Number

To characterize extremal n-vertex trees of the Randić index with a given domination number \(\gamma \), Bermudo et al. [1] constructed two graph families \(\mathcal {T}_{1}\) and \(\mathcal {T}_{2}\), which are described in Definitions 2.1 and 3.1, respectively. In this section, we determined the upper bound on the general Randić index \(R_{\alpha }\) of trees with a given domination number \(\gamma \) for \(\alpha \in [\alpha _1,0)\), where \(\alpha _1\approx -0.5287\) is the unique nonzero root of the equation \(27^\alpha -6^\alpha -4^\alpha +2^\alpha =0\). Then, we prove that the corresponding extremal trees also belong to \(\mathcal {T}_{1}\).

Definition 2.1

[1] Let \(\mathcal {T}_{1}\) be a set of trees and the path with 3t vertices (\(P_{3t}\)) all belong to \(\mathcal {T}_{1}\), where t is a positive integer number. The following are two ways to construct a new graph that belongs to the graph family \(\mathcal {T}_{1}\):

  1. (i)

    If there exist a tree \(T'\in \mathcal {T}_{1}\) and a pendent vertex \(v\in V_{T'}\), we take a path \(P_{3t}\), whose consecutive vertices are \(w_1,w_2,\ldots , w_{3t}\), then the tree T, such that \(V_{T}=V_{T'}\cup V_{P_{3t}}\) and \(E_T=E_{T'}\cup E_{P_{3t}}\cup \lbrace vw_1\rbrace \), belongs to \(\mathcal {T}_{1}\) (see Fig. 1a).

  2. (ii)

    If \(T'\in \mathcal {T}_{1}\) satisfies that there exists a vertex \(v\in D(T')\) such that \(N(v)=\lbrace u_1,u_2\rbrace \) and \(d_{u_1}=d_{u_2}=2\), where \(D(T')\) is a minimum dominating set in \(T'\), we take a path \(P_{3t+1}\), whose consecutive vertices are \(w_1,w_2,\ldots , w_{3t+1}\), then the tree T, such that \(V_{T}=V_{T'}\cup V_{P_{3t+1}}\) and \(E_T=E_{T'}\cup E_{P_{3t+1}}\cup \lbrace vw_1\rbrace \), belongs to \(\mathcal {T}_{1}\) (see Fig. 1b).

Fig. 1
figure 1

Two trees in the graph family \(\mathcal {T}_{1}\)

To simplify the proof of the following theorem giving upper bound on \(R_{\alpha }(T)\), we first give a lemma to show the monotonicity of two functions.

Lemma 2.2

Let \(\psi _1(z)=z^{\alpha }(z-1)\) and \(\phi _1(z)=\psi _1(z)-\psi _1(z-1)=z^{\alpha }(z-1)-(z-1)^{\alpha }(z-2)\). If \(\alpha \in (-1,0)\), the function \(\psi _1(z)\) increases monotonically for \(z\in (0,\infty )\) and the function \(\phi _1(z)\) decreases monotonically for \(z\in (1,\infty )\).

Proof

Since \(\psi '_1(z)=(\alpha +1)z^{\alpha }-\alpha z^{\alpha -1}>0\) for \(\alpha \in (-1,0)\) and \(z>0\), we obtain that \(\psi _1(z)\) is a monotonically increasing function for \(z\in (0,\infty )\) if \(\alpha \in (-1,0)\). Note that \(\psi ''_1(z)=\alpha z^{\alpha -2}[(\alpha +1)z-(\alpha -1)]<0\) for \(\alpha \in (-1,0)\) and \(z>0\). Suppose that \(\alpha \in (-1,0)\) and there exist \(z_1\) and \(z_2\) such that \(z_2>z_1>1\), then by Lagrange mean value theorem, we get

$$\begin{aligned} \phi _1(z_2)-\phi _1(z_1)&=\phi '_1(\xi _1)(z_2-z_1)\\&=[\psi '_1(\xi _1)-\psi '_1(\xi _1-1)](z_2-z_1)\\&=\psi ''_1(\eta _1)(z_2-z_1)<0, \end{aligned}$$

where \(1<z_1<\xi _1<z_2\) and \(0<\xi _1<\eta _1<\xi _1\). Hence, if \(\alpha \in (-1,0)\), \(\phi _1(z)\) is a monotonically decreasing function for \(z\in (1,\infty )\).

This complete the proof. \(\square \)

Theorem 2.3

Let T be an n-vertex tree with domination number \(\gamma \). Then,

$$\begin{aligned} {R_{\alpha }(T)}&\le \frac{4n+3\gamma -15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+(n-3\gamma )\nonumber \\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) , \quad \mathrm{for}\quad \alpha \in [\alpha _1,0), \end{aligned}$$
(2.1)

with the equality holding if and only if \(T\in \mathcal {T}_{1}\), where \(\alpha _1\approx -0.5287\) is the unique nonzero root of the equation \(27^\alpha -6^\alpha -4^\alpha +2^\alpha =0\).

For convenience, we denote \(f(n,\gamma ,\alpha )=\frac{4n+3\gamma -15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+(n-3\gamma )\cdot (3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha })\). Next, we introduce a necessary lemma.

Lemma 2.4

Let T be an n-vertex tree with domination number \(\gamma \). Suppose that there exists a vertex \(v\in V_T\) such that \(d_v\ge 3\), \(N(v)=\lbrace u_1, u_2,\ldots ,u_{d_v} \rbrace \), \(d_{u_1}\ge 2\) and \(d_{u_i}=1\) for \(i=2,3,\ldots ,d_v\). Take \(T_{-1}=T-\lbrace u_{d_v}\rbrace \), then

  1. (i)

    If \(d_{v}\ge 4\), \(\alpha \in (-1,0)\) and \(R_{\alpha }(T_{-1})\le f(n-1,\gamma ,\alpha )\), then \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\).

  2. (ii)

    If \(d_v=3\), \(d_{u_1}=2\), \(\alpha \in (-1,0)\) and \(R_{\alpha }(T_{-1})\le f(n-1,\gamma ,\alpha )\), then \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\)

Proof

(i) By calculation, we have

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-1})-(d_v-2)\cdot (d_v-1)^{\alpha }-[d_{u_1}\cdot (d_v-1)]^{\alpha } +(d_v-1)\cdot (d_v)^{\alpha }\\&\quad +(d_{u_1}\cdot d_v)^{\alpha }\\&=R_{\alpha }(T_{-1})+\left[ (d_v)^{\alpha }-(d_v-1)^{\alpha }\right] \cdot [(d_v-2)+(d_{u_1})^{\alpha }]+(d_v)^{\alpha }\\&\le \frac{4(n-1)+3\gamma -15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+(n-3\gamma -1)\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad +\left[ (d_v)^{\alpha }-(d_v-1)^{\alpha }\right] \cdot [(d_v-2)+(d_{u_1})^{\alpha }]+(d_v)^{\alpha }\\&= f(n,\gamma ,\alpha )+3\cdot 4^{\alpha }-3\cdot 6^{\alpha }-2^{\alpha } +\left[ (d_v)^{\alpha }-(d_v-1)^{\alpha }\right] \\&\quad \cdot [(d_v-2)+(d_{u_1})^{\alpha }] +(d_v)^{\alpha }\\&\le f(n,\gamma ,\alpha )+3\cdot 4^{\alpha }-3\cdot 6^{\alpha }-2^{\alpha }+(d_v)^{\alpha }(d_v-1)-(d_v-1)^{\alpha }(d_v-2). \end{aligned}$$

From Lemma 2.2, we get \(3\cdot 4^{\alpha }-3\cdot 6^{\alpha }-2^{\alpha }+(d_v)^{\alpha }(d_v-1)-(d_v-1)^{\alpha }(d_v-2)=3\cdot 4^{\alpha }-3\cdot 6^{\alpha }-2^{\alpha }+\phi _1(d_v)\le 3\cdot 4^{\alpha }-3\cdot 6^{\alpha }-2^{\alpha }+\phi _1(4)=6\cdot 4^\alpha -3\cdot 6^\alpha -2\cdot 3^\alpha -2^\alpha \) for any \(d_v\ge 4\).

It can be checked, using computer program, that \(6\cdot 4^\alpha -3\cdot 6^\alpha -2\cdot 3^\alpha -2^\alpha <0\) for every \(\alpha \in (-1,0)\) (see Fig. 2a), i.e., \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\).

(ii) If \(d_v=3\), \(d_{u_1}=2\), we have \(3\cdot 4^{\alpha }-3\cdot 6^{\alpha }-2^{\alpha }+\left[ (d_v)^{\alpha }-(d_v-1)^{\alpha }\right] \cdot [(d_v-2)+(d_{u_1})^{\alpha }]+(d_v)^{\alpha }=3\cdot 4^{\alpha }-3\cdot 6^{\alpha }-2^{\alpha }+(3^{\alpha }-2^{\alpha })\cdot (1+2^{\alpha })+3^{\alpha }=2\cdot (2^\alpha -1)\cdot (2^\alpha -3^\alpha )\). It can be checked that \(2^\alpha -1<0\) and \(2^\alpha -3^\alpha >0\) for \(\alpha \in (-1,0)\), which implies that \(2(2^\alpha -1)(2^\alpha -3^\alpha )<0\) for every \(\alpha \in (-1,0)\) (see Fig. 2b). Thus, we get \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\).

Fig. 2
figure 2

The two functions of \(\alpha \) in Lemma 2.4

This proves the lemma. \(\square \)

Proof of Theorem 2.3

For any tree with 4 vertices (\(S_4\) or \(P_4\)), we have \(R_{\alpha }(S_4)=3\cdot 3^{\alpha }<f(4,1,\alpha )\), and \(R_{\alpha }(P_4)=4^{\alpha }+2\cdot 2^{\alpha }<f(4,2,\alpha )\) if \(\alpha \in (-1,0)\). Suppose that the inequality (2.1) holds for any \((n-1)\)-vertex trees and then we consider a tree with n vertices. We take a diameter path of T, denoted by \(v_1v_2\cdots v_d\). By Lemma 2.4, we can suppose that \(d_{v_2}\le 3\). Then, we discuss the following two cases.

Case 1 \(d_{v_2}=3\).

From Lemma 2.4, one can assume that \(d_{v_3}\ge 3\). Denote \(N(v_2)=\lbrace v_1,v_3,u_1 \rbrace \) and \(N(v_3)=\lbrace v_2,v_4,w_1,w_2,\ldots ,w_{d_{v_3}-2} \rbrace \). Then, we take \(T_{-3}=T-\lbrace v_1,v_2,u_1 \rbrace \). There exists a dominating set D(T) such that \(v_2\in D(T)\) and \(v_3\in N[D{\setminus }\lbrace v_2 \rbrace ]\), implying \(\gamma (T)=\gamma (T_{-3})+1\). Note that \(d_{w_i}\le 3\) for \(i=1,2,\ldots ,d_{v_3}-2\). By the above consideration, we have

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-3})-[d_{v_4}\cdot (d_{v_3}-1)]^{\alpha }-(d_{v_3}-1)^{\alpha }\cdot \sum _{i=1}^{d_{v_3}-2}(d_{w_i})^{\alpha }+(d_{v_3}\cdot d_{v_4})^{\alpha }\\&\quad +(d_{v_3})^{\alpha }\cdot \sum _{i=1}^{d_{v_3}-2}(d_{w_i})^{\alpha }+(3\cdot d_{v_3})^{\alpha }+2\cdot 3^{\alpha }\\&\le \frac{4(n-3)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-3-3(\gamma -1)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad -[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [(d_{v_4})^{\alpha }+\sum _{i=1}^{d_{v_3}-2}(d_{w_i})^{\alpha }]+[(d_{v_3})^{\alpha }+2]\cdot 3^{\alpha }\\&\le f(n,\gamma ,\alpha )-[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [(d_{v_3}-2)\cdot 3^{\alpha }]+[(d_{v_3})^{\alpha }+2]\\&\quad \cdot 3^{\alpha }-3\cdot 4^{\alpha }\\&=f(n,\gamma ,\alpha )+[(d_{v_3}-1)\cdot (d_{v_3})^{\alpha }-(d_{v_3}-2)\cdot (d_{v_3}-1)^{\alpha }+2]\\&\quad \cdot 3^{\alpha }-3\cdot 4^{\alpha }. \end{aligned}$$

By Lemma 2.2, we calculate that \([(d_{v_3}-1)\cdot (d_{v_3})^{\alpha }-(d_{v_3}-2)\cdot (d_{v_3}-1)^{\alpha }+2]\cdot 3^{\alpha }-3\cdot 4^{\alpha }=\left[ \phi _1(d_{v_3})+2\right] \cdot 3^{\alpha }-3\cdot 4^{\alpha } \le \left[ \phi _1(3)+2\right] \cdot 3^{\alpha }-3\cdot 4^{\alpha }=2\cdot 9^\alpha -6^\alpha +2\cdot 3^\alpha -3\cdot 4^\alpha <0\) for any \(d_{v_3}\ge 3\) and \(\alpha \in (-1,0)\) (see Fig. 3a). Thus, for \(\alpha \in (-1,0)\), \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\).

Case 2 For any diameter path of T, \(d_{v_2}=2\).

Case 2.1 \(d_{v_3}\ge 3\). Denote \(N(v_3)=\lbrace v_2,v_4,w_1,w_2,\ldots ,w_{d_{v_3}-2} \rbrace \). Then, we take \(T_{-2}=T-\lbrace v_1,v_2\rbrace \). Obviously, there exists a dominating set D(T) such that \(v_2\in D(T)\) and \(v_3\in N[D{\setminus }\lbrace v_2 \rbrace ]\), implying \(\gamma (T)=\gamma (T_{-2})+1\). By calculation, we get

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-2})-[d_{v_4}\cdot (d_{v_3}-1)]^{\alpha }-(d_{v_3}-1)^{\alpha }\cdot \sum _{i=1}^{d_{v_3}-2}(d_{w_i})^{\alpha }+(d_{v_4}\cdot d_{v_3})^{\alpha }\\&\quad +(d_{v_3})^{\alpha }\cdot \sum _{i=1}^{d_{v_3}-2}(d_{w_i})^{\alpha }+(2\cdot d_{v_3})^{\alpha }+2^{\alpha }\\&\le \frac{4(n-2)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-2-3(\gamma -1)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad -[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot \left[ (d_{v_4})^{\alpha }+\sum _{i=1}^{d_{v_3}-2}(d_{w_i})^{\alpha }\right] +[(d_{v_3})^{\alpha }+1]\cdot 2^{\alpha }\\&\le f(n,\gamma ,\alpha )-[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [(d_{v_3}-2)\cdot 2^{\alpha }]+[(d_{v_3})^{\alpha }+1]\cdot 2^{\alpha }\\&\quad -6\cdot 4^{\alpha }+3\cdot 6^{\alpha }+2^{\alpha }\\&=f(n,\gamma ,\alpha )+[(d_{v_3}-1)(d_{v_3})^{\alpha }-(d_{v_3}-2)(d_{v_3}-1)^{\alpha }]\cdot 2^{\alpha }\\&\quad -6\cdot 4^{\alpha }+3\cdot 6^{\alpha }+2\cdot 2^{\alpha } \end{aligned}$$

Combining Lemma 2.2, we calculate that \([(d_{v_3}-1)(d_{v_3})^{\alpha }-(d_{v_3}-2)(d_{v_3}-1)^{\alpha }]\cdot 2^{\alpha }-6\cdot 4^{\alpha }+3\cdot 6^{\alpha }+2^{\alpha +1}=\phi _1(d_{v_3})\cdot 2^\alpha -6\cdot 4^{\alpha }+3\cdot 6^{\alpha }+2^{\alpha +1}\le \phi _1(3)\cdot 2^\alpha -6\cdot 4^{\alpha }+3\cdot 6^{\alpha }+2^{\alpha +1}= 5\cdot 6^\alpha -7\cdot 4^\alpha +2^{\alpha +1}<0\) for \(d_{v_3}\ge 3\) and \(\alpha \in [-0.68,0)\) (see Fig. 3b). Hence, for \(\alpha \in [-0.68,0)\), \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\).

Fig. 3
figure 3

The two functions of \(\alpha \) in Case 1 and Case 2.1 of Theorem 2.3

Case 2.2 \(d_{v_3}=2\). Denote \(N(v_4)=\lbrace v_3,v_5,x_1,x_2,\ldots ,x_{d_{v_4}-2}\rbrace \). For any \(x_i\) (\(i=1,2,\ldots ,d_{v_4}-2\)), if there exist two vertices \(y_1\), \(y_2\) such that \(y_2\in N(x_i)\) and \(y_1\in N(y_2)\), then we get a new diameter path of T, that is \(y_1,y_2,x_i,v_4,v_5,\ldots ,v_d\), then by the above cases, we can assume that \(d_{x_i}=d_{y_2}=2\). Moreover, if \(x_i\) is a support vertex, from Lemma 2.4, we can suppose that \(d_{x_i}=2\) or \(d_{x_i}=3\).

Case 2.2.1 \(d_{v_4}\ge 4\). Take \(T_{-3}=T-\lbrace v_1,v_2,v_3\rbrace \), then we have

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-3})-[(d_{v_4}-1)\cdot d_{v_5}]^{\alpha }-(d_{v_4}-1)^{\alpha }\cdot \sum _{i=1}^{d_{v_4}-2}(d_{x_i})^{\alpha }\\&\quad +(d_{v_4}\cdot d_{v_5})^{\alpha }+(d_{v_4})^{\alpha }\cdot \sum _{i=1}^{d_{v_4}-2}(d_{x_i})^{\alpha }+(2\cdot d_{v_4})^{\alpha }+4^{\alpha }+2^{\alpha }\\&\le \frac{4(n-3)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-3-3(\gamma -1)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad -[(d_{v_4}-1)^{\alpha }-(d_{v_4})^{\alpha }]\cdot \left[ (d_{v_5})^{\alpha }+\sum _{i=1}^{d_{v_4}-2}(d_{x_i})^{\alpha }\right] +(2\cdot d_{v_4})^{\alpha }+4^{\alpha }+2^{\alpha }\\&\le f(n,\gamma ,\alpha )-[(d_{v_4}-1)^{\alpha }-(d_{v_4})^{\alpha }]\cdot [(d_{v_4}-2)\cdot 3^{\alpha }]\\&\quad +(2\cdot d_{v_4})^{\alpha }-2\cdot 4^{\alpha }+2^{\alpha }\\&=f(n,\gamma ,\alpha )+[(d_{v_4}-1)(d_{v_4})^{\alpha }-(d_{v_4}-2)(d_{v_4}-1)^{\alpha }]\cdot 3^{\alpha }\\&\quad +(2^\alpha -3^\alpha )(d_{v_4})^{\alpha }-2\cdot 4^{\alpha }+2^{\alpha }. \end{aligned}$$

If \(\alpha <0\), the function \((2^\alpha -3^\alpha )(d_{v_4})^\alpha \) monotonically decreases for \(d_{v_4}\ge 0\). Combining Lemma 2.2, we calculate that \([(d_{v_4}-1)(d_{v_4})^{\alpha }-(d_{v_4}-2)(d_{v_4}-1)^{\alpha }]\cdot 3^{\alpha }+(2^\alpha -3^\alpha )(d_{v_4})^{\alpha }-2\cdot 4^{\alpha }+2^{\alpha }=\phi _1(d_{v_4})\cdot 3^\alpha +(2^\alpha -3^\alpha )(d_{v_4})^{\alpha }-2\cdot 4^{\alpha }+2^{\alpha }\le \phi _1(4)\cdot 3^\alpha +(2^\alpha -3^\alpha )\cdot 4^{\alpha }-2\cdot 4^{\alpha }+2^{\alpha }= 2\cdot 12^\alpha -2\cdot 9^\alpha +8^\alpha -2\cdot 4^\alpha +2^\alpha <0\) for \(d_{v_4}\ge 4\) and \(\alpha \in [-0.64,0)\) (see Fig. 4a). Hence, for \(\alpha \in [-0.64,0)\), \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\).

Case 2.2.2 \(d_{v_4}\le 3\). If there exists a minimum dominating set D(T) such that \(v_4\in D(T)\), then we take \(T_{-2}=T-\lbrace v_1,v_2 \rbrace \). By calculation, we have

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-2})-(d_{v_4})^{\alpha } +(2\cdot d_{v_4})^{\alpha }+4^{\alpha }+2^{\alpha }\\&\le \frac{4(n-2)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha } +[n-2-3(\gamma -1)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) -(d_{v_4})^{\alpha }+(2\cdot d_{v_4})^{\alpha }+4^{\alpha }+2^{\alpha }\\&=f(n,\gamma ,\alpha )-(d_{v_4})^{\alpha }+(2\cdot d_{v_4})^{\alpha }-5\cdot 4^{\alpha }+2\cdot 2^{\alpha }+3\cdot 6^{\alpha }. \end{aligned}$$

Note that \(-(d_{v_4})^{\alpha }+(2\cdot d_{v_4})^{\alpha }-5\cdot 4^{\alpha }+2\cdot 2^{\alpha }+3\cdot 6^{\alpha }\le -5\cdot 4^{\alpha }+2\cdot 2^{\alpha }+4\cdot 6^{\alpha }-3^\alpha <0\) for any \(d_{v_4}\le 3\) and \(\alpha \in [-0.6395,0)\) (see Fig. 4b), then we have \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\) for \(\alpha \in [-0.6395,0)\).

Fig. 4
figure 4

The two functions of \(\alpha \) in Case 2.2.1 and Case 2.2.2 of Theorem 2.3

Next, we suppose that \(v_4\notin D(T)\) for any minimum dominating set D in T.

Case 2.2.2.1 \(d_{v_4}=3\). Denote \(N(v_5)=\lbrace v_4,a_1,\ldots ,a_{d_{v_5}-1} \rbrace \), then we study the following three cases, which are depicted in Fig. 5.

Fig. 5
figure 5

Three trees for Case 2.2.2.1

(I) If \(d_{v_5}\ge 9\), we take \(T_{-7}=T-\lbrace v_1,v_2,v_3,v_4,x_1,y_1,y_2 \rbrace \). One can check that \(\gamma (T_{-7})=\gamma (T)-2\) and

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-7})-[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }] \cdot \sum _{i=1}^{d_{v_5}-1}(d_{a_i})^\alpha +(3\cdot d_{v_5})^{\alpha }\\&\quad +2\cdot 6^{\alpha }+2\cdot 4^{\alpha }+2\cdot 2^{\alpha }\\&\le \frac{4(n-7)+3(\gamma -2)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-7-3(\gamma -2)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad -[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot \sum _{i=1}^{d_{v_5}-1}(d_{a_i})^\alpha +(3\cdot d_{v_5})^{\alpha }+2\cdot 6^{\alpha }+2\cdot 4^{\alpha }+2\cdot 2^{\alpha }\\&= f(n,\gamma ,\alpha )\!-\![(d_{v_5}-1)^{\alpha }\!-\!(d_{v_5})^{\alpha }]\cdot \sum _{i=1}^{d_{v_5}-1}(d_{a_i})^\alpha +(3\cdot d_{v_5})^{\alpha }-6^{\alpha }-4^{\alpha }\!+\!2^{\alpha }. \end{aligned}$$

Easily, it can be checked that \((3\cdot d_{v_5})^{\alpha }-6^{\alpha }-4^{\alpha }+2^{\alpha }\le 27^\alpha -6^\alpha -4^\alpha +2^\alpha <0\) for any \(d_{v_5}\ge 9\) and \(\alpha \in [-0.5287,0)\) (see Fig. 6a). Hence, for \(\alpha \in [-0.5287,0)\), \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\). For \(d_{v_5}\le 8\), we take \(T_{-3}=T-\lbrace v_1,v_2,v_3 \rbrace \). One can see \(\gamma (T_{-3})=\gamma (T)-1\) and

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }({T_{-3}})-4^{\alpha }-(2\cdot d_{v_5})^{\alpha }+2\cdot 6^{\alpha }+(3\cdot d_{v_5})^{\alpha }+4^{\alpha }+2^{\alpha }\\&\le \frac{4(n-3)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-3-3(\gamma -1)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad -4^{\alpha }-(2\cdot d_{v_5})^{\alpha }+2\cdot 6^{\alpha }+(3\cdot d_{v_5})^{\alpha }+4^{\alpha }+2^{\alpha }\\&=f(n,\gamma ,\alpha )-3\cdot 4^{\alpha }+(3^{\alpha }-2^{\alpha })\cdot (d_{v_5})^{\alpha }+2\cdot 6^{\alpha }+2^{\alpha }. \end{aligned}$$

Since the inequality \(-3\cdot 4^{\alpha }+(3^{\alpha }-2^{\alpha })\cdot (d_{v_5})^{\alpha }+2\cdot 6^{\alpha }+2^{\alpha }\le 24^\alpha -16^\alpha -3\cdot 4^\alpha +2\cdot 6^\alpha +2^\alpha <0\) holds for any \(d_{v_5}\le 8\) and \(\alpha \in [-0.6241,0)\) (see Fig. 6b), we have \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\) for \(\alpha \in [-0.6241,0)\).

Fig. 6
figure 6

The two functions of \(\alpha \) in Case 2.2.2.1 (I) of Theorem 2.3

(II) Assume that \(d_{v_5}\ge 4\), then we take \(T_{-7}=T-\lbrace v_1,v_2,v_3,v_4,x_1,y_1,y_2 \rbrace \). Similarly, we get

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-7})-[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot \sum _{i=1}^{d_{v_5}-1}(d_{a_i})^\alpha +(3\cdot d_{v_5})^{\alpha }+9^{\alpha }\\&\quad +2\cdot 3^{\alpha }+6^{\alpha }+4^{\alpha }+2^{\alpha }\\&\le \frac{4(n-7)+3(\gamma -2)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-7-3(\gamma -2)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) -[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot \sum _{i=1}^{d_{v_5}-1}(d_{a_i})^\alpha \\&\quad +(3\cdot d_{v_5})^{\alpha }+9^{\alpha }+2\cdot 3^{\alpha }+6^{\alpha }+4^{\alpha }+2^{\alpha }\\&=f(n,\gamma ,\alpha )-[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot \sum _{i=1}^{d_{v_5}-1} (d_{a_i})^\alpha +(3\cdot d_{v_5})^{\alpha }+9^{\alpha }\\&\quad +2\cdot 3^{\alpha }-2\cdot 6^{\alpha }-2\cdot 4^{\alpha }. \end{aligned}$$

It can be compute that \((3\cdot d_{v_5})^{\alpha }+9^{\alpha }+2\cdot 3^{\alpha }-2\cdot 6^{\alpha }-2\cdot 4^{\alpha }\le 12^\alpha +9^\alpha +2\cdot 3^\alpha -2\cdot 6^\alpha -2\cdot 4^\alpha \) is always negative for \(d_{v_5}\ge 4\) and \(\alpha \in [-0.7773,0)\) (see Fig. 7a). Thus, for \(\alpha \in [-0.7773,0)\), \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\). If \(d_{v_5}\le 3\), we take \(T_{-3}=T-\lbrace v_1,v_2,v_3\rbrace \). Then,

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-3})-(2\cdot d_{v_5})^{\alpha }-6^{\alpha }+(3\cdot d_{v_5})^{\alpha }+9^{\alpha }+6^{\alpha }+4^{\alpha }+2^{\alpha }\\&\le \frac{4(n-3)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-3-3(\gamma -1)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad +(3^{\alpha }-2^{\alpha })\cdot (d_{v_5})^{\alpha }+9^{\alpha }+4^{\alpha }+2^{\alpha }\\&=f(n,\gamma ,\alpha )-2\cdot 4^{\alpha }+(3^{\alpha }-2^{\alpha })\cdot (d_{v_5})^{\alpha }+9^{\alpha }+2^{\alpha }. \end{aligned}$$

Since \(-2\cdot 4^{\alpha }+(3^{\alpha }-2^{\alpha })\cdot (d_{v_5})^{\alpha }+9^{\alpha }+2^{\alpha }\le 2\cdot 9^\alpha -6^\alpha -2\cdot 4^\alpha +2^\alpha <0\) for any \(d_{v_5}\le 3\) and \(\alpha \in [-0.6894,0)\) (see Fig. 7b), we have for \(\alpha \in [-0.6894,0)\), \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\).

Fig. 7
figure 7

The two functions of \(\alpha \) in Case 2.2.2.1 (II) of Theorem 2.3

(III) In this case, we assume that \(d_{v_5}\ge 5\). Let \(T_{-6}=T-\lbrace v_1,v_2,v_3,v_4,x_1,y_1\rbrace \), then we have

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-6})-[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }] \cdot \sum _{i=1}^{d_{v_5}-1}(d_{a_i})^\alpha +(3\cdot d_{v_5})^{\alpha }\\&\quad +2\cdot 6^{\alpha }+4^{\alpha }+2\cdot 2^{\alpha }\\&\le \frac{4(n-6)+3(\gamma -2)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-6-3(\gamma -2)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad -[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot \sum _{i=1}^{d_{v_5}-1}(d_{a_i})^\alpha +(3\cdot d_{v_5})^{\alpha }+2\cdot 6^{\alpha }+4^{\alpha }+2\cdot 2^{\alpha }\\&=f(n,\gamma ,\alpha )-[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot \sum _{i=1}^{d_{v_5}-1}(d_{a_i})^\alpha +(3\cdot d_{v_5})^{\alpha }\\&\quad +2\cdot 6^{\alpha }-5\cdot 4^{\alpha }+2\cdot 2^{\alpha }. \end{aligned}$$

Since the inequality \((3\cdot d_{v_5})^{\alpha }+2\cdot 6^{\alpha }-5\cdot 4^{\alpha }+2\cdot 2^{\alpha }\le 15^\alpha +2\cdot 6^{\alpha }-5\cdot 4^{\alpha }+2\cdot 2^{\alpha }<0\) holds for any \(d_{v_5}\ge 5\) and \(\alpha \in [-0.5336,0)\) (see Fig. 8a), we have \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\) for \(\alpha \in [-0.5336,0)\). For \(d_{v_5}\le 4\), we take \(T_{-3}=T-\lbrace v_1,v_2,v_3 \rbrace \). Then,

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-3})-(2\cdot d_{v_5})^{\alpha }-4^{\alpha }+(3\cdot d_{v_5})^{\alpha }+2\cdot 6^{\alpha }+4^{\alpha }+2^{\alpha }\\&\le \frac{4(n-3)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-3-3(\gamma -1)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad +(3^{\alpha }-2^{\alpha })\cdot (d_{v_5})^{\alpha }+2\cdot 6^{\alpha }+2^{\alpha }\\&=f(n,\gamma ,\alpha )+(3^{\alpha }-2^{\alpha })\cdot (d_{v_5})^{\alpha }+2\cdot 6^{\alpha }+2^{\alpha }-3\cdot 4^{\alpha }. \end{aligned}$$

Since \((3^{\alpha }-2^{\alpha })\cdot (d_{v_5})^{\alpha }+2\cdot 6^{\alpha }+2^{\alpha }-3\cdot 4^{\alpha }\le 12^\alpha -8^\alpha +2\cdot 6^{\alpha }+2^{\alpha }-3\cdot 4^{\alpha }\) is negative for \(d_{v_5}\le 4\) and \(\alpha \in [-0.747,0)\) (see Fig. 8b), we get \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\) for \(\alpha \in [-0.747,0)\).

Fig. 8
figure 8

The two functions of \(\alpha \) in Case 2.2.2.1 (III) of Theorem 2.3

Case 2.2.2.2 \(d_{v_4}=2\). The corresponding tree is depicted in Fig. 9. We denote \(N(v_5)=\lbrace v_4,a_1,a_2,\ldots ,a_{d_{v_5}-1}\rbrace \) and consider the following two cases:

Fig. 9
figure 9

The tree for Case 2.2.2.2

Case 2.2.2.2.1 \(d_{v_5}=2\). Let \(T_{-3}=T-\lbrace v_1,v_2,v_3 \rbrace \), then we have

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-3})-2^{\alpha }+3\cdot 4^{\alpha }+2^{\alpha }\\&\le \frac{4(n-3)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-3-3(\gamma -1)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) +3\cdot 4^{\alpha }\\&=\frac{4n+3\gamma -15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+(n-3\gamma )\cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&=f(n,\gamma ,\alpha ). \end{aligned}$$

Case 2.2.2.2.2 \(d_{v_5}\ge 3\). If \(d_{a_i}\le 2\) with \(i=1,2,\ldots ,d_{v_5}-1\), we take \(T_{-4}=T-\lbrace v_1,v_2,v_3,v_4\rbrace \), then

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-4})-[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot \sum _{i=1}^{d_{v_5}-1}(d_{a_i})^\alpha +(2\cdot d_{v_5})^{\alpha }+2\cdot 4^{\alpha }+2^{\alpha }\\&\le \frac{4(n-4)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n-4-3(\gamma -1)]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) -[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot \left( d_{v_5} -1\right) \\&\quad \cdot 2^{\alpha } +2\cdot 4^{\alpha }+2^{\alpha }\\&=f(n,\gamma ,\alpha )+{[(d_{v_5})^{\alpha +1}-(d_{v_5}-1)^{\alpha +1}]\cdot 2^\alpha +2\cdot 4^{\alpha }-3\cdot 6^{\alpha }}. \end{aligned}$$

One can check that \({[(d_{v_5})^{\alpha +1}-(d_{v_5}-1)^{\alpha +1}]\cdot 2^\alpha +2\cdot 4^{\alpha }-3\cdot 6^{\alpha }}\le \left( 3^{\alpha +1}-2^{\alpha +1}\right) \cdot 2^\alpha +2\cdot 4^{\alpha }-3\cdot 6^{\alpha }=0\) for any \(d_{v_5}\ge 3\). Hence, \(R_{\alpha }(T)\le f(n,\gamma ,\alpha )\).

Based on the above discussion, we suppose that \(d_{a_1}=\max _{1\le i\le d_{v_5}-1}d_{a_i}\ge 3\). Denote \(N(a_1)=\lbrace v_5,b_1,b_2,\ldots ,b_{d_{a_1}-1}\rbrace \), then by all above cases and Lemma 2.4, one can see that \(1\le d_{b_j}\le 3\) and all vertex in \({N(b_j){\setminus } \lbrace a_1\rbrace }\) are pendent vertices. For convenience, the number of vertices in \(\lbrace b_1,b_2,\ldots ,b_{d_{a_1}-1} \rbrace \) with degree i is written by \(n_i\); then, we obtain \(n_1+n_2+n_3=d_{a_1}-1\). Next, we construct two subgraphs \(T'\), \(T''\) of T such that \(V_{T}=V_{T'}\cup V_{T''}\) and \(E_{T}=E_{T'}\cup E_{T''}\cup \lbrace v_5a_1\rbrace \). By calculation, we have

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T')+R_{\alpha }(T'')-[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\\&\quad \cdot \left[ 2^{\alpha }+\sum _{i=2}^{d_{v_5}-1}(d_{a_i})^\alpha \right] -n_1\cdot (d_{a_1}-1)^{\alpha }-n_2\cdot [2(d_{a_1}-1)]^{\alpha }\\&\quad -n_3\cdot [3(d_{a_1}-1)]^{\alpha }+n_1\cdot (d_{a_1})^{\alpha } +n_2\cdot (2\cdot d_{a_1})^{\alpha }+n_3\cdot (3\cdot d_{a_1})^{\alpha }\\&\quad +(d_{a_1}\cdot d_{v_5})^{\alpha }\\&\le \frac{4n+3\gamma -15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+(n-3\gamma ) \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad +2\cdot 2^{\alpha }-3\cdot 4^{\alpha }+(d_{a_1}\cdot d_{v_5})^{\alpha }\\&\quad -[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot [2^{\alpha }+(d_{v_5}-2) \cdot (d_{a_1})^{\alpha }]\\&\quad -[(d_{a_1}-1)^{\alpha }-(d_{a_1})^{\alpha }] \cdot (n_1+n_2+n_3)\cdot 3^{\alpha }\\&\le f(n,\gamma ,\alpha )-[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot [2^{\alpha } +(d_{a_1})^{\alpha }]\\&\quad -[(d_{a_1}-1)^{\alpha }-(d_{a_1})^{\alpha }]\cdot (d_{a_1}-1)\cdot 3^{\alpha }\\&\quad +2\cdot 2^{\alpha }-3\cdot 4^{\alpha }+(d_{a_1}\cdot d_{v_5})^{\alpha } \end{aligned}$$

Now, we consider the function \(g(z)=-[(z-1)^{\alpha }-z^{\alpha }]\cdot [2^{\alpha }+(d_{a_1})^{\alpha }]+(d_{a_1}\cdot z)^{\alpha }\). Since

$$\begin{aligned} g'(z)&=\alpha \left\{ \left[ z^{\alpha -1}-(z-1)^{\alpha -1} \right] \left[ 2^{\alpha }+(d_{a_1})^{\alpha } \right] + (d_{a_1})^{\alpha }\cdot z^{\alpha -1} \right\} \ge 0 \\&\Leftrightarrow \left[ z^{\alpha -1}-(z-1)^{\alpha -1} \right] \left[ 2^{\alpha }+(d_{a_1})^{\alpha } \right] + (d_{a_1})^{\alpha }\cdot z^{\alpha -1}\le 0\\&\Leftrightarrow z^{\alpha -1}\left[ 2^{\alpha }+2\cdot (d_{a_1})^{\alpha } \right] \le {(z-1)^{\alpha -1}\left[ 2^{\alpha }+(d_{a_1})^{\alpha } \right] }\\&\Leftrightarrow \left( \frac{z}{z-1} \right) ^{\alpha -1}\le \frac{2^{\alpha }+(d_{a_1})^{\alpha }}{2^{\alpha }+2\cdot (d_{a_1})^{\alpha }} \\&\Leftrightarrow \left( \frac{z}{z-1} \right) ^{1-\alpha }\ge \frac{2^{\alpha }+2\cdot (d_{a_1})^{\alpha }}{2^{\alpha }+(d_{a_1})^{\alpha }} \\&\Leftrightarrow \frac{z}{z-1}\ge \left[ \frac{2^{\alpha }+2\cdot (d_{a_1})^{\alpha }}{2^{\alpha }+(d_{a_1})^{\alpha }} \right] ^{\frac{1}{1-\alpha }}\\&\Leftrightarrow z\le \frac{\left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}}{\left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}-1}, \end{aligned}$$

we have that g(z) attains its maximum value if \(z=\frac{\left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}}{\left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}-1}\). Hence,

$$\begin{aligned}&-[(d_{v_5}-1)^{\alpha }-(d_{v_5})^{\alpha }]\cdot [2^{\alpha }+(d_{a_1})^{\alpha }]-[(d_{a_1}-1)^{\alpha }-(d_{a_1})^{\alpha }]\cdot (d_{a_1}-1)\cdot 3^{\alpha }+2\cdot 2^{\alpha }-3\cdot 4^{\alpha }\\&\qquad +(d_{a_1}\cdot d_{v_5})^{\alpha }\\&\quad \le 2\cdot 2^{\alpha }-3\cdot 4^{\alpha }-\left( \left\{ \frac{\left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}}{\left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}-1}-1\right\} ^{\alpha }-\left\{ \frac{\left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}}{\left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}-1}\right\} ^{\alpha } \right) \\&\qquad \cdot [2^{\alpha }+(d_{a_1})^{\alpha }]\\&\qquad -[(d_{a_1}-1)^{\alpha }-(d_{a_1})^{\alpha }]\cdot (d_{a_1}-1)\cdot 3^{\alpha }+(d_{a_1})^{\alpha }\cdot \left\{ \frac{\left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}}{\left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}-1}\right\} ^{\alpha }\\&\quad =-[(d_{a_1}-1)^{\alpha }-(d_{a_1})^{\alpha }]\cdot (d_{a_1}-1)\cdot 3^{\alpha }+2\cdot 2^{\alpha }-3\cdot 4^{\alpha }\\&\qquad -\frac{1}{\left( \left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}-1\right) ^\alpha } \left\{ [2^{\alpha }+(d_{a_1})^{\alpha }]-\left[ 2^\alpha +2\cdot (d_{a_1})^{\alpha }\right] \cdot \left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{\alpha }{1-\alpha }}\right\} \\&\quad =-[(d_{a_1}-1)^{\alpha }-(d_{a_1})^{\alpha }]\cdot (d_{a_1}-1)\cdot 3^{\alpha } +2\cdot 2^{\alpha }-3\cdot 4^{\alpha }\\&\qquad +\frac{2^{\alpha }+(d_{a_1})^{\alpha }}{\left( \left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}-1\right) ^\alpha }\left( \left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}-1\right) \\&\quad =-[(d_{a_1}-1)^{\alpha }-(d_{a_1})^{\alpha }]\cdot (d_{a_1}-1)\cdot 3^{\alpha } +2\cdot 2^{\alpha }-3\cdot 4^{\alpha }\\&\qquad +[2^{\alpha }+(d_{a_1})^{\alpha }]\left( \left[ \frac{2\cdot (d_{a_1})^{\alpha }+2^{\alpha }}{(d_{a_1})^{\alpha }+2^{\alpha }}\right] ^{\frac{1}{1-\alpha }}-1\right) ^{1-\alpha }\\&\quad = -[(d_{a_1}-1)^{\alpha }-(d_{a_1})^{\alpha }]\cdot (d_{a_1}-1)\cdot 3^{\alpha }+2\cdot 2^{\alpha }-3\cdot 4^{\alpha }\\&\qquad +[2^{\alpha }+(d_{a_1})^{\alpha }]\left( \left[ 1+\frac{2^{-\alpha }}{(d_{a_1})^{-\alpha }+2^{-\alpha }}\right] ^{\frac{1}{1-\alpha }}-1 \right) ^{1-\alpha }. \end{aligned}$$

Note that the function \(\varphi (z)=2\cdot 2^{\alpha }-3\cdot 4^{\alpha }+(2^{\alpha }+z^\alpha )\left( \left[ 1+\frac{2^{-\alpha }}{z^{-\alpha }+2^{-\alpha }} \right] ^{\frac{1}{1-\alpha }}-1 \right) ^{1-\alpha }\) always decreases for \(z>0\) if \(\alpha <0\). By calculation, we obtain \(\varphi (16)<0\) for \(\alpha \in [-0.5287,0)\) (see Fig. 10a), which implies that the function \(\omega (d_{a_1})=-[(d_{a_1}-1)^{\alpha }-(d_{a_1})^{\alpha }]\cdot (d_{a_1}-1)\cdot 3^{\alpha }+2\cdot 2^{\alpha }-3\cdot 4^{\alpha }+[2^{\alpha }+(d_{a_1})^{\alpha }]\left( \left[ 1+\frac{2^{-\alpha }}{(d_{a_1})^{-\alpha }+2^{-\alpha }}\right] ^{\frac{1}{1-\alpha }}-1 \right) ^{1-\alpha }\) is always negative for any \(d_{a_1}\ge 16\) and \(\alpha \in [-0.5287,0)\). Therefore, we only check the value of \(\omega (d_{a_1})\) for \(3\le d_{a_1}\le 15\) (see Fig. 10b, c). So, we have \(R_{\alpha }(T)<f(n,\gamma ,\alpha )\) for \(\alpha \in [-0.5287,0)\).

Fig. 10
figure 10

Several functions of \(\alpha \) in Case 2.2.2.2.2 of Theorem 2.3

Next, we will prove that \(R_{\alpha }(T)=f(n(T),\gamma (T),\alpha )\) if and only if \(T\in \mathcal {T}_{1}.\) For any path \(P_{3t}\), we have \(R_{\alpha }(P_{3t})=f(3k,k,\alpha )\). If \(T'\in \mathcal {T}_{1}\) such that \(R_{\alpha }(T')=f(n(T'),\gamma (T'),\alpha )\), we take a pendent vertex \(v\in T'\) and a path \(P_{3t}=w_1w_2\cdots w_{3t}\), and consider a new tree T such that \(V_{T}=V_{T'}\cup V_{P_{3t}}\) and \(E_T=E_{T'}\cup E_{P_{3t}}\cup \lbrace vw_1\rbrace \) (Definition 2.1 (i)). By calculation, we have

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T')+R_{\alpha }(P_{3t})-2\cdot 2^{\alpha }+3\cdot 4^{\alpha }\\&=\frac{4n(T')+3\gamma (T')-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n(T')-3\gamma (T')]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad +2\cdot 2^{\alpha }+(3t-3)\cdot 4^{\alpha }-2\cdot 2^{\alpha }+3\cdot 4^{\alpha }\\&=\frac{4n+3\gamma -15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+(n(T)-3\gamma (T))\cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&=f(n(T),\gamma (T),\alpha ). \end{aligned}$$

Suppose that there exists a tree \(T'\in \mathcal {T}_{1}\) such that \(R_{\alpha }(T')=f(n(T'),\gamma (T'),\alpha )\) and a vertex \(v\in V_{T'}\) satisfies that \(N(v)=\lbrace u_1,u_2\rbrace \), \(d_{u_1}=d_{u_2}=2\), and \(v\in D(T')\), where D is a minimum dominating set in \(T'\). Then, we construct a new tree \(T\in \mathcal {T}_{1}\). Let \(P_{3t+1}=w_1w_2\cdots w_{3t+1}\), \(V_T=V_{T'}\cup V_{P_{3t+1}}\) and \(E_T=E_{T'}\cup E_{P_{3t+1}}\cup \lbrace vw_1\rbrace \) (Definition 2.1 (ii)). Hence,

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T')+R_{\alpha }(P_{3t+1})-2\cdot 4^{\alpha }-2^{\alpha }+3\cdot 6^{\alpha }+4^{\alpha }\\&=\frac{4n(T')+3\gamma (T')-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+[n(T')-3\gamma (T')]\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad -2\cdot 2^{\alpha }+(3t-2)\cdot 4^{\alpha }-2\cdot 4^{\alpha }-2^{\alpha }+3\cdot 6^{\alpha }+4^{\alpha }\\&=\frac{4n+3\gamma -15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+(n(T)-3\gamma (T))\cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&=f(n(T),\gamma (T),\alpha ). \end{aligned}$$

Finally, we need to prove that any tree T will belong to the family \(\mathcal {T}_{1}\) if \(R_{\alpha }(T)=f(n(T),\gamma (T),\alpha )\). Suppose that there exists a tree T such that \(R_{\alpha }(T)=f(n(T),\gamma (T),\alpha )\), and \(T\notin \mathcal {T}_{1}\). Let T be the tree with the minimum number of vertices, which satisfies the above assumptions. If \(v_1v_2\cdots v_d\) is a diameter path of T, by above proofs, we suppose that \(d_{v_2}=d_{v_3}=d_{v_4}=2\), \(2\le d_{v_5}\le 3\), \(d_{a_1}\le 2\) and \(d_{a_2}\le 2\). Then, we investigate the following cases.

If \(d_{v_5}=3\) and \(d_{a_2}\le 2\), we let \(T_{-4}=T-\lbrace v_1,v_2,v_3,v_4 \rbrace \). Then,

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-4})-(2^{\alpha }-3^{\alpha })\cdot [(d_{a_1})^{\alpha }+(d_{a_2})^{\alpha }]+6^{\alpha }+2\cdot 4^{\alpha }+2^{\alpha }\\&\le \frac{4(n-4)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+(n-3\gamma -1)\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&\quad -(2^{\alpha }-3^{\alpha })\cdot [(d_{a_1})^{\alpha }+(d_{a_2})^{\alpha }]+6^{\alpha }+2\cdot 4^{\alpha }+2^{\alpha }\\&=f(n,\gamma ,\alpha )-(2^{\alpha }-3^{\alpha })\cdot [(d_{a_1})^{\alpha }+(d_{a_2})^{\alpha }]-2\cdot 6^{\alpha }+2\cdot 4^{\alpha }. \end{aligned}$$

If \(d_{a_1}=1\) or \(d_{a_2}=1\), then we get \(-(2^{\alpha }-3^{\alpha })\cdot [(d_{a_1})^{\alpha }+(d_{a_2})^{\alpha }]-2\cdot 6^{\alpha }+2\cdot 4^{\alpha }<0\) for \(\alpha <0\), a contradiction. If \(d_{a_1}=d_{a_2}=2\), then \(-(2^{\alpha }-3^{\alpha })\cdot [(d_{a_1})^{\alpha }+(d_{a_2})^{\alpha }]-2\cdot 6^{\alpha }+2\cdot 4^{\alpha }=0\) and \(R_{\alpha }(T_{-4})=f(n(T_{-4}),\gamma (T_{-4}),\alpha )\). If \(T_{-4}\in \mathcal {T}_{1}\), based on the definition of \(T_{-4}\), one can check that \(T\in \mathcal {T}_{1}\), a contradiction. If \(T_{-4}\notin \mathcal {T}_{1}\), we have \(|V_{T_{-4}}|<|V_{T}|\), a contradiction.

If \(d_{v_5}=2\), we take \(T_{-3}=T-\lbrace v_1,v_2,v_3 \rbrace \). Then, we get

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-3})-2^{\alpha }+3\cdot 4^{\alpha }+2^{\alpha }\\&\le \frac{4(n-3)+3(\gamma -1)-15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+(n-3\gamma )\\&\quad \cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) +3\cdot 4^{\alpha }\\&=\frac{4n+3\gamma -15}{5}\cdot 4^{\alpha }+2\cdot 2^{\alpha }+(n-3\gamma )\cdot \left( 3\cdot 6^{\alpha }+2^{\alpha }-\frac{19}{5}\cdot 4^{\alpha }\right) \\&=f(n,\gamma ,\alpha ). \end{aligned}$$

Note that \(R_{\alpha }(T_{-3})=f(n(T_{-3}),\gamma (T_{-3}),\alpha )\). Analogously, we can assume that \(T_{-3}\in \mathcal {T}_{1}\). Since \(v_4\) is a pendent vertex in \(T_{-3}\), we can conclude that \(T\in \mathcal {T}_{1}\). If \(T_{-3}\notin \mathcal {T}_{1}\), we obtain a contradiction with minimality of T.

This completes the proof. \(\square \)

3 The Lower Bound on the \(R_{\alpha }\) with \(\alpha \in [\alpha _2,0)\) of Trees in Terms of Domination Number

In this section, for \(\alpha \in [\alpha _2,0)\), the lower bound on the general Randić index \(R_{\alpha }\) of trees using not only the order, but also the order and the domination number, is obtained, where \(\alpha _2\approx -0.5696\) is the unique nonzero root of the equation \(2\cdot 4^\alpha +2^{\alpha +1}-3^\alpha -2\cdot 6^\alpha -1=0\). Moreover, we prove the corresponding extremal trees belong to \(\mathcal {T}_{2}\).

Definition 3.1

[1] Let \(\mathcal {T}_{2}\) be a set of trees with order n and domination number \(\gamma \), which are obtained from the star \(S_{n-\gamma +1}\) by attaching a pendent edge to its \(\gamma -1\) pendent vertices (see Fig. 11).

Theorem 3.2

Let T be an n-vertex tree with a domination number \(\gamma \). Then,

$$\begin{aligned} R_{\alpha }(T)\ge (n-2\gamma +1)(n-\gamma )^{\alpha }+2^{\alpha }(\gamma -1)[1+(n-\gamma )^{\alpha }],\quad \mathrm{for}\quad \alpha \in [\alpha _2,0), \end{aligned}$$
(3.1)

with the equality holding if and only if \(T\in \mathcal {T}_{2}\), where \(\alpha _2\approx -0.5696\) is the unique nonzero root of the equation \(2\cdot 4^\alpha +2^{\alpha +1}-3^\alpha -2\cdot 6^\alpha -1=0\).

Fig. 11
figure 11

Several extremal trees in graph family \(\mathcal {T}_2\)

Proof

To simplify the computations, we denote \(h(n,\gamma ,\alpha )=(n-2\gamma +1)(n-\gamma )^{\alpha }+2^{\alpha }(\gamma -1)[1+(n-\gamma )^{\alpha }]\). For any 4-vertex tree, one can see that \(R_{\alpha }(S_4)=3\cdot 3^{\alpha }=h(4,1,\alpha )\), and \(R_{\alpha }(P_4)=4^{\alpha }+2\cdot 2^{\alpha }=h(4,2,\alpha )\). We suppose that the inequality shown in (3.1) is always true for any tree with \(n-1\) vertices. Next, we will consider an n-vertex trees. We take a diameter path \(v_1v_2\cdots v_d\) in T, and denote \(N(v_2)=\lbrace v_1,v_3,u_1,u_2,\ldots ,u_{d_{v_2}-2} \rbrace \), \(N(v_3)=\lbrace v_2,v_4,w_1,w_2,\ldots ,w_{d_{v_3}-2}\rbrace \). Let \(T_{-1}=T-\lbrace v_1 \rbrace \), then we investigate the following two cases.

Case 1 If \(\gamma (T_{-1})=\gamma (T)\), we obtain

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-1})+(d_{v_2}-1)\cdot (d_{v_2})^{\alpha } +(d_{v_2}\cdot d_{v_3})^{\alpha }-(d_{v_2}-2)\cdot (d_{v_2}-1)^{\alpha }\\&\quad -[(d_{v_2}-1)\cdot d_{v_3}]^{\alpha }\\&\ge (n-2\gamma )\cdot (n-\gamma -1)^{\alpha }+(\gamma -1)\cdot [2\cdot (n-\gamma -1)]^{\alpha }+(\gamma -1)\cdot 2^{\alpha }\\&\quad +(d_{v_2}-1)\cdot (d_{v_2})^{\alpha }+(d_{v_2}\cdot d_{v_3})^{\alpha }-(d_{v_2}-2)\cdot (d_{v_2}-1)^{\alpha }\\&\quad -[(d_{v_2}-1)\cdot d_{v_3}]^{\alpha }\\&=h(n,\gamma ,\alpha )+[(n-2\gamma +1)+(\gamma -1)\cdot 2^{\alpha }]\cdot [(n-\gamma -1)^{\alpha }\\&\quad -(n-\gamma )^{\alpha }]-(n-\gamma -1)^{\alpha }\\&\quad -[(d_{v_2}-1)^{\alpha }-(d_{v_2})^{\alpha }]\cdot [(d_{v_2}-1)+(d_{v_3})^{\alpha }]+(d_{v_2}-1)^{\alpha }. \end{aligned}$$

Since \(T\cong S_{n}\) if \(n=d_{v_2}+1\) and \(T\in \mathcal {T}_{2}\) if \(n=d_{v_2}+2\), we only need to study the case that \(n\ge d_{v_2}+3\). Consider the following function:

$$\begin{aligned} \kappa (\gamma )&=[(n-2\gamma +1)+(\gamma -1)\cdot 2^{\alpha }]\cdot [(n-\gamma -1)^{\alpha }-(n-\gamma )^{\alpha }]-(n-\gamma -1)^{\alpha }\\&=[(n-2\gamma )+(\gamma -1)\cdot 2^{\alpha }](n-\gamma -1)^{\alpha }-[(n-2\gamma +1)+(\gamma -1)\cdot 2^{\alpha }]\\&\qquad (n-\gamma )^{\alpha }. \end{aligned}$$

By calculation, we get

$$\begin{aligned} \kappa '(\gamma )&=-\alpha (n-\gamma -1)^{\alpha -1}[(n-2\gamma )+(\gamma -1)\cdot 2^{\alpha }]+(n-\gamma -1)^{\alpha }(2^\alpha -2)\\&\quad +\alpha (n-\gamma )^{\alpha -1}[(n-2\gamma +1)+(\gamma -1)\cdot 2^{\alpha }]-(n-\gamma )^{\alpha }(2^\alpha -2)\\&=(n-\gamma -1)^{\alpha -1}\left\{ -\alpha [(n-2\gamma )+(\gamma -1)\cdot 2^{\alpha }]+(n-\gamma -1)(2^\alpha -2) \right\} \\&\quad -(n-\gamma )^{\alpha -1}\left\{ -\alpha [(n-2\gamma +1)+(\gamma -1)\cdot 2^{\alpha }]+(n-\gamma )(2^\alpha -2) \right\} . \end{aligned}$$

Let \(\vartheta _1(\gamma )=-\alpha [(n-2\gamma )+(\gamma -1)\cdot 2^{\alpha }]+(n-\gamma -1)(2^\alpha -2)\) and \(\vartheta _2(\gamma )=-\alpha [(n-2\gamma +1)+(\gamma -1)\cdot 2^{\alpha }]+(n-\gamma )(2^\alpha -2)\). It follows that \(\vartheta '_1(\gamma )=\vartheta '_2(\gamma )=-\alpha (2^\alpha -2)+(2-2^\alpha )=(1+\alpha )(2-2^\alpha )>0\) for \(\alpha \in (-1,0)\). Hence, \(\vartheta _1(\gamma )\le \vartheta _1(\frac{n}{2})=-\alpha (\frac{n}{2}-1)2^{\alpha }+(\frac{n}{2}-1)(2^\alpha -2)=(\frac{n}{2}-1)[(1-\alpha )2^\alpha -2]<0\) for \(\alpha \in (-1,0)\), and \(\vartheta _2(\gamma )\le \vartheta _2(\frac{n}{2})=-\alpha [1+(\frac{n}{2}-1)2^{\alpha }]+\frac{n}{2}(2^\alpha -2)=(\frac{n}{2}-1)[(1-\alpha )2^\alpha -2]+(2^\alpha -2-\alpha )<0\) for \(\alpha \in (-1,0)\).

Suppose that \(\alpha \in (-1,0)\), then we consider the inequality \(\kappa '(\gamma )=(n-\gamma -1)^{\alpha -1}\vartheta _1(\gamma )-(n-\gamma )^{\alpha -1}\vartheta _2(\gamma )<0\). Since

$$\begin{aligned}&(n-\gamma -1)^{\alpha -1}\vartheta _1(\gamma )-(n-\gamma )^{\alpha -1}\vartheta _2(\gamma )<0\nonumber \\&\quad \Leftrightarrow \frac{\vartheta _1(\gamma )}{\vartheta _2(\gamma )}>\left( \frac{n-\gamma }{n-\gamma -1}\right) ^{\alpha -1}\nonumber \\&\quad \Leftrightarrow \frac{-\alpha [(n-2\gamma )+(\gamma -1)\cdot 2^{\alpha }]+(n-\gamma -1)(2^\alpha -2)}{-\alpha [(n-2\gamma +1)+(\gamma -1)\cdot 2^{\alpha }]+(n-\gamma )(2^\alpha -2)}>\left( \frac{n-\gamma -1}{n-\gamma }\right) ^{1-\alpha }\nonumber \\&\quad \Leftrightarrow 1-\frac{2-2^\alpha +\alpha }{(n-\gamma )(2-2^\alpha +\alpha )+(1-\gamma )(\alpha -\alpha \cdot 2^\alpha )}>\left( 1-\frac{1}{n-\gamma } \right) ^{1-\alpha }\nonumber \\&\quad \Leftrightarrow 1-\frac{1}{(n-\gamma )+\frac{\alpha (1-\gamma )(1-2^\alpha )}{2-2^\alpha +\alpha }}>\left( 1-\frac{1}{n-\gamma } \right) ^{1-\alpha }. \end{aligned}$$
(3.2)

Note that the inequality \(\frac{\alpha (1-\gamma )(1-2^\alpha )}{2-2^\alpha +\alpha }\ge 0\) holds for \(\alpha \in (-1,0)\) and \(\gamma >1\); one can check that

$$\begin{aligned} 1-\frac{1}{(n-\gamma )+\frac{\alpha (1-\gamma )(1-2^\alpha )}{2-2^\alpha +\alpha }}>1-\frac{1}{n-\gamma }>\left( 1-\frac{1}{n-\gamma } \right) ^{1-\alpha }, \end{aligned}$$

for \(\alpha \in (-1,0)\) and \(\gamma >1\). So the function \(\kappa '(\gamma )\) is always negative if \(\alpha \in (-1,0)\) and \(\gamma >1\), which implies that if \(\alpha \in (-1,0)\), the function \(\kappa (\gamma )\) monotonically decreases for \(\gamma >1\).

Note that \(\gamma \le \frac{n-d_{v_2}+2}{2}\) and \(d_{v_3}\ge 2\), then we have \(\kappa (\gamma )\ge \kappa \left( \frac{n-d_{v_2}+2}{2}\right) \) and

$$\begin{aligned}&[(n-2\gamma +1)+(\gamma -1)\cdot 2^{\alpha }]\cdot [(n-\gamma -1)^{\alpha }-(n-\gamma )^{\alpha }]-(n-\gamma -1)^{\alpha }\\&\qquad -[(d_{v_2}-1)^{\alpha }-(d_{v_2})^{\alpha }]\cdot [(d_{v_2}-1)+(d_{v_3})^{\alpha }]+(d_{v_2}-1)^{\alpha }\\&\quad \ge \left[ \left( d_{v_2}-\frac{1}{2}\right) ^{\alpha }-\left( d_{v_2}+\frac{1}{2}\right) ^{\alpha }\right] \cdot \left( d_{v_2}-1+\frac{3}{2}\cdot 2^{\alpha }\right) \\&\qquad +[(d_{v_2})^{\alpha }-(d_{v_2}-1)^{\alpha }]\cdot (d_{v_2}+2^{\alpha }-1)+(d_{v_2}-1)^{\alpha }-\left( d_{v_2}-\frac{1}{2}\right) ^{\alpha }\\&\quad =\left\{ \left[ \left( d_{v_2}-\frac{1}{2}\right) ^{\alpha }-\left( d_{v_2}+\frac{1}{2}\right) ^{\alpha }\right] -[(d_{v_2}-1)^{\alpha }-(d_{v_2})^{\alpha }] \right\} (d_{v_2}+2^{\alpha }-1)\\&\qquad +2^{\alpha -1}\left[ \left( d_{v_2}-\frac{1}{2}\right) ^{\alpha }-\left( d_{v_2}+\frac{1}{2}\right) ^{\alpha }\right] +(d_{v_2}-1)^{\alpha }-\left( d_{v_2}-\frac{1}{2}\right) ^{\alpha }. \end{aligned}$$

Consider functions \(\psi _2(z)=z^{\alpha }\) and \(\phi _2(z)=\psi _2(z-1)-\psi _2(z)=(z-1)^{\alpha }-z^{\alpha }\).

Note that \(\psi '_2(z)=\alpha z^{\alpha -1}<0\) and \(\psi ''_2(z)=\alpha (\alpha -1) z^{\alpha -2}>0\). Suppose that \(\alpha <0\) and there exist \(z_2>z_1>1\), then we obtain

$$\begin{aligned} \phi _2(z_2)-\phi _2(z_1)&=\phi '_2(\xi _2)(z_2-z_1)\\&=[\psi '_2(\xi _2-1)-\psi '_2(\xi _2)](z_2-z_1)\\&=-{\psi ''_2(\eta _2)}(z_2-z_1)<0, \end{aligned}$$

where \(1<z_1<\xi _2<z_2\) and \(0<\xi _2-1<\eta _2<\xi _2\). Thus, if \(\alpha <0\), \(\phi _2(z)\) is a monotonically decreasing function for \(z\in (1,\infty )\). One can see that for any \(d_{v_2}\ge 2\) and \(\alpha \in (-1,0)\), \(\phi _2(d_{v_2}+\frac{1}{2})-\phi _2(d_{v_2}+1)>0\), \(\psi _2(d_{v_2}-\frac{1}{2})-\psi _2(d_{v_2}+\frac{1}{2})>0\) and \(\psi _2(d_{v_2}-1)-\psi _2(d_{v_2}-\frac{1}{2})>0\). Obviously, if \(d_{v_2}\ge 2\) and \(\alpha \in (-1,0)\), the inequality \(\left\{ [(d_{v_2}-\frac{1}{2})^{\alpha }-(d_{v_2}+\frac{1}{2})^{\alpha }]-[(d_{v_2}-1)^{\alpha }-(d_{v_2})^{\alpha }] \right\} (d_{v_2}+2^{\alpha }-1)+2^{\alpha -1}[(d_{v_2}-\frac{1}{2})^{\alpha }-(d_{v_2}+\frac{1}{2})^{\alpha }]+(d_{v_2}-1)^{\alpha }-(d_{v_2}-\frac{1}{2})^{\alpha }>0\) holds, i.e., \(R_{\alpha }(T)> h(n,\gamma ,\alpha )\).

Case 2 Suppose that \(\gamma (T_{-1})=\gamma (T)-1\). Obviously, there exists a minimum dominating set D(T) such that \(v_3\in D(T)\) and \(d_{v_2}=2\). Then,

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-1})-(d_{v_3})^{\alpha }+(2\cdot d_{v_3})^{\alpha }+2^{\alpha }\\&\ge [n-1-2(\gamma -1)+1]\cdot (n-1-\gamma +1)^{\alpha }+(\gamma -2)\cdot 2^{\alpha }\\&\quad \cdot (n-1-\gamma +1)^{\alpha }+(\gamma -2)\cdot 2^{\alpha }\\&\quad -(d_{v_3})^{\alpha }+(2d_{v_3})^{\alpha }+2^{\alpha }\\&=h(n,\gamma ,\alpha )+(n-\gamma )^{\alpha }-[2\cdot (n-\gamma )]^{\alpha }-(d_{v_3})^{\alpha }+(2\cdot d_{v_3})^{\alpha }. \end{aligned}$$

It is easy to see that \((n-\gamma )^{\alpha }-[2(n-\gamma )]^{\alpha }-(d_{v_3})^{\alpha }+(2 d_{v_3})^{\alpha }\ge 0\) if \(d_{v_3}\ge n-\gamma \). However, this only happens when \(d_{v_3}=n-\gamma \) which implies that \(T\in \mathcal {T}_{2}\).

If \(d_{v_3}\le n-\gamma -1\), we denote \(N(v_3)=\lbrace v_2,v_4,w_1,w_2,\ldots ,w_{d_{v_3}-2} \rbrace \). By the above investigations, we suppose that \(w_i\) (\(i=1,2,\ldots ,d_{v_3}-2\)) is a pendent vertex or a support vertex with degree 2. Besides, if \(v_4\) is a pendent vertex or a support vertex with degree 2, we can conclude that \(T\in \mathcal {T}_{2}\). Without loss of generality, we let \(d_{w_1}=d_{w_2}=\cdots =d_{w_{l_1}}=1\) and \(d_{w_{l_1+1}}=\cdots =d_{w_{l_1+l_2}}=2\), where \(l_1+l_2=d_{v_3}-2\). Then, we discuss the following two cases.

Case 2.1 \(l_1\ge 2\). We take \(T_{-1}=T-\lbrace w_1\rbrace \), implying \(\gamma (T_{-1})=\gamma (T)\). Note that \(\gamma -(2+l_2)\le \frac{n-(d_{v_3}+1+l_2)}{2}\), i.e., \(\gamma \le \frac{n-l_1+1}{2}\), we obtain

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-1})-(d_{v_3}-1)^{\alpha }\cdot [(d_{v_4})^{\alpha } +(l_1-1)+(l_2+1)\cdot 2^{\alpha }]+(d_{v_3})^{\alpha }\\&\quad \cdot [(d_{v_4})^{\alpha } +l_1+(l_2+1)\cdot 2^{\alpha }]\\&\ge (n-2\gamma )\cdot (n-\gamma -1)^{\alpha }+(\gamma -1)\cdot 2^{\alpha }\cdot (n-\gamma -1)^{\alpha }+(\gamma -1)\cdot 2^{\alpha }\\&\quad -[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [(d_{v_4})^{\alpha }+l_1+(l_2+1)\cdot 2^{\alpha }]+(d_{v_3}-1)^{\alpha }\\&= h(n,\gamma ,\alpha )+[n-2\gamma +1+(\gamma -1)\cdot 2^{\alpha }]\cdot [(n-\gamma -1)^{\alpha }\\&\quad -(n-\gamma )^{\alpha }]-(n-\gamma -1)^{\alpha }\\&\quad -[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [l_1+(l_2+2)\cdot 2^{\alpha }]+(d_{v_3}-1)^{\alpha } \end{aligned}$$

There exists \(l\ge 0\) such that \(n=l_1+2l_2+5+l\), then we have \(\gamma \le \frac{l_1+2l_2+5+l-l_1+1}{2}=l_2+3+\frac{l}{2}\). By the above consideration, we get

$$\begin{aligned}&[n-2\gamma +1+(\gamma -1)\cdot 2^{\alpha }]\cdot [(n-\gamma -1)^{\alpha }-(n-\gamma )^{\alpha }]-(n-\gamma -1)^{\alpha }\\&\qquad -[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [l_1+(l_2+2)\cdot 2^{\alpha }]+(d_{v_3}-1)^{\alpha }\\&\quad \ge \left[ l_1+\left( l_2+2+\frac{l}{2}\right) \cdot 2^{\alpha }\right] \cdot \left[ \left( d_{v_3}+\frac{l}{2}-1\right) ^{\alpha }-\left( d_{v_3}+\frac{l}{2}\right) ^{\alpha }\right] \\&\qquad -\left( d_{v_3}+\frac{l}{2}-1\right) ^{\alpha }\\&\qquad -[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [l_1+(l_2+2)\cdot 2^{\alpha }]+(d_{v_3}-1)^{\alpha }\\&\quad =\left[ \left( d_{v_3}+\frac{l}{2}\right) \cdot 2^{\alpha }+(1-2^{\alpha })l_1\right] \cdot \left[ \left( d_{v_3}+\frac{l}{2}-1\right) ^{\alpha }-\left( d_{v_3}+\frac{l}{2}\right) ^{\alpha }\right] \\&\qquad -\left( d_{v_3}+\frac{l}{2}-1\right) ^{\alpha }\\&\qquad -[d_{v_3}\cdot 2^{\alpha }+(1-2^{\alpha })l_1]\cdot [(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]+(d_{v_3}-1)^{\alpha }. \end{aligned}$$

Next, we consider the function \(r(z)=[2^{\alpha }z+(1-2^{\alpha })l_1]\cdot [(z-1)^{\alpha }-z^{\alpha }]-(z-1)^{\alpha }\). If \((1-2^{\alpha })l_1\le 2^{\alpha -1}z\) and \(\alpha \in (-1,0)\), we have

$$\begin{aligned} r'(z)&=(-\alpha )\cdot \left\{ -\frac{2^{\alpha }}{\alpha }\cdot [(z-1)^{\alpha }-z^{\alpha }] +(z-1)^{\alpha -1}-[(z-1)^{\alpha -1}-z^{\alpha -1}]\right. \\&\quad \cdot [2^{\alpha }z-(2^{\alpha }-1)l_1]\bigg \}\\&\ge (-\alpha )\cdot \left\{ -\frac{2^{\alpha }}{\alpha }\cdot [(z-1)^{\alpha }-z^{\alpha }]+(z-1)^{\alpha -1}-[(z-1)^{\alpha -1}-z^{\alpha -1}]\right. \\&\quad \cdot \left. \left( \frac{3}{2}\cdot 2^{\alpha }z\right) \right\} \\&=(-\alpha )\cdot \left\{ \left( 3\cdot 2^{\alpha -1}+\frac{2^{\alpha }}{\alpha }\right) [z^{\alpha }-(z-1)^{\alpha }]+(1-3\cdot 2^{\alpha -1})(z-1)^{\alpha -1} \right\} \\&=(-\alpha )\cdot \left\{ \left( 3\cdot 2^{\alpha -1}+\frac{2^{\alpha }}{\alpha }\right) [\psi _2(z)-\psi _2(z-1)]+(1-3\cdot 2^{\alpha -1})\right. \\&\qquad \cdot \left. \frac{1}{\alpha }\psi '_2(z-1) \right\} \end{aligned}$$

Suppose that \(z\ge 2\) and \(\alpha \in (-\frac{2}{3},0)\), we consider the following inequality:

$$\begin{aligned}&\left( 3\cdot 2^{\alpha -1}+\frac{2^{\alpha }}{\alpha }\right) [\psi _2(z)-\psi _2(z-1)]+\frac{1-3\cdot 2^{\alpha -1}}{\alpha }\psi '_2(z-1)>0\\&\quad \Leftrightarrow \left( 3\cdot 2^{\alpha -1}+\frac{2^{\alpha }}{\alpha }\right) \cdot \psi '_2(z-1)\cdot {\frac{\psi _2(z)-\psi _2(z-1)}{\psi '_2(z-1)}}\\&\qquad +\frac{1-3\cdot 2^{\alpha -1}}{\alpha }\psi '_2(z-1)>0\\&\quad \Leftrightarrow {\frac{\psi _2(z)-\psi _2(z-1)}{\psi '_2(z-1)}}>\frac{3\cdot 2^{\alpha -1}-1}{3\alpha \cdot 2^{\alpha -1}+2^{\alpha }}. \end{aligned}$$

Let \(t(z)=\frac{\psi _2(z)-\psi _2(z-1)}{\psi '_2(z-1)}=\frac{z^{\alpha }-(z-1)^{\alpha }}{\alpha (z-1)^{\alpha -1}}\). Consider the inequality \(t'(z)=\left( \frac{z}{z-1}\right) ^{\alpha -1}+\frac{1-\alpha }{\alpha }\left( \frac{z}{z-1}\right) ^{\alpha }-\frac{1}{\alpha }>0\), then we get

$$\begin{aligned}&\left( \frac{z}{z-1}\right) ^{\alpha -1}+\frac{1-\alpha }{\alpha }\left( \frac{z}{z-1}\right) ^{\alpha }-\frac{1}{\alpha }>0\\&\quad \Leftrightarrow \alpha \left( \frac{z}{z-1}\right) ^{\alpha -1}+(1-\alpha )\left( \frac{z}{z-1}\right) ^{\alpha }-1<0\\&\quad \Leftrightarrow \alpha +(1-\alpha )\frac{z}{z-1}<\left( \frac{z}{z-1}\right) ^{1-\alpha } \\&\quad \Leftrightarrow \left( 1+\frac{1}{z-1}\right) ^{1-\alpha }-(1-\alpha )\frac{1}{z-1}>1. \end{aligned}$$

Let \(\rho (s)=(1+s)^{1-\alpha }-(1-\alpha )s\), where \(s\in (0,1]\) and \(\alpha \in (-\frac{2}{3},0)\). Since \(\rho '(s)=(1-\alpha )\left[ (1+s)^{-\alpha }-1\right] >0 \) for \(s\in (0,1]\) and \(\rho '(0)=0\), we have \(\rho (s)>\rho (0)=1\) for \(s\in (0,1]\), which implies that the inequality \(\left( 1+\frac{1}{z-1}\right) ^{1-\alpha }-(1-\alpha )\frac{1}{z-1}>1\) holds for \(z\ge 2\).

Based on the above discussion, one can see that t(z) is a monotonically increasing function for \(z\ge 2\) if \(\alpha \in (-\frac{2}{3},0)\). We calculate that \(t(2)=\frac{2^{\alpha }-1}{\alpha }>\frac{3\cdot 2^{\alpha -1}-1}{3\alpha \cdot 2^{\alpha -1}+2^{\alpha }}\) for any \(\alpha \in (-\frac{2}{3},0)\) (the function \(\frac{2^{\alpha }-1}{\alpha }-\frac{3\cdot 2^{\alpha -1}-1}{3\alpha \cdot 2^{\alpha -1}+2^{\alpha }}\) is depicted in Fig. 12a), what implies that \(r'(z)>0\) for any \(z\ge 2\) and \(\alpha \in (-\frac{2}{3},0)\). If \(l=0\), one can check that \(T\in \mathcal {T}_{2}\). Moreover, \(d_{v_3}+\frac{l}{2}\ge d_{v_3}\ge l_1+2\ge l_1(2^{1-\alpha }-2)\) with \(l>0\), and thus, we get \(r(d_{v_3}+\frac{l}{2})>r(d_{v_3})\), which implies that

$$\begin{aligned}&[n-2\gamma +1+(\gamma -1)\cdot 2^{\alpha }]\cdot [(n-\gamma -1)^{\alpha }-(n-\gamma )^{\alpha }]-(n-\gamma -1)^{\alpha }\\&\quad >[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [l_1+(l_2+2)\cdot 2^{\alpha }]+(d_{v_3}-1)^{\alpha }. \end{aligned}$$

It is easy to conclude that \(R_{\alpha }(T)>h(n,\gamma ,\alpha )\) for \(\alpha \in \left( -\frac{2}{3},0\right) \).

Case 2.2 \(l_1\le 1\). Let \(T_{-2}=T-\lbrace v_1,v_2 \rbrace \), then we have

$$\begin{aligned} R_{\alpha }(T)&=R_{\alpha }(T_{-2})-[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [(d_{v_4})^{\alpha }+1+(d_{v_3}-3)\cdot 2^{\alpha }]\\&\quad +(2\cdot d_{v_3})^{\alpha }+2^{\alpha }\\&\ge [n-2-2(\gamma -1)+1]\cdot (n-2-\gamma +1)^{\alpha }+(\gamma -2)\cdot 2^{\alpha }\\&\quad \cdot (n-2-\gamma +1)^{\alpha }+(\gamma -2)\cdot 2^{\alpha }\\&\quad -[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [(d_{v_4})^{\alpha }+1+(d_{v_3}-3)\cdot 2^{\alpha }]+(2\cdot d_{v_3})^{\alpha }+2^{\alpha }\\&= h(n,\gamma ,\alpha )+[n-2\gamma +1+(\gamma -1)\cdot 2^{\alpha }]\cdot [(n-\gamma -1)^{\alpha } -(n-\gamma )^{\alpha }]\\&\quad -2^{\alpha }\cdot (n-\gamma -1)^{\alpha }\\&\quad -[(d_{v_3}-1)^{\alpha }-(d_{v_3})^{\alpha }]\cdot [1+(d_{v_3}-2)\cdot 2^{\alpha }]+(2\cdot d_{v_3})^{\alpha } \end{aligned}$$

Note that \(\gamma \le \frac{n}{2}\) for any graph, we get

$$\begin{aligned}&[n-2\gamma +1+(\gamma -1)\cdot 2^{\alpha }]\cdot [(n-\gamma -1)^{\alpha }-(n-\gamma )^{\alpha }]-2^{\alpha }\cdot (n-\gamma -1)^{\alpha }\\&\quad \ge -2^{\alpha }\cdot \left( \frac{n}{2}-1\right) ^{\alpha }-\left[ \left( \frac{n}{2}\right) ^{\alpha }-\left( \frac{n}{2}-1\right) ^{\alpha }\right] \cdot \left[ 2^{\alpha }\cdot \left( \frac{n}{2}-1\right) +1\right] \\&\quad =\left[ 2^\alpha \cdot \left( \frac{n}{2}-1\right) +1-2^\alpha \right] \cdot \left( \frac{n}{2}-1\right) ^{\alpha }-\left( 2^\alpha \cdot \frac{n}{2}+1-2^\alpha \right) \cdot \left( \frac{n}{2}\right) ^{\alpha } . \end{aligned}$$

Consider functions \(\psi _3(z)=(2^\alpha \cdot z+1-2^\alpha )\cdot z^{\alpha }\) and \(\phi _3(z)=\psi _3(z)-\psi _3(z+1)\), then we calculate that \(\psi '_3(z)=[(\alpha +1)2^{\alpha }\cdot z+\alpha (1-2^\alpha )]\cdot z^{\alpha -1}\) and \(\psi ''_3(z)=2^{\alpha -2}\alpha \cdot [(\alpha +1)2^{\alpha }\cdot z+(\alpha -1)(1-2^{\alpha })]\).

Fig. 12
figure 12

The four functions of \(\alpha \) in Theorem 3.2

Suppose that \(\alpha \in (-\frac{2}{3},0)\) and \(z>0\). Since \(\frac{(1-\alpha )(1-2^{\alpha })}{(\alpha +1)2^{\alpha }}<3\) holds for every \(\alpha \in (-\frac{2}{3},0)\) (see Fig. 12b), it can be checked that if \(z\ge 3>\frac{(1-\alpha )(1-2^{\alpha })}{(\alpha +1)2^{\alpha }}\), the inequality \((\alpha +1)2^{\alpha }\cdot z+\alpha (1-2^\alpha )>0\) holds, implying \(\psi '_3(z)>0\) and \(\psi ''_3(z)<0\) for \(\alpha \in (-\frac{2}{3},0)\) and \(z\ge 3\).

Suppose that \(\alpha \in (-\frac{2}{3},0)\) and there exist \(z_2>z_1\ge 3\), we obtain

$$\begin{aligned} \phi _3(z_2)-\phi _3(z_1)&=\phi '_3(\xi _3)(z_2-z_1)\\&={-[\psi '_3(\xi _3+1)-\psi '_3(\xi _3)]}(z_2-z_1)\\&=-\psi ''_3(\eta _3)(z_2-z_1)>0, \end{aligned}$$

where \(3\le z_1<\xi _3<z_2\) and \(3<\xi _3<\eta _3<\xi _3+1\). In addition, we calculate that \(\phi _3(3)-\phi _3(2)=4\cdot 6^\alpha +2\cdot 3^\alpha -3\cdot 8^\alpha -2\cdot 4^\alpha -2^\alpha >0\) for \(\alpha \in [-0.65,0)\) and \(\phi _3(2)-\phi _3(1)=2\cdot 4^\alpha -2^{\alpha +1}-2\cdot 6^\alpha -3^\alpha -1>0\) for \(\alpha \in [-0.5696,0)\) (see Fig. 12c, d). Based on the above discussions, we conclude that \(\phi _3(z)\) is a monotonically increasing function if \(\alpha \in [-0.5696,0)\). Then, we get \({\phi _3(\frac{n}{2}-1)\ge \phi _3(d_{v_3}-1)}\) for \(n\ge 2d_{v_3}\). The equality holds if and only if \(n=2d_{v_3}\), which implies that \(T\in \mathcal {T}_{2}\). On the whole, the equality in (3.1) holds for every tree in \(\mathcal {T}_2\), and if \(T\notin \mathcal {T}_2\), the inequality (3.1) is strict.

This completes the proof. \(\square \)

4 Conclusions

The extremal problem of the general Randić index of trees in terms of domination number is investigated in this paper. For any n-vertex tree T with domination number \(\gamma \), we show that \(R_{\alpha }(T)\le f(n,\gamma ,\alpha )\) if \(\alpha \in [-0.5287,0)\) and \(R_{\alpha }(T)\ge h(n,\gamma ,\alpha )\) if \(\alpha \in [-0.5696,0)\). In each case, extremal graphs are also characterized.

Fig. 13
figure 13

Two non-isomorphic 7-vertex trees with domination number 3

For \(P_4\) and \(P_5\), it can be calculated that \(R_{\alpha }(P_4)>f(4,2,\alpha )\) and \(R_{\alpha }(P_5)>f(5,2,\alpha )\) if \(\alpha <-1\). Moreover, we construct a 7-vertex tree with domination number 3, written as \(T'(7,3)\) (depicted in Fig. 13b), and show that \(R_{\alpha }(T'(7,3))=9^{\alpha }+6^{\alpha }+3\cdot 3^{\alpha }+2^{\alpha }<h(7,3,\alpha )\) if \(\alpha \le -1.3568\). By observing the above simple examples, it can easily see that only when \(\alpha \) is in a small interval, Theorems 2.3 and 3.2 hold.

The two ranges of the parameter \(\alpha \) obtained in this paper may not be very accurate, and two lower bounds on \(\alpha \) (\(\alpha _1\) and \(\alpha _2\)) are quite near \(-\frac{1}{2}\). It is hoped that in the future, one can discover new approaches to establish more extremal properties of the general Randić index and provide a more exact range of the parameter \(\alpha \) about this issue.