1 Introduction

In the last decades, the biharmonic elliptic equation

$$\begin{aligned} \begin{array}{ll} \Delta ^2 u= f(x,u)&{}\quad \hbox {in}\quad \Omega , \\ u=\Delta u =0 &{}\quad \text {on}\quad \partial \Omega , \end{array} \end{aligned}$$
(1.1)

has been studied by many authors see [4, 6,7,8, 16,17,18] and the references therein.

In this paper, we study the existence of multiple weak solutions to the following problem

$$\begin{aligned} \begin{array}{ll} \Delta ^2 u= f(x,u) + g(x,u)&{}\quad \hbox {in}\quad \Omega , \\ u= \Delta u =0 &{}\quad \hbox {on}\quad \partial \Omega , \end{array} \end{aligned}$$
(1.2)

where \(\Omega \subset \mathbb {R}^N, (N > 4)\) is a smooth bounded domain. To study the problem (1.2), we make the following assumptions:

We assume that \(f: \Omega \times \mathbb {R} \rightarrow \mathbb {R}\) is a function such that

  1. (A1)

    \(f(x,\xi )=f_1(x,\xi )+f_2(x,\xi ), f_1, f_2 \in C(\overline{\Omega }\times \mathbb {R}, \mathbb {R})\) and there exist constants \(C_1 >0\) and \(1< p<2\) such that

    $$\begin{aligned} \left| f_1(x,\xi )\right| \le C_1\left| \xi \right| ^{p-1},\quad (x,\xi ) \in \overline{\Omega }\times \mathbb {R}; \end{aligned}$$
    (1.3)
  2. (A2)

    there exist constants \(C_2 >0 \) and \(1<\mu <2\) such that

    $$\begin{aligned} f_1(x,\xi )\xi -\mu F_1(x,\xi )\le 0,\quad (x,\xi )\in \Omega \times \mathbb {R}, \end{aligned}$$

    where \(F_1(x,\xi ):=\int \limits _0^{\xi } f_1(x,\tau )\mathrm {d}\tau ;\)

  3. (A3)

    there exist constants \(C_2 >0, 1<p_1<2\) and \(2<p_2<2_*\) such that

    $$\begin{aligned} F_1(x,\xi )\ge C_2(\left| \xi \right| ^{p_1} -\left| \xi \right| ^{p_2}),\quad (x,\xi )\in \Omega _0\times \mathbb {R}, \end{aligned}$$

    where \( 2_*:=\frac{2 N}{ N-4}, \Omega _0\) is a nonempty open and \(\Omega _0 \subset \Omega \);

  4. (A4)

    there exist constants \(C_3 >0 \) and \(2<p_3<2_*\) such that

    $$\begin{aligned} \left| f_2(x,\xi )\right| \le C_3\left| \xi \right| ^{p_3-1},\quad (x,\xi )\in \overline{\Omega }\times \mathbb {R}; \end{aligned}$$
  5. (A5)

    \(f_i(x,\xi ) =-f_i(x,-\xi ), i=1,2, (x,\xi ) \in \Omega \times \mathbb {R}\).

Let \(g: \Omega \times \mathbb {R} \rightarrow \mathbb {R}\) is a function such that

  1. (B)

    \(g \in C(\overline{\Omega }\times \mathbb {R}, \mathbb {R})\) and there exist constants \(C_4 >0 \) and \(2<\theta <2_*\) such that

    $$\begin{aligned} \left| g(x,\xi )\right| \le C_4\left| \xi \right| ^{\theta -1},\quad (x,\xi )\in \overline{\Omega }\times \mathbb {R}. \end{aligned}$$

Now, we formulate the main result of this paper.

Theorem 1.1

Assume that (A1)–(A5), (B) are satisfied and

$$\begin{aligned} \frac{2p}{2-p} > \frac{N}{\theta -2}. \end{aligned}$$
(1.4)

Then the problem (1.2) has a sequence of small negative energy solutions converging to zero.

Example 1.2

Let \(\Omega \) be a bounded domain with smooth boundary in \(\mathbb {R}^5\) and

$$\begin{aligned} f(x,\xi ) =a(x)\left| \xi \right| ^{-\frac{1}{2}} \xi \cos \left| \xi \right| ^{\frac{3}{2}}, \quad g(x,\xi )=\xi ^{\theta -1}, \end{aligned}$$

where \(a(x)\in C(\overline{\Omega }, \mathbb {R})\) changes sign in \(\Omega , \theta \in (\frac{7}{6}, 10)\). Set

$$\begin{aligned} f_1(x,\xi )=a(x)\left| \xi \right| ^{-\frac{1}{2}}\xi , \quad f_2(x,\xi )=a(x)\left| \xi \right| ^{-\frac{1}{2}}\xi \left( \cos \left| \xi \right| ^{\frac{3}{2}}-1\right) . \end{aligned}$$

Thus, all conditions of Theorem 1.1 are satisfied with

$$\begin{aligned} 2_* =10;\quad p=\mu =p_1=\frac{3}{2};\quad p_2=p_3=3. \end{aligned}$$

By Theorem 1.1, the problem (1.2) has a sequence of small negative energy solutions converging to zero.

2 Proof of Theorem 1.1

Define the Euler–Lagrange functional associated with the problem (1.2) (see, e.g., [13, 14]) as follows

$$\begin{aligned} I\left( u\right) = \frac{1}{2}\int \limits _{\Omega }\left| \Delta u \right| ^2 \mathrm {d}x - \int \limits _\Omega F\left( x,u\right) \mathrm {d}x - \int \limits _\Omega G\left( x,u\right) \mathrm {d}x, \end{aligned}$$

where \( F(x,u): = \int _{0}^u f(x,\xi ) \mathrm {d}\xi \) and \(G(x,u): = \int _{0}^u g(x,\xi ) \mathrm {d}\xi .\)

From (A1), (A4) and (B), we have I is well defined on \(H_{0}^{2}( \Omega )\) and \(I \in C^1(H_{0}^{2}( \Omega ), \mathbb {R})\) with

$$\begin{aligned} \langle I'(u), v \rangle = \int \limits _{\Omega }\Delta u \Delta v \mathrm {d}x - \int \limits _\Omega f\left( x,u\right) v \mathrm {d}x - \int \limits _\Omega g\left( x,u\right) v \mathrm {d}x \end{aligned}$$
(2.1)

for all \(v \in H_{0}^{2}( \Omega ).\) One can also check that the critical points of I are weak solutions of the problem (1.2).

Next, we introduce a cut-off function \(\zeta \in C^\infty (\mathbb {R}, \mathbb {R})\) satisfying

$$\begin{aligned} {\left\{ \begin{array}{ll} \zeta (\xi )=1, &{} \xi \in (-\infty , 1],\\ 0\le \zeta (\xi )\le 1, &{} \xi \in (1,2),\\ \zeta (\xi ) =0, &{} \xi \in [2,+\infty ), \\ \left| \zeta '(\xi )\right| \le 2&{} \xi \in \mathbb {R}. \end{array}\right. } \end{aligned}$$
(2.2)

With the help of this cut-off function \(\zeta \), define

$$\begin{aligned} \pi (u) :=\zeta \left( \frac{\left\| u\right\| ^2_{H_{0}^{2}( \Omega )}}{T_0}\right) ,\quad \forall u\in H_{0}^{2}( \Omega ), \end{aligned}$$
(2.3)

where \(T_0\) is a small positive constant independent of u given by (2.10) and (2.49).

Lemma 2.1

The functional \(\pi \) defined by (2.3) is of class \(C^1(H_{0}^{2}( \Omega ), \mathbb {R})\) and

$$\begin{aligned} \left| \langle \pi '(u), u \rangle \right| \le 8, \quad \forall u \in H_{0}^{2}( \Omega ). \end{aligned}$$

Proof

By direct computation, we get

$$\begin{aligned} \langle \pi '(u), v \rangle =2\zeta '\left( \frac{\left\| u\right\| ^2_{H_{0}^{2}( \Omega )}}{T_0}\right) \frac{(u,v)_{H_{0}^{2}( \Omega )}}{T_0}, \quad \forall u, v \in H_{0}^{2}( \Omega ). \end{aligned}$$
(2.4)

Assume that \(u_n\rightarrow u_0\) in \( H_{0}^{2}( \Omega ).\) By the definition of \(\zeta \) and (2.4), for any \(v \in H_{0}^{2}( \Omega ), \) we have that

$$\begin{aligned}&\left| \langle \pi '(u_n) -\pi '(u_0), v \rangle \right| \\&\quad =2 \left| \zeta '\left( \frac{\left\| u_n\right\| ^2_{H_{0}^{2}( \Omega )}}{T_0}\right) \frac{(u_n,v)_{H_{0}^{2}( \Omega )}}{T_0} - \zeta ' \left( \frac{\left\| u_0\right\| ^2_{H_{0}^{2}( \Omega )}}{T_0}\right) \frac{(u_0,v)_{H_{0}^{2}( \Omega )}}{T_0} \right| \\&\quad \le 2T_0^{-1}\left\| v\right\| _{H_{0}^{2}( \Omega )} \Bigg [\left| \zeta '\left( \frac{\left\| u_n\right\| ^2_{H_{0}^{2}( \Omega )}}{T_0}\right) \right| \left\| u_n -u_0\right\| _{H_{0}^{2}( \Omega )} \\&\qquad + \left| \zeta '\left( \frac{\left\| u_n\right\| ^2_{H_{0}^{2}( \Omega )}}{T_0}\right) - \zeta '\left( \frac{\left\| u_0\right\| ^2_{H_{0}^{2}( \Omega )}}{T_0}\right) \right| \left\| u_0\right\| _{H_{0}^{2}( \Omega )} \Bigg ], \end{aligned}$$

which implies that \(\left\| \pi '(u_n) -\pi '(u_0)\right\| _{(H_{0}^{2}( \Omega ))^*}\rightarrow 0, n \rightarrow \infty \). So \(\pi \in C^1(H_{0}^{2}( \Omega ), \mathbb {R})\). By (2.2) and (2.4), we get

$$\begin{aligned} \left| \langle \pi '(u), u \rangle \right| \le 8, \quad \forall u \in H_{0}^{2}( \Omega ). \end{aligned}$$

\(\square \)

With the help of this functional \(\pi \), we define a new functional \(\overline{I}\) on \(H_{0}^{2}( \Omega )\) by

$$\begin{aligned} \overline{I}(u)&= \frac{1}{2}\int \limits _{\Omega }\left| \Delta u \right| ^2 \mathrm {d}x - \int \limits _\Omega F_1\left( x,u\right) \mathrm {d}x - \pi (u)\nonumber \\&\quad \times \left( \int \limits _\Omega F_2\left( x,u\right) \mathrm {d}x + \int \limits _\Omega G\left( x,u\right) \mathrm {d}x\right) , \end{aligned}$$
(2.5)

where \(F_2(x,u)=\int _0^u f_2(x,\tau )\mathrm {d}\tau \). From Lemma 2.1, hence \(\overline{I}\in C^1(H_{0}^{2}( \Omega ), \mathbb {R})\) and for any \(u, v \in H_{0}^{2}( \Omega )\), we have

$$\begin{aligned} \langle \overline{I}'(u), v \rangle&= \int \limits _{\Omega }\Delta u \Delta v \mathrm {d}x -\pi (u)\left( \int \limits _\Omega f_2\left( x,u\right) v \mathrm {d}x + \int \limits _\Omega g\left( x,u\right) v \mathrm {d}x \right) \nonumber \\&\quad - \int \limits _\Omega f_1\left( x,u\right) v \mathrm {d}x- \langle \pi '(u), v \rangle \left( \int \limits _\Omega F_2\left( x,u\right) \mathrm {d}x + \int \limits _\Omega G\left( x,u\right) \mathrm {d}x\right) . \end{aligned}$$
(2.6)

Lemma 2.2

Assume that (A1), (A2), (A4), (B) are satisfied and u is a critical point of \( \overline{I} \). Then

$$\begin{aligned} \overline{I}(u) \le \frac{\mu -2}{4\mu } \left\| u\right\| ^2_{H_{0}^{2}( \Omega )}. \end{aligned}$$
(2.7)

Proof

Consider two cases.

Case 1. Let u is a critical point of \( \overline{I} \) and \(\left\| u\right\| ^2_{H_{0}^{2}( \Omega )}>2T_0\), by the definition of \(\zeta \), we have \(\pi (u)=0\) and \(\pi '(u)=0\). From (A1) and (2.6), we get that

$$\begin{aligned} \overline{I}(u)&= \overline{I}(u) -\mu ^{-1}\langle \overline{I}'(u), u \rangle \nonumber \\&=\frac{\mu -2}{2\mu } \left\| u\right\| ^2_{H_{0}^{2}( \Omega )} +\mu ^{-1}\int \limits _{\Omega }\left( f_1(x,u)u -\mu F_1(x,u)\right) \mathrm {d}x \nonumber \\&\le \frac{\mu -2}{4\mu } \left\| u\right\| ^2_{H_{0}^{2}( \Omega )},\quad \hbox {by}\quad 1<\mu <2\quad \hbox {and}\quad f_1(x,u)u -\mu F_1(x,u)\le 0. \end{aligned}$$
(2.8)

Case 2. Let u is a critical point of \( \overline{I} \) and \(\left\| u\right\| ^2_{H_{0}^{2}( \Omega )}\le 2T_0\). By applying embedding inequalities, Lemma 2.1, (A2), (A4) and (B), we get that

$$\begin{aligned} \overline{I}(u)&= \overline{I}(u) -\mu ^{-1}\langle \overline{I}'(u), u \rangle \nonumber \\&\le \frac{\mu -2}{2\mu } \left\| u\right\| ^2_{H_{0}^{2}( \Omega )} + \frac{\mu +9}{\mu }C_3\left\| u\right\| ^{p_3}_{L^{p_3}(\Omega )} + \frac{\mu +9}{\mu }C_4\left\| u\right\| ^{\theta }_{L^{\theta }(\Omega )} \nonumber \\&\le \frac{\mu -2}{2\mu } \left\| u\right\| ^2_{H_{0}^{2}( \Omega )} + \frac{\mu +9}{\mu }C_3 C_{p_3}^{p_3}\left\| u\right\| ^{p_3}_{H_{0}^{2}( \Omega )}\nonumber \\&\quad + \frac{\mu +9}{\mu }C_4C_{\theta }^{\theta }\left\| u\right\| ^{\theta }_{H_{0}^{2}( \Omega )}, \end{aligned}$$
(2.9)

where \(C_{p_3}, C_\theta \) are constants such that

$$\begin{aligned} \left\| u\right\| _{L^{p_3}(\Omega )} \le C_{p_3} \left\| u\right\| _{H_{0}^{2}( \Omega )}, \left\| u\right\| _{L^{\theta }(\Omega )} \le C_\theta \left\| u\right\| _{H_{0}^{2}( \Omega )}. \end{aligned}$$

Since \(p_3>2, p_4>2\), we can choose \(T_0\) small enough such that if \(\left\| u\right\| ^2_{H_{0}^{2}( \Omega )}\le 2T_0\)

$$\begin{aligned} \frac{\mu +9}{\mu }C_3 C_{p_3}^{p_3}\left\| u\right\| ^{p_3}_{H_{0}^{2}( \Omega )} + \frac{\mu +89}{\mu }C_4 C_{\theta }^{\theta }\left\| u\right\| ^{\theta }_{H_{0}^{2}( \Omega )} \le \frac{2-\mu }{4\mu } \left\| u\right\| ^2_{H_{0}^{2}( \Omega )}, \end{aligned}$$
(2.10)

By (2.8) and (2.10), we get the conclusion of the lemma. \(\square \)

Next, we introduce a cut-off function \(\chi \in C^\infty (\mathbb {R}, \mathbb {R})\) satisfying

$$\begin{aligned} {\left\{ \begin{array}{ll} \chi (\xi )=1, &{} \xi \in (-\infty , \frac{A}{2}],\\ 0\le \chi (\xi )\le 1, &{} \xi \in (\frac{A}{2},\frac{A}{4}),\\ \chi (\xi ) =0, &{} \xi \in [\frac{A}{4},+\infty ), \\ \left| \chi '(\xi )\right| \le -8A^{-1}, &{} \xi \in \mathbb {R}, \quad A:=\frac{\mu -2}{4\mu }. \end{array}\right. } \end{aligned}$$

We put

$$\begin{aligned}&\ell (u):=\chi \left( \left\| u\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u)\right) ,\quad \forall u \in H_{0}^{2}( \Omega ) \backslash \{0\},\end{aligned}$$
(2.11)
$$\begin{aligned}&\psi (u):= {\left\{ \begin{array}{ll} \pi (u)\ell (u)\int _{\Omega }G(x,u)\mathrm {d}x,&{} \quad \forall u \in H_{0}^{2}( \Omega ) \backslash \{0\},\\ 0,&{}\quad u=0, \end{array}\right. } \end{aligned}$$
(2.12)

and

$$\begin{aligned} J(u)&= \frac{1}{2}\int \limits _{\Omega }\left| \Delta u \right| ^2 \mathrm {d}x - \int \limits _\Omega F_1\left( x,u\right) \mathrm {d}x - \pi (u)\int \limits _\Omega F_2\left( x,u\right) \mathrm {d}x \nonumber \\&\quad - \psi (u),\forall u \in H_{0}^{2}( \Omega ). \end{aligned}$$
(2.13)

From (A1), (A4) and (B), it is easy to verify that \(\ell (u)\in C^1(H_{0}^{2}( \Omega ) \backslash \{0\}, \mathbb {R})\). By direct computation, for \(u \in H_{0}^{2}( \Omega ) \backslash \{0\}\) and for any \(v \in H_{0}^{2}( \Omega ),\) we have

$$\begin{aligned} \langle \ell '(u), v \rangle&=\chi '\left( \left\| u\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u)\right) \left\| u\right\| ^{-4}_{H_{0}^{2}( \Omega )} \nonumber \\&\quad \times \left( \left\| u\right\| ^{2}_{H_{0}^{2}( \Omega )} \langle \overline{I}'(u), v \rangle -2 \overline{I}(u)(u,v)_{H_{0}^{2}( \Omega )}\right) . \end{aligned}$$
(2.14)

Lemma 2.3

Assume that (A1), (A2), (A4), (B) are satisfied. Then the functional \(\psi \) defined by (2.12) is of class \(C^1(H_{0}^{2}( \Omega ), \mathbb {R})\) and

$$\begin{aligned} \left| \langle \psi '(u),u\rangle \right| \le 89 C_4C_{\theta }^{\theta }\left\| u\right\| ^{\theta }_{H_{0}^{2}( \Omega )}, \forall u \in H_{0}^{2}( \Omega ). \end{aligned}$$
(2.15)

Proof

For \(u=0\) for any \(v\in H_{0}^{2}( \Omega )\), by (2.3), (2.12) and (B), we get

$$\begin{aligned} \left| \langle \psi '(0),v\rangle \right| =\lim \limits _{t\rightarrow 0} \left| \frac{\psi (t v) -\psi (0)}{t}\right| \le C_4 \lim \limits _{t\rightarrow 0} \left| t\right| ^{\theta -1}\int \limits _{\Omega }\left| v(x)\right| ^\theta \mathrm {d}x =0; \end{aligned}$$

hence, \(\psi '(0)=0\). From (2.4), (2.12), (2.14) and (B) for \(u \in H_{0}^{2}( \Omega ) \backslash \{0\}\) and \(v\in H_{0}^{2}( \Omega )\), we have that

$$\begin{aligned} \langle \psi '(u),v\rangle&=\langle \pi '(u),v\rangle \ell (u)\int \limits _{\Omega }G(x,u)\mathrm {d}x + \pi (u)\langle \ell '(u),v\rangle \int \limits _{\Omega }G(x,u)\mathrm {d}x \nonumber \\&\quad + \pi (u)\ell (u)\int \limits _{\Omega }g(x,u)v\mathrm {d}x. \end{aligned}$$
(2.16)

Next, we prove \(\psi \in C^1(H_{0}^{2}( \Omega ), \mathbb {R})\). Suppose that \(u_n \rightarrow u_0\) in \(H_{0}^{2}( \Omega ).\) We consider two possible cases.

Case 1. \(u_0\ne 0\). By Lemma 2.1, (2.14) and (B), we have

$$\begin{aligned} \psi '(u_n)\rightarrow \psi '(u_0)\quad \hbox {as}\quad n \rightarrow \infty . \end{aligned}$$

Case 2. \(u_0=0\). Without loss of generality, we can assume \(\left\| u_n\right\| ^2_{H_{0}^{2}( \Omega )}<T_0\). Hence, by (2.2), (2.3) we get \(\pi (u_n)=1\) and \(\pi '(u_n) =0\); hence,

$$\begin{aligned} \langle \psi '(u_n),v\rangle =\langle \ell '(u_n),v\rangle \int \limits _{\Omega }G(x,u_n)\mathrm {d}x + \ell (u_n)\int \limits _{\Omega }g(x,u_n)v\mathrm {d}x. \end{aligned}$$
(2.17)

On the other hand, by (2.14), we obtain

$$\begin{aligned} \langle \ell '(u_n),v\rangle \int \limits _{\Omega }G(x,u_n)\mathrm {d}x&= \chi '\left( \left\| u\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u_n)\right) \left\| u_n\right\| ^{-2}_{H_{0}^{2}( \Omega )} \langle \overline{I}'(u_n), v \rangle \int \limits _{\Omega }G(x,u_n)\mathrm {d}x \\&\quad - 2 \chi '\left( \left\| u\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u_n)\right) \left\| u_n\right\| ^{-4}_{H_{0}^{2}( \Omega )}\overline{I}(u_n)(u_n,v)_{H_{0}^{2}( \Omega )}\\&\quad \int \limits _{\Omega }G(x,u_n)\mathrm {d}x. \end{aligned}$$

From the definition of \(\chi \) and (B), applying embedding inequalities, we get that

$$\begin{aligned}&\left| \chi '\left( \left\| u\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u_n)\right) \left\| u_n\right\| ^{-2}_{H_{0}^{2}( \Omega )} \langle \overline{I}'(u_n), v \rangle \int \limits _{\Omega }G(x,u_n)\mathrm {d}x\right| \nonumber \\&\quad \le C_5 \left\| \overline{I}'(u_n)\right\| _{(H_{0}^{2}( \Omega ))^*} \left\| v\right\| _{H_{0}^{2}( \Omega )} \left\| u_n\right\| ^{\theta -2}_{H_{0}^{2}( \Omega )},\end{aligned}$$
(2.18)
$$\begin{aligned}&\left| 2 \chi '\left( \left\| u\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u_n)\right) \left\| u_n\right\| ^{-4}_{H_{0}^{2}( \Omega )}\overline{I}(u_n)(u_n,v)_{H_{0}^{2}( \Omega )} \int \limits _{\Omega }G(x,u_n)\mathrm {d}x \right| \nonumber \\&\quad \le C_6 \left\| u_n\right\| ^{\theta -1}_{H_{0}^{2}( \Omega )} \left\| v\right\| _{H_{0}^{2}( \Omega )},\end{aligned}$$
(2.19)
$$\begin{aligned}&\left| \ell (u_n)\int \limits _{\Omega }g(x,u_n)v\mathrm {d}x \right| \le C_7 \left\| u_n\right\| ^{\theta -1}_{H_{0}^{2}( \Omega )} \left\| v\right\| _{H_{0}^{2}( \Omega )}, \end{aligned}$$
(2.20)

where \(C_j >0, j=5,6,7\), and \((H_{0}^{2}( \Omega ))^*\) denotes the dual space of \(H_{0}^{2}( \Omega )\). Since \(\pi (u_n)=1, \pi '(u_n) =0\) and \(u_n\rightarrow 0, n\rightarrow \infty \), we have that

$$\begin{aligned} \left\| \overline{I}'(u_n)\right\| _{(H_{0}^{2}( \Omega ))^*} \rightarrow 0,\quad \hbox {as}\quad n\rightarrow \infty . \end{aligned}$$
(2.21)

From (2.17)–(2.21), we see that

$$\begin{aligned}&\left\| \psi '(u_n)-\psi '(0)\right\| _{(H_{0}^{2}( \Omega ))^*}\\&\quad =\sup \limits _{\left\| v\right\| _{H_{0}^{2}( \Omega )}\le 1} \left| \langle \ell '(u_n),v\rangle \int \limits _{\Omega }G(x,u_n)\mathrm {d}x + \ell (u_n)\int \limits _{\Omega }g(x,u_n)v\mathrm {d}x \right| \rightarrow 0, \quad \hbox {as}\quad n \rightarrow \infty ; \end{aligned}$$

hence, the continuity of \(\psi '\) follows. So we have \(\psi \in C^1(H_{0}^{2}( \Omega ), \mathbb {R})\).

Next, we prove (2.15).

If \(\left\| u\right\| ^2_{H_{0}^{2}( \Omega )}> 2T_0\) or \(u=0\) then by (2.2), Lemma 2.1 and (2.16), we have \(\langle \psi '(u),u\rangle =0\). Otherwise, \(\left\| u\right\| ^2_{H_{0}^{2}( \Omega )}\le 2T_0\) and \(u\ne 0\). Arguing similarly as in (2.9), we obtain

$$\begin{aligned}&\left| \overline{I}(u) -\mu ^{-1}\langle \overline{I}'(u), u \rangle \right| \nonumber \\&\quad \le 2\left| A\right| \left\| u\right\| ^2_{H_{0}^{2}( \Omega )} + \frac{\mu +9}{\mu }C_3 C_{p_3}^{p_3}\left\| u\right\| ^{p_3}_{H_{0}^{2}( \Omega )} + \frac{\mu +9}{\mu }C_4 C_{\theta }^{\theta }\left\| u\right\| ^{\theta }_{H_{0}^{2}( \Omega )}. \end{aligned}$$
(2.22)

From (2.10) and (2.22), we have that

$$\begin{aligned} \left| \langle \overline{I}'(u), u \rangle \right| \le \mu \left( 3\left| A\right| \left\| u\right\| ^2_{H_{0}^{2}( \Omega )} + \left| \overline{I}(u)\right| \right) . \end{aligned}$$
(2.23)

By the definition of \(\chi \), we have that if \(\left\| u\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u) \notin [ \frac{A}{2},\frac{A}{4}]\) then \(\ell '(u)=0\). Otherwise, if

$$\begin{aligned} \frac{A}{2} \le \left\| u\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u) \le \frac{A}{4} \end{aligned}$$

then

$$\begin{aligned} \left| \overline{I}(u) \right| \le \left| A\right| \left\| u\right\| ^{2}_{H_{0}^{2}( \Omega )}. \end{aligned}$$
(2.24)

In combination with (2.14), (2.23) and (2.24), we get

$$\begin{aligned} \left| \pi (u) \langle \ell '(u), u \rangle \int \limits _{\Omega }G(x,u_n)\mathrm {d}x\right| \le 80 C_4 C_{\theta }^\theta \left\| u\right\| ^{\theta }_{H_{0}^{2}( \Omega )}. \end{aligned}$$
(2.25)

By Lemma 2.1 and (2.2), (2.11), we conclude that

$$\begin{aligned}&\left| \langle \pi '(u),u\rangle \ell (u)\int \limits _{\Omega }G(x,u)\mathrm {d}x \right. \nonumber \\&\quad \left. +\,\pi (u)\ell (u)\int \limits _{\Omega }g(x,u)u\mathrm {d}x\right| \le 9 C_4 C_{\theta }^\theta \left\| u\right\| ^{\theta }_{H_{0}^{2}( \Omega )}. \end{aligned}$$
(2.26)

Combining with (2.16), (2.25) and (2.26), we get (2.15). The proof of Lemma 2.3 is complete. \(\square \)

Lemma 2.4

Assume that (A1), (A2), (A4), (A5), (B) are satisfied. Then

  1. (K1)

    The functional J defined by (2.13) is of class \(C^1(H_{0}^{2}( \Omega ), \mathbb {R})\) and there exists a constants \(C_{8}\) independent of u such that

    $$\begin{aligned} \left| J(u)-J(-u)\right| \le C_{8}\left| J(u)\right| ^{\frac{\theta }{2}},\quad \forall u \in H_{0}^{2}( \Omega ). \end{aligned}$$
    (2.27)
  2. (K2)

    J has no critical point with critical value on \(H_{0}^{2}( \Omega )\) and \(K_0=\{0\}\), where \(K_0:=\{u\in H_{0}^{2}( \Omega ): J(u)=0, J'(u)=0\}.\)

Proof

By Lemmas 2.12.3, (A1) and (A4), we have \(J \in C^1(H_{0}^{2}( \Omega ), \mathbb {R})\) and

$$\begin{aligned} \langle J'(u),v\rangle&= \int \limits _{\Omega }\Delta u \Delta v \mathrm {d}x - \int \limits _\Omega f_1\left( x,u\right) v \mathrm {d}x -\pi (u)\int \limits _\Omega f_2 \left( x,u\right) v \mathrm {d}x \nonumber \\&\quad - \langle \pi '(u), v \rangle \int \limits _\Omega F_2\left( x,u\right) \mathrm {d}x -\langle \psi '(u),v\rangle , \quad \forall u,v\in H_{0}^{2}( \Omega ). \end{aligned}$$
(2.28)

Next, we prove (2.27). We consider two possible cases.

Case 1. If \(\left\| u\right\| ^2_{H_{0}^{2}( \Omega )} > 2T_0\) or \(\left\| u\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u) > \frac{A}{4}\), by the definition of \(\zeta \) and \(\chi \) we have \(\psi (u)=0\). Then (2.27) holds by (A5) and (2.13).

Case 2. If \(\left\| u\right\| ^2_{H_{0}^{2}( \Omega )} \le 2T_0\) and \(\left\| u\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u) \le \frac{A}{4}\),

$$\begin{aligned} \left| \overline{I}(u)\right| \ge \frac{\left| A\right| }{4}\left\| u\right\| ^{2}_{H_{0}^{2}( \Omega )}. \end{aligned}$$
(2.29)

From (B), (2.3), (2.10), (2.11) and (2.29), we get that

$$\begin{aligned} \left| J(u)\right|&\ge \left| \overline{I}(u)\right| - 2\left| \int \limits _\Omega G(x,u)\mathrm {d}x \right| \ge \frac{\left| A\right| }{4}\left\| u\right\| ^{2}_{H_{0}^{2}( \Omega )}-2C_4C_{\theta }^\theta \left\| u\right\| ^{\theta }_{H_{0}^{2}( \Omega )}\\&\ge C_{9} \left\| u\right\| ^{2}_{H_{0}^{2}( \Omega )}; \end{aligned}$$

hence,

$$\begin{aligned} \left| J(u)\right| ^{\frac{\theta }{2}} \ge C_{10}\left\| u\right\| ^{\theta }_{H_{0}^{2}( \Omega )}. \end{aligned}$$
(2.30)

In view of (A5), (B), (2.3) and (2.11), we obtain

$$\begin{aligned} \left| J(u)-J(-u)\right| \le 2\left| \int \limits _\Omega G(x,u)\mathrm {d}x \right| \le 2C_4C_{\theta }^\theta \left\| u\right\| ^{\theta }_{H_{0}^{2}( \Omega )}. \end{aligned}$$
(2.31)

It follows from (2.30) and (2.31) that (2.27) holds.

Next, we prove (K2) by contradiction. If \(u_0\) is a critical point of J with \(J(u_0)>0\), by (A1), (A4) and (B) we get \(u_0\ne 0.\) We consider two possible cases.

Case 1. If \( \left\| u_0\right\| ^2_{H_{0}^{2}( \Omega )}> 2T_0\) then

$$\begin{aligned} \pi (u_0)=\pi '(u_0)=\psi '(u_0)=0. \end{aligned}$$

By (A2), (2.13) and (2.28), we have that

$$\begin{aligned} 0\le J(u_0)&=J(u_0) -\frac{1}{\mu } \langle J'(u_0),u_0 \rangle \\&=\frac{\mu -2}{2\mu }\int \limits _\Omega \left| \Delta u _0\right| ^2\mathrm {d}x + \frac{1}{\mu }\int \limits _\Omega \left( f_1(x,u_0)u_0-\mu F_1(x,u_0)\right) \mathrm {d}x <0, \end{aligned}$$

which yields a contradiction.

Case 2. If \( \left\| u_0\right\| ^2_{H_{0}^{2}( \Omega )} \le 2T_0\) then by Lemmas 2.12.3, (2.10), (2.13) and (2.28), we obtain

$$\begin{aligned} 0\le J(u_0)=J(u_0) -\frac{1}{\mu } \langle J'(u_0),u_0 \rangle \le \frac{\mu -2}{4\mu } \left\| u_0\right\| ^2_{H_{0}^{2}( \Omega )}<0, \end{aligned}$$

which yields a contradiction. Moreover, by a similar proof and direct computation we obtain \(K_0=\{0\}\). \(\square \)

Lemma 2.5

Assume that (A1), (A4), (B) are satisfied. Then the functional J satisfies the Palais–Smale condition.

Proof

Without loss of generality, assume \( \left\| u\right\| ^2_{H_{0}^{2}( \Omega )}> 2T_0\). Then, by the definition of \(\pi \) and (A1) we obtain

$$\begin{aligned} J(u)\ge \frac{1}{2} \left\| u\right\| ^2_{H_{0}^{2}( \Omega )} -C_{11} \left\| u\right\| ^{p}_{H_{0}^{2}( \Omega )}. \end{aligned}$$
(2.32)

Since \(1<p<2\), (2.31) implies that

$$\begin{aligned} J(u) \rightarrow +\infty \hbox { as } \left\| u\right\| _{H_{0}^{2}( \Omega )} \rightarrow +\infty . \end{aligned}$$
(2.33)

Next, we show that J(u) satisfies the Palais–Smale condition. Assume that \(\{u_n\}_{n=1}^{\infty } \subset H_{0}^{2}( \Omega )\) is a Palais–Smale sequence, i.e., \(\{J(u_n)\}_{n\in \mathbb {N}}\) is bounded and

$$\begin{aligned} J'(u_n) \rightarrow 0 \hbox { as } n \rightarrow +\infty . \end{aligned}$$

Since (2.33), \(\{u_n\}_{n=1}^\infty \) is bounded in \(H_{0}^{2}( \Omega )\). Therefore, we can (by passing to a subsequence, we can always suppose \(u_n\ne 0\) for all n, otherwise, the thesis is obvious) suppose that

$$\begin{aligned} u_n&\rightharpoonup&u_0 \hbox { weakly in } H_{0}^{2}( \Omega ) \hbox { as } n \rightarrow \infty \nonumber \\ u_n\rightarrow & {} u_0 \hbox { a.e., in } \Omega \hbox { as } n \rightarrow \infty \nonumber \\ u_n\rightarrow & {} u_0 \hbox { strongly in } L^q(\Omega ), 1\le q < 2_* \hbox { as } n \rightarrow \infty . \end{aligned}$$
(2.34)

Since (2.34), by (A1), (A4), (B) and standard arguments we get

$$\begin{aligned} \int \limits _\Omega f_i(x,u_n)(u_n -u_0) \mathrm {d}x&\rightarrow 0 \text{ as } n \rightarrow \infty , i=1, 2,\end{aligned}$$
(2.35)
$$\begin{aligned} \int \limits _\Omega g(x,u_n)(u_n -u_0) \mathrm {d}x&\rightarrow 0 \text{ as } n \rightarrow \infty . \end{aligned}$$
(2.36)

From (2.34), we have

$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\left| \langle J'(u_n),u_n-u_0\rangle \right| =0. \end{aligned}$$
(2.37)

Next, we distinguish two cases.

Case 1. If \(\left\| u_n\right\| ^2_{H_{0}^{2}( \Omega ) } >2T_0\), from (2.2), (2.3), (2.10), (2.12), we get that

$$\begin{aligned} \pi (u_n) =0, \pi '(u_n)=0, \psi '(u_n)=0. \end{aligned}$$

By (2.28), we obtain

$$\begin{aligned} \langle J'(u_n)-J'(u_0),u_n-u_0\rangle&= \left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) } - \int \limits _\Omega ( f_1\left( x,u_n\right) \nonumber \\&\quad -f_1\left( x,u_0\right) )(u_n-u_0) \mathrm {d}x. \end{aligned}$$
(2.38)

Case 2. If \(\left\| u_n\right\| ^2_{H_{0}^{2}( \Omega ) } \le 2T_0\), from (2.28), we have

$$\begin{aligned}&\langle J'(u_n),u_n-u_0\rangle =\left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) }+ \int \limits _{\Omega }\Delta u _0 \Delta (u_n-u_0) \mathrm {d}x\nonumber \\&\quad -\int \limits _\Omega f_1\left( x,u_n\right) (u_n-u_0) \mathrm {d}x \nonumber \\&-\pi (u_n)\int \limits _\Omega f_2\left( x,u_n\right) (u_n-u_0) \mathrm {d}x - \langle \pi '(u_n), u_n-u_0 \rangle \int \limits _\Omega F_2\left( x,u_n\right) \mathrm {d}x\nonumber \\&\quad -\langle \psi '(u_n),u_n-u_0\rangle . \end{aligned}$$
(2.39)

By (A4), (2.2) and (2.4), we get that

$$\begin{aligned}&\left| \langle \pi '(u_n), u_n-u_0 \rangle \int \limits _\Omega F_2\left( x,u_n\right) \mathrm {d}x \right| \nonumber \\&\quad \le C_3C_{p_3}^{p_3} \left\| u_n\right\| ^{p_3}_{H_{0}^{2}( \Omega )} \left| 2\zeta '\left( \frac{\left\| u_n\right\| ^2_{H_{0}^{2}( \Omega )}}{T_0}\right) \frac{(u_n,u_n-u_0)_{H_{0}^{2}( \Omega )}}{T_0}\right| \nonumber \\&\quad \le 2^{\frac{p_3+4}{2}}C_3 C_{p_3}^{p_3} T_0^{\frac{p_3-2}{2}} \left( \left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) } + (u_0,u_n-u_0)_{H_{0}^{2}( \Omega )}\right) . \end{aligned}$$
(2.40)

On the other hand, from (2.16), we obtain

$$\begin{aligned} \langle \psi '(u_n),u_n-u_0 \rangle&=\langle \pi '(u_n),u_n-u_0\rangle \ell (u_n)\int \limits _{\Omega }G(x,u_n)\mathrm {d}x \nonumber \\&\quad + \pi (u_n)\langle \ell '(u_n),u_n-u_0\rangle \int \limits _{\Omega }G(x,u_n)\mathrm {d}x\nonumber \\&\quad + \pi (u_n)\ell (u_n)\int \limits _{\Omega }g(x,u_n)(u_n-u_0)\mathrm {d}x. \end{aligned}$$
(2.41)

Moreover, by (B), (2.4) and (2.11), we obtain

$$\begin{aligned}&\left| \langle \pi '(u_n),u_n-u_0\rangle \ell (u_n)\int \limits _{\Omega }G(x,u_n) \mathrm {d}x \right| \nonumber \\&\quad \le 2^{\frac{\theta +4}{2}}C_4 C_{\theta }^{\theta } T_0^{\frac{\theta -2}{2}} \left( \left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) } + (u_0,u_n-u_0)_{H_{0}^{2}( \Omega )}\right) . \end{aligned}$$
(2.42)

From the defined of \(\chi \), (B), (2.4) and (2.14), we have that

$$\begin{aligned}&\pi (u_n)\langle \ell '(u_n),u_n-u_0\rangle \int \limits _{\Omega }G(x,u_n)\mathrm {d}x =\pi (u_n)\chi '\left( \left\| u_n\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u_n)\right) \left\| u_n\right\| ^{-4}_{H_{0}^{2}( \Omega )}\nonumber \\&\quad \left( \left\| u_n\right\| ^{2}_{H_{0}^{2}( \Omega )} \langle \overline{I}'(u_n), u_n-u_0 \rangle -2 \overline{I}(u_n)(u_n,u_n-u_0)_{H_{0}^{2} ( \Omega )}\right) \nonumber \\&\quad \times \int \limits _{\Omega }G(x,u_n)\mathrm {d}x. \end{aligned}$$
(2.43)

From (2.6), we have

$$\begin{aligned} \langle \overline{I}'(u_n), u_n-u_0 \rangle&= \int \limits _{\Omega }\Delta u _n \Delta (u_n-u_0) \mathrm {d}x- \int \limits _\Omega f_1\left( x,u_n\right) (u_n-u_0) \mathrm {d}x\nonumber \\&\quad -\pi (u_n)\left( \int \limits _\Omega f_2\left( x,u_n\right) (u_n-u_0) \mathrm {d}x + \int \limits _\Omega g\left( x,u_n\right) (u_n-u_0) \mathrm {d}x \right) \nonumber \\&\quad - \langle \pi '(u_n), u_n-u_0 \rangle \left( \int \limits _\Omega F_2\left( x,u_n\right) \mathrm {d}x + \int \limits _\Omega G\left( x,u_n\right) \mathrm {d}x\right) . \end{aligned}$$
(2.44)

By (A4), (B), (2.40), (2.42) and (2.44), we have

$$\begin{aligned} \left| \langle \overline{I}'(u_n), u_n-u_0 \rangle \right|&\le \left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) }+ \left| \langle \pi '(u_n), u_n-u_0 \rangle \int \limits _\Omega F_2\left( x,u_n\right) \mathrm {d}x \right| \nonumber \\&\quad + \left| \langle \pi '(u_n), u_n-u_0 \rangle \int \limits _\Omega G\left( x,u_n\right) \mathrm {d}x\right| +o_n(1) \nonumber \\&\le \left( 1+C_{12}\right) \left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) } + o_n(1), \end{aligned}$$
(2.45)

where \(o_n(1)\rightarrow 0\) as \(n\rightarrow \infty \) and

$$\begin{aligned} C_{12}= 2^{\frac{p_3+4}{2}}C_3 C_{p_3}^{p_3} T_0^{\frac{p_3-2}{2}} + 2^{\frac{\theta +4}{2}}C_4 C_{\theta }^{\theta } T_0^{\frac{\theta -2}{2}}. \end{aligned}$$

Hence,

$$\begin{aligned}&\left| \pi (u_n)\chi '\left( \left\| u_n\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u_n)\right) \left\| u_n\right\| ^{-2}_{H_{0}^{2}( \Omega )} \langle \overline{I}'_{T_0}(u_n), u_n-u_0 \rangle \int \limits _\Omega G\left( x,u_n\right) \mathrm {d}x \right| \nonumber \\&\quad \le 2^{\frac{\theta +4}{2}} \left| A\right| ^{-1}C_4 C^{\theta }_{\theta }T_0^{\frac{\theta -2}{2}}\left( 1+C_{12}\right) \left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) }+ o_n(1).\end{aligned}$$
(2.46)
$$\begin{aligned}&\left| \pi (u_n)\chi '\left( \left\| u_n\right\| ^{-2}_{H_{0}^{2}( \Omega )} \overline{I}(u_n)\right) \left\| u_n\right\| ^{-4}_{H_{0}^{2}( \Omega )}2 \overline{I}(u_n)(u_n,u_n-u_0)_{H_{0}^{2} ( \Omega )}\int \limits _\Omega G\left( x,u_n\right) \mathrm {d}x \right| \nonumber \\&\quad \le 2^{\frac{\theta +4}{2}}C_4 C^{\theta }_{\theta }T_0^{\frac{\theta -2}{2}} \left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) } + o_n(1). \end{aligned}$$
(2.47)

By (2.41), (2.42), (2.46) and (2.47), we have

$$\begin{aligned} \left| \langle \psi '(u_n),u_n-u_0 \rangle \right| \le C_{13} \left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) } + o_n(1), \end{aligned}$$
(2.48)

where

$$\begin{aligned} C_{13}= 2^{\frac{\theta +4}{2}}C_4 C_{\theta }^{\theta } T_0^{\frac{\theta -2}{2}} + 2^{\frac{\theta +4}{2}} \left| A\right| ^{-1}C_4 C^{\theta }_{\theta }T_0^{\frac{\theta -2}{2}}\left( 1+C_{12}\right) . \end{aligned}$$

Since \(p_3>2\) and \(\theta >2,\) we can choose \(T_0\) small enough such that

$$\begin{aligned} 2^{\frac{p_3+4}{2}}C_3 C_{p_3}^{p_3} T_0^{\frac{p_3-2}{2}} +C_{13} \le \frac{1}{2}. \end{aligned}$$
(2.49)

By (2.39), (2.40), (2.48) and (2.49), we obtain

$$\begin{aligned} \left| \langle J'(u_n),u_n-u_0\rangle \right|&\ge \left( 1 -2^{\frac{p_3+4}{2}}C_3 C_{p_3}^{p_3} T_0^{\frac{p_3-2}{2}} -C_{13}\right) \left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) } + o_n(1)\nonumber \\&\ge \frac{1}{2} \left\| u_n-u_0\right\| ^2_{H_{0}^{2}( \Omega ) } + o_n(1). \end{aligned}$$
(2.50)

It follows from (2.37) and (2.50) that \(u_n\rightarrow u_0\) as \(n\rightarrow \infty .\) The proof of Lemma 2.5 is complete. \(\square \)

Now, we can show that J has a sequence of critical values. For the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta ^2 u = \lambda u&{}\hbox {in}\quad \Omega , \\ u= \Delta u =0 &{}\hbox {on}\quad \partial \Omega , \end{array}\right. } \end{aligned}$$
(2.51)

we can show that the Dirichlet eigenvalue the problem (2.51) has a sequence of discrete eigenvalues \(\{\lambda _k\}_{k=1}^\infty \) which satisfy

$$\begin{aligned} 0< \lambda _1 < \lambda _2 \le \lambda _3 \le \cdots \le \lambda _k \le \cdots \rightarrow \infty \hbox { as } k \rightarrow \infty , \end{aligned}$$

and \(e_1, e_2, \dots \) denote the corresponding eigenfunctions normalized such that \(\left\| e_j\right\| _{H_{0}^{2}( \Omega ) } =1,\) for all \(j = 1, 2, \ldots \). For any \(k>0\), we put \( \mathbb {V}_{k} =\hbox {span}\{e_j; j \le k\}\) in \(H_{0}^{2}( \Omega ) \), \(\mathbb {V}_{k}^\bot \) be the orthogonal complement of \(\mathbb {V}_{k}\) in \(H_{0}^{2}( \Omega )\).

Lemma 2.6

There exists a normalized orthogonal sequence \(\{\varphi _k\}_{k=1}^\infty \subset C^\infty _0(\Omega )\) such that \(\hbox {supp}~\varphi _k \subset \Omega _0, k\in \mathbb {N}\), where \(\Omega _0\) is the nonempty open set given in (A3).

Proof

By (A3), there exist \(x_0 \in \Omega _0\) and \(\delta _0>0\) such that \(B(x_0,\delta _0):=\{x\in \mathbb {R}^N: \left| x-x_0\right| < \delta _0\}\subset \Omega _0\). Choose a strictly increasing sequence \(\{\rho _k\}_{k=1}^\infty \) such that

$$\begin{aligned} 0< \rho _1<\rho _2< \cdots< \rho _k < \cdots \rightarrow \frac{\delta _0}{4}. \end{aligned}$$

Define

$$\begin{aligned} O_k: =B(x_0,\rho _{k+1})\backslash {\overline{B}(x_0,\rho _k)},\quad k \in \mathbb {N}. \end{aligned}$$

Let \(x_k \in O_k\) and choose \(r_k >0\) such that

$$\begin{aligned} B(x_0,r_k) \subset O_k, \quad k\in \mathbb {N}. \end{aligned}$$
(2.52)

Set

$$\begin{aligned} \varphi _0(x):= {\left\{ \begin{array}{ll} e^{\frac{1}{\left| x\right| ^2-1}}&{} \hbox {if}\quad \left| x\right| <1, \\ 0&{}\hbox {if}\quad \left| x\right| \ge 1. \end{array}\right. } \end{aligned}$$
(2.53)

By (2.53), define \(\varphi _k\) as follows

$$\begin{aligned} \varphi _k(x):=\varphi _0\left( (x-x_k)/r_k\right) , \quad k \in \mathbb {N}. \end{aligned}$$
(2.54)

By (2.53) and (2.54), we get

$$\begin{aligned} \varphi _k \in C^\infty _0(\Omega ), \quad k \in \mathbb {N}. \end{aligned}$$

Moreover, from (2.52)-(2.54), we have

$$\begin{aligned} \hbox {supp}\,\varphi _k \subset O_k\subset \Omega _0, \quad k \in \mathbb {N}. \end{aligned}$$

Then the supports of \(\varphi _k\) are disjoint to each other, which implies that \(\{\varphi _k\}_{k=1}^\infty \) form a linearly independent sequence in \(H_{0}^{2}( \Omega )\). By Gram–Schmidt orthogonalization process, there exists a normalized orthogonal sequence also denoted by \(\{\varphi _k\}_{k=1}^\infty \) in \(H_{0}^{2}( \Omega )\) and

$$\begin{aligned} \hbox {supp}\,\varphi _k \subset \Omega _0, k\in \mathbb {N}. \end{aligned}$$

\(\square \)

With the help of the normalized orthogonal sequence \(\{\varphi _k\}_{k=1}^\infty \), define some subspaces as follows:

$$\begin{aligned}&\mathbb {W}_k:= \hbox {span}\{\varphi _j; j \le k\},\\&\quad B_k:=\{u\in \mathbb {W}_{k}: \left\| u\right\| _{H_{0}^{2}( \Omega )}\le 1 \}, S^k:=\left\{ u\in \mathbb {W}_{k}: \left\| u\right\| _{H_{0}^{2}( \Omega )}= 1\right\} \end{aligned}$$

and

$$\begin{aligned} S_+^{k+1}:=\left\{ u=w+se_{k+1}: \left\| u\right\| _{H_{0}^{2}( \Omega )}=1, w\in B_k, 0\le s\le 1\right\} . \end{aligned}$$

By these subspaces, we can introduce some continuous maps and minimax sequences of J as follows

$$\begin{aligned} \Lambda _k&:=\left\{ \varphi \in C(S^k, H_{0}^{2}( \Omega )): \varphi \hbox { is odd }\right\} ,\nonumber \\ \Gamma _k&:=\left\{ \varphi \in C(S_+^{k+1}, H_{0}^{2}( \Omega )): \varphi \Big |_{S^k} \in \Lambda _k\right\} , \end{aligned}$$
(2.55)

and

$$\begin{aligned} b_k:=\inf \limits _{\varphi \in \Lambda _k} \max \limits _{u \in S^k} J (\varphi (u)), \quad c_k: =\inf \limits _{h \in \Gamma _k}\max \limits _{u \in S_+^{k+1}}J (\varphi (u)), \quad k \in \mathbb {N}. \end{aligned}$$
(2.56)

For any \(\delta >0\), put

$$\begin{aligned} \Gamma _k(\delta )&:=\left\{ \varphi \in \Gamma _k: J(\varphi (u)) \le b_k +\delta , u \in S^k \right\} , \end{aligned}$$
(2.57)
$$\begin{aligned} c_k(\delta )&:=\inf \limits _{h \in \Gamma _k(\delta )}\max \limits _{u \in S_+^{k+1}}J (\varphi (u)). \end{aligned}$$
(2.58)

By (2.55)–(2.58), it is obvious that \(b_k \le c_k \le c_k(\delta ), k \in \mathbb {N}\). Next, we give some useful estimates for minimax values \(b_k\) and \(c_k(\delta )\).

Lemma 2.7

Assume that (A1), (A3), (A4), (B) are satisfied. Then for any \(k\in \mathbb {N}, b_k < 0.\)

Proof

Since \(\mathbb {W}_{k}\) is a finite-dimensional space, by (A3), (A4), (B), for any \(u \in \mathbb {W}_{k}\) we get that

$$\begin{aligned} J(u)\le \frac{1}{2} \left\| u\right\| ^2_{H_{0}^{2}( \Omega )} + C_{14}\left\| u\right\| ^{p_2}_{H_{0}^{2}( \Omega )} +C_{15}\left\| u\right\| ^{p_3}_{H_{0}^{2}( \Omega )} +C_{16}\left\| u\right\| ^{\theta }_{H_{0}^{2}( \Omega )} -C_{17}\left\| u\right\| ^{p_1}_{H_{0}^{2}( \Omega )}. \end{aligned}$$

Hence, there exist \(\varepsilon (k)>0\) and \(\kappa (k)>0\) such that \(J(\kappa u)< -\varepsilon , u \in S^k\). Then we set \(\varphi (u)=\kappa u, u \in S^k\). By (2.56), we obtain \(b_k<0\). \(\square \)

Lemma 2.8

Assume that (A1), (A3), (A4), (B) are satisfied. Then for any \(k\in \mathbb {N}\) and any \(\delta >0\), we have \(c_k(\delta )<0.\)

Proof

By (2.57) and (2.58), for fixed \(k\in \mathbb {N}, 0<\delta <\delta '\), we have \(\Gamma _k(\delta )\subset \Gamma _k(\delta ')\) and \(c_k(\delta )>c_k(\delta ')\). Then we only need to prove \(c_k(\delta )<0\) for any \(\delta \in (0, \left| b_k\right| )\). For any \(\delta \in (0, \left| b_k\right| )\), from (2.56), there exists \(\varphi _0\in \Lambda _k\) such that \(\max \limits _{u\in S^k}J(\varphi _0(u)) \le b_n +\frac{\delta }{2}.\) Since \(\varphi _0(S^k)\) is a compact set in \(H_{0}^{2}( \Omega )\), there exists a positive integer \(m_0\) such that

$$\begin{aligned} \max \limits _{u\in S^k}J((P_{m_0} \circ \varphi _0)(u)) \le b_k +\delta , \end{aligned}$$
(2.59)

where \(P_{m_0}\) denotes the orthogonal projective operator from \(H_{0}^{2}( \Omega )\) to \(\mathbb {V}_{m_0}\).

For any \(c \in \mathbb {R}\), let \(J^c:=\{u \in H_{0}^{2}( \Omega ): J(u)\le c\}\). Choose \(\overline{\varepsilon }=-\frac{b_k+\delta }{2}>0\). By (A1), (A4), (B) and (2.13), there exists a positive constant \(\rho _0\) such that if \(u\in \overline{B}(0,\rho _0),\) \( J(u)\le \varepsilon \), where \(B(x_0,\rho )\) denotes the open ball of radius \(\rho \) centered at \(u_0\) in \(H_{0}^{2}( \Omega )\) and \(\overline{B}\) denotes the closure in \(H_{0}^{2}( \Omega )\). From (2.13) and \(J(0)=0\), hence \(\hbox {dist}(0,J^{-\overline{\varepsilon }}) >0\). Setting

$$\begin{aligned} \rho _0':=\min \{\rho _0, \hbox {dist}(0,J^{-\overline{\varepsilon }})\}, \end{aligned}$$

then \(\rho '_0>0\). By deformation theorem in [2] (or see deformation theorem in [9]), we have there exist \(\varepsilon \in (0, \overline{\varepsilon })\) and a continuous map \(\eta \in C([0,1]\times H_{0}^{2}( \Omega ), H_{0}^{2}( \Omega ))\) such that

$$\begin{aligned} \eta (1,u)=u, \quad \hbox {if}\quad J(u) \notin [-\overline{\varepsilon }, \overline{\varepsilon }], \end{aligned}$$
(2.60)

and

$$\begin{aligned} \eta (1,J^{\varepsilon }\backslash {B(0,{\rho '_0})})\subset J^{-\varepsilon }, \end{aligned}$$
(2.61)

where \(B(0,{\rho '_0})\) is a neighborhood of \(K_0\).

From (2.55), we obtain \(P_{m_0} \circ \varphi _0 \in C(S^k, \mathbb {V}_{m_0})\). Since \(\mathbb {V}_{k+1}\) is a metric space with the norm \(\left\| \cdot \right\| _{H_{0}^{2}( \Omega )}\) and \(S^k\) is a closed subset in \(\mathbb {V}_{k+1}\), by Dugundji extension theorem (see Theorem 4.1 in [5]), we have there exists an extension

$$\begin{aligned} \widetilde{P_{m_0} \circ \varphi _0} : \mathbb {W}_{k+1} \rightarrow \mathbb {V}_{m_0}; \end{aligned}$$

furthermore,

$$\begin{aligned} \left( (\widetilde{P_{m_0} \circ \varphi _0})\mathbb {W}_{k+1}\right) \subset \text{ co }\left( ({P_{m_0} \circ \varphi _0})S^k \right) , \end{aligned}$$
(2.62)

where the symbol co denotes the convex hull. Since \(({P_{m_0} \circ \varphi _0})S^k \) is a compact set in \(\mathbb {V}_{m_0}\), by the definition of convex hull, \(\hbox {co}\left( ({P_{m_0} \circ \varphi _0})S^k \right) \) is a bounded set in \(\mathbb {V}_{m_0}\). Then there exists a constant \(\nu \) such that

$$\begin{aligned} J(u)\le \nu , \quad u \in \hbox {co}\left( ({P_{m_0} \circ \varphi _0})S^k \right) . \end{aligned}$$

By (2.62), we have

$$\begin{aligned} J\left( (\widetilde{P_{m_0} \circ \varphi _0})u\right) \le \nu , \quad \forall u \in \mathbb {W}_{k+1}. \end{aligned}$$
(2.63)

Next, we distinguish two cases.

Case 1. \(\nu \le \varepsilon \). Since \(\widetilde{P_{m_0} \circ \varphi _0} \in C(\mathbb {W}_{k+1}, \mathbb {V}_{m_0})\), by (2.63), we get that

$$\begin{aligned} (\widetilde{P_{m_0} \circ \varphi _0})u \in J_{m_0}^{\varepsilon },\quad u \in \mathbb {W}_{k+1}, \end{aligned}$$
(2.64)

where \(J^{\varepsilon }_{m_0}:=\{u \in \mathbb {V}_{m_0}: J(u)\le \varepsilon \}\). Define a map \(\Theta \) as follows:

$$\begin{aligned} \Theta (u)= {\left\{ \begin{array}{ll} u, &{} u \notin \overline{B}(0,\rho '_0) \cap \mathbb {V}_{m_0} \\ u+\left( {\rho '}_0^2-\left\| u\right\| ^2_{H_{0}^{2}( \Omega )}\right) ^{\frac{1}{2}}e_{m_0+1}, &{}u \in \overline{B}(0,{\rho '_0}) \cap \mathbb {V}_{m_0}. \end{array}\right. } \end{aligned}$$
(2.65)

It is clear that \(\Theta \in C(\mathbb {V}_{m_0}, \mathbb {V}_{m_0+1})\).

On the other hand, if \(u\in \mathbb {W}_{k+1}\) and \(\left\| \left( \widetilde{P_{m_0} \circ \varphi _0} \right) u\right\| _{H_{0}^{2}( \Omega )}>\rho '_0\) then by (2.64) and (2.65), we have

$$\begin{aligned}&\left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) u = \left( \widetilde{P_{m_0} \circ \varphi _0} \right) u \in J^\varepsilon _{m_0},\nonumber \\&\left\| \left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) u \right\| _{H_{0}^{2}( \Omega )} >\rho '_0. \end{aligned}$$
(2.66)

Otherwise, \(u\in \mathbb {W}_{k+1}\) and \(\left\| \left( \widetilde{P_{m_0} \circ \varphi _0} \right) u\right\| _{H_{0}^{2}( \Omega )}\le \rho '_0\) from (2.65) we have

$$\begin{aligned} \left\| \left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) u \right\| _{H_{0}^{2}( \Omega )} =\rho '_0. \end{aligned}$$
(2.67)

Combining the definition of \(\rho '_0\), (2.66) and (2.67), we obtain

$$\begin{aligned} \left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) u \notin B(0,\rho '_0), \quad u \in \mathbb {W}_{k+1}, \end{aligned}$$
(2.68)

and

$$\begin{aligned} \left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) u \in J^\varepsilon ,\quad \forall u \in \mathbb {W}_{k+1}. \end{aligned}$$
(2.69)

Define a map

$$\begin{aligned} \Theta _{m_0}: \mathbb {W}_{k+1}&\longrightarrow H_{0}^{2}( \Omega )\nonumber \\ u&\longmapsto \Theta _{m_0}(u)=\eta \left( 1,\left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) u\right) . \end{aligned}$$
(2.70)

We need to prove \(\Theta _{m_0}\in \Gamma _k(\delta )\) and \(\max \limits _{u\in S^{k+1}_+} J(\Theta _{m_0}(u))< 0\). First, it is obvious that \(\Theta _{m_0} \in C(S^{k+1}_+, H_{0}^{2}( \Omega ))\). Next, we prove \(\Theta _{m_0}\Big |_{S^k}\in \Lambda _k\). By Dugundji extension theorem, we get

$$\begin{aligned} \left( \widetilde{P_{m_0}\circ \varphi _0}\right) u = \left( P_{m_0}\circ \varphi _0\right) u, \quad \forall u \in S^k. \end{aligned}$$
(2.71)

From (2.59), hence \(\left( P_{m_0}\circ \varphi _0\right) u \in J^{-2\varepsilon }, u\in S^k\). By the definition of \(\rho '_0\) and \(J^{-2\varepsilon }\subset J^{-\varepsilon }\) implies that

$$\begin{aligned} \left\| \left( P_{m_0}\circ \varphi _0\right) u\right\| _{H_{0}^{2}( \Omega )} \ge \rho '_0, \quad \forall u \in S^k. \end{aligned}$$
(2.72)

From (2.65), (2.71) and (2.72), we have that

$$\begin{aligned} \left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) u =\Theta \left( \left( {P_{m_0} \circ \varphi _0} \right) u\right) = \left( {P_{m_0} \circ \varphi _0} \right) u,\quad \forall u \in S^k. \end{aligned}$$
(2.73)

Since \(\left( {P_{m_0} \circ \varphi _0} \right) u \in J^{-2\varepsilon }, \forall u \in S^k\), by (2.59), (2.60), (2.70) and (2.73), we have

$$\begin{aligned} \Theta _{m_0}(u)=\eta \left( 1,\left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) u\right) = \left( {P_{m_0} \circ \varphi _0} \right) u, \quad \forall u \in S^k, \end{aligned}$$
(2.74)

which implies that \(\Theta _{m_0}\Big |_{S^k}\in \Lambda _k.\) Moreover, from (2.57), (2.59) and (2.74), we have \(\Theta _{m_0} \in \Gamma _k(\delta )\). Since \(S^{k+1}\subset \mathbb {W}_{k+1},\) by (2.68) and (2.69), we obtain

$$\begin{aligned} \left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) u \notin B(0,\rho '_0)\quad \hbox {and}\quad \left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) u\in J^\varepsilon ,\quad \forall u \in S^{k+1}. \end{aligned}$$

From (2.61) and (2.70), we get \(\max \limits _{u\in S_+^{k+1}}J\left( {\Theta _{m_0}}(u)\right) \le -\varepsilon <0\) which implies that \(c_k(\delta )<0.\)

Case 2. \(\nu > \varepsilon \). By a similar proof as in Lemmas 2.3 and 2.5, we can prove that \(J\Big |_{\mathbb {V}_{m_0}} \in C^1(\mathbb {V}_{m_0}, \mathbb {R})\) and satisfies Palais–Smale condition. Moreover, \(J\Big |_{\mathbb {V}_{m_0}}\) has no critical points with positive critical values on \(\mathbb {V}_{m_0}\). By noncritical interval theorem (see Theorem 5.1.6 in [3]), we see that \(J^{\varepsilon }_{m_0}\) is a strong deformation retract of \(J_{m_0}^\nu \). So there exists a map \(\psi \) such that \(\psi \in C(J^{\nu }_{m_0}, J^{\varepsilon }_{m_0})\) and \(\psi (u)=u\), if \(u\in J^{\varepsilon }_{m_0}\) . Define a map \(\Psi \) as follows:

$$\begin{aligned} \Psi : \mathbb {W}_{k+1}&\longrightarrow H_{0}^{2}( \Omega ) \nonumber \\ u&\longmapsto \Psi (u):=\psi \left( 1,\left( \Theta \circ \left( \widetilde{P_{m_0} \circ \varphi _0} \right) \right) (u)\right) . \end{aligned}$$

By a similar proof as in Case 1, we get \(\Psi \in \Gamma _k(\delta )\) and \(\max \limits _{u\in S_+^{k+1}}J(\Psi (u)) \le -\varepsilon <0\) which implies that \(c_k(\delta )<0.\) The proof of Lemma 2.8 is complete. \(\square \)

Lemma 2.9

Suppose that f satisfies (A1), (A3), (A4) and g satisfies (B). Then there exists a positive constant \(C_{18}\) independent of k such that for all k large enough

$$\begin{aligned} b_k \ge -C_{18}k^{\frac{-4p}{N (2-p)}}. \end{aligned}$$
(2.75)

Proof

For any \(\varphi \in \Lambda _k (k\ge 2)\) when \(0\notin \varphi (S^k)\), then the genus \(\gamma (\varphi (S^k))\) is well defined and \(\gamma (\varphi (S^k)) \ge \varphi (S^k) =k.\) By Proposition 7.8 in [12], hence \(\varphi (S^k) \cap \mathbb {V}^\bot _{k-1}\ne \emptyset .\) Otherwise, if \(0\in \varphi (S^k)\) then \(0\in \varphi (S^k) \cap \mathbb {V}^\bot _{k-1}.\) So for any \( \varphi \in \Lambda _k (k\ge 2)\) we have \(\varphi (S^k) \cap \mathbb {V}^\bot _{k-1} \ne \emptyset .\) Therefore, for any \(\varphi \in \Lambda _k (k\ge 2)\), we obtain

$$\begin{aligned} \max \limits _{u\in S^k}J(\varphi (u)) \ge \inf \limits _{u\in \mathbb {V}^\bot _{k-1}}J(u). \end{aligned}$$
(2.76)

From (A1), (A4), (B), (2.10) and (2.13), we get that

$$\begin{aligned} J(u)&\ge \frac{1}{2} \left\| u\right\| ^2_{H_{0}^{2}( \Omega )} -C_{19}\left\| u\right\| ^p_{L^p(\Omega )} - \pi (u) \int \limits _{\Omega }F_2(x,u)\mathrm {d}x -\psi (u)\nonumber \\&\ge \frac{1}{4} \left\| u\right\| ^2_{H_{0}^{2}( \Omega )} -C_{19}\left\| u\right\| ^p_{L^2(\Omega )} , \forall u \in H_{0}^{2}( \Omega ). \end{aligned}$$
(2.77)

Moreover, by \(u \in \mathbb {V}_{k-1}^\bot ,\) hence

$$\begin{aligned} \left\| u\right\| _{L^2(\Omega )} \le \lambda _k^{\frac{-1}{2}}\left\| u\right\| _{H_{0}^{2}( \Omega ))}. \end{aligned}$$
(2.78)

Combining (2.56), (2.76), (2.77) and (2.78), for any \(k\ge 2\), we have

$$\begin{aligned} b_k \ge \inf \limits _{t\ge 0} \left( \frac{1}{4} t^2 -C_{19}\lambda _k^{\frac{-p}{2}}t^p\right) =-C_{20}\lambda _k^{\frac{-p}{2-p}}, \end{aligned}$$
(2.79)

where \(C_{20}\) is a positive constant independent of k and \(\lambda _k\). On the other hand, it follows from Agmon’s generalization [1] of Weyl’s formula [15], which in fact is an extension of earlier work of Pleijel [10] for \(N=2\), we have

$$\begin{aligned} \lambda _k \ge C_{21} k^{\frac{4}{N}}. \end{aligned}$$
(2.80)

Combining (2.79) and (2.80), we arrive at the conclusion of the lemma. \(\square \)

Lemma 2.10

Suppose that \(c_k=b_k\) for \(k\ge k_0,\) where \(k_0\in \mathbb {N}.\) Then there exists a positive integer \(k_1\) such that

$$\begin{aligned} \left| b_k\right| \ge C_{22}k^{\frac{2}{2-\theta }}, \quad k \ge k_1, \end{aligned}$$
(2.81)

where \(C_{22}\) is a positive constant independent of k.

Proof

For any \(k\ge k_0\) and any \(\varepsilon \in (0, \left| b_k\right| )\), by (2.56) there exists a map \(\varphi _0\in \Gamma _k\) such that

$$\begin{aligned} \max \limits _{u\in S^{k+1}_+} J(\varphi _0(u)) < c_k +\varepsilon =b_k+\varepsilon . \end{aligned}$$
(2.82)

From \(S^{k+1}=S^{k+1}_+ \cup (-S^{k+1}_+), \varphi _0\) can be continuously extended to \(S^{k+1}\) as an odd function, also denoted by \(\varphi _0\), then \(\varphi _0\in \Lambda _{k+1}\). From (2.56), we have

$$\begin{aligned} b_{k+1}\le \max \limits _{u\in S^{k+1}} J(\varphi _0(u)) =J(\varphi _0(u_0)) \end{aligned}$$
(2.83)

for some \(u_0\in S^{k+1}\). If \(u_0\in S^{k+1}_+\), in combination with (2.27), (2.82) and (2.83), we have

$$\begin{aligned} b_{k+1}< b_k+\varepsilon +C_8 \left| b_{k+1}\right| ^{\frac{\theta }{2}}. \end{aligned}$$
(2.84)

Otherwise, \(u_0\in -S^{k+1}_+\), from (2.27) and (2.82), we get that

$$\begin{aligned} J(\varphi _0(u_0))&\le J(\varphi _0(-u_0)) +C_8\left| J(\varphi _0(u_0))\right| ^{\frac{\theta }{2}}\nonumber \\&\le b_{k}+\varepsilon + C_8\left| J(\varphi _0(u_0))\right| ^{\frac{\theta }{2}}. \end{aligned}$$
(2.85)

Next, we consider two possible cases.

Case 1. \(J(\varphi _0(u_0)) \le \left| b_{k+1}\right| \), from (2.83) and (2.84), we obtain

$$\begin{aligned} b_{k+1}< b_k+\varepsilon +C_8 \left| b_{k+1}\right| ^{\frac{\theta }{2}}. \end{aligned}$$
(2.86)

Case 2. \(J(\varphi _0(u_0)) > \left| b_{k+1}\right| \). By (2.82), there exists \(u_1\in S^{k+1}_+\) such that

$$\begin{aligned} J(\varphi _0(u_1))<b_k+\varepsilon <0. \end{aligned}$$
(2.87)

Since \( J\circ \varphi _0 \in C(S^{k+1}, \mathbb {R}) \) and \(S^{k+1}\) is a connected space with the norm \(\left\| \cdot \right\| _{H_{0}^{2}( \Omega ))},\) by the intermediate value theorem, there exists \(u_2\in S^{k+1}\) such that \(J(\varphi _0(u_2)) =\frac{\left| b_{k+1}\right| }{2}.\) By (2.82), hence \(u_2\in -S^{k+1}\). From (2.27) and (2.82), we get

$$\begin{aligned} J(\varphi _0(u_2))&\le J(\varphi _0(-u_2)) +C_8 \left| J(\varphi _0(u_2)) \right| ^{\frac{\theta }{2}} \\&\le b_k +C_8 \left| J(\varphi _0(u_2)) \right| ^{\frac{\theta }{2}}, \end{aligned}$$

which implies that

$$\begin{aligned} b_{k+1}\le b_k +\varepsilon +C_8 \left| b_{k+1}\right| ^{\frac{\theta }{2}}. \end{aligned}$$
(2.88)

By Lemma 2.7, (2.84), (2.86) and (2.88), it is easy to see that

$$\begin{aligned} \left| b_k \right| \le \left| b_{k+1} \right| +C_8 \left| b_{k+1}\right| ^{\frac{\theta }{2}}, \quad k \ge k_0. \end{aligned}$$
(2.89)

Next, we show that (2.89) implies (2.81). The proof will be done by induction. First, we introduce a useful inequality as follows:

$$\begin{aligned} \left( 1+t\right) ^\alpha \ge 1 +\frac{\alpha t}{2}, \quad t \in [0, \beta ], \end{aligned}$$
(2.90)

where \(\alpha , \beta \) are positive constants and \(\beta \) depends on \(\alpha \). Set \(\alpha =2(\theta -2)^{-1}\). In view of (2.90), there exists \( \widetilde{k_0}\in \mathbb {N}\) such that

$$\begin{aligned} \left( 1+\frac{1}{k}\right) ^{\frac{2}{\theta -2}} \ge 1 +\frac{1}{(\theta -2)k}, \quad k \ge \widetilde{k_0}. \end{aligned}$$
(2.91)

Define

$$\begin{aligned} C_{22}:=\min \left\{ k_1^{\frac{2}{\theta -2}}\left| b_{k_1}\right| , \left( \frac{1}{C_8(\theta -2)}\right) ^{\frac{2}{\theta -2}} \right\} , \end{aligned}$$
(2.92)

where \(k_1=\max \{k_0, \widetilde{k_0}\}.\) Then we claim (2.81) holds. By (2.92), we have

$$\begin{aligned} \left| b_{k_1}\right| \ge C_{22}k_1^{\frac{2}{2-\theta }}. \end{aligned}$$
(2.93)

Suppose that (2.81) holds for \(k \ge k_1\). Then we only need to prove (2.81) also holds for \(k+1\). If not, we get that

$$\begin{aligned} \left| b_{k+1}\right| \le C_{22}(k+1)^{\frac{2}{2-\theta }}. \end{aligned}$$
(2.94)

Since (2.81) holds for k, by (2.27), (2.89) and (2.94), we obtain

$$\begin{aligned} C_{22}k_1^{\frac{2}{2-\theta }}&\le \left| b_k\right| \le \left| b_{k+1} \right| +C_8 \left| b_{k+1}\right| ^{\frac{\theta }{2}} \le C_{22}(k+1)^{\frac{2}{2-\theta }} \nonumber \\&\quad +C_8 C_{22}^{\frac{\theta }{2}} (k+1)^{\frac{\theta }{2-\theta }}. \end{aligned}$$
(2.95)

When we divide (2.95) by \(C_{22} (k+1)^{\frac{2}{2-\theta }}\) on both sides, in view of (2.92), we get that

$$\begin{aligned} \left( 1+\frac{1}{k}\right) ^{\frac{2}{\theta -2}}< 1+C_8 C_{22}^{\frac{\theta -2}{2}} \frac{1}{k+1} < 1+C_8 C_{22}^{\frac{\theta -2}{2}} \frac{1}{k} \le 1 +\frac{1}{(\theta -2)k}, \end{aligned}$$

which contradicts (2.91). So (2.81) holds. The proof of Lemma 2.10 is complete. \(\square \)

Lemma 2.11

Suppose that \(c_k>b_k\). Then for any \(\delta \in (0, c_k-b_k), c_k(\delta )\) given by (2.57) is a critical value of J.

Proof

By using deformation theorem in [2], the proof of this lemma is similar to the one of Lemma 1.57 in [11]. We omit the details. \(\square \)

Proof of Theorem 1.1 From (1.4), Lemmas 2.72.9 and 2.10, it is impossible that \(c_k=b_k\) for all large k, we can choose subsequence \(\{k_j\}_{j=1}^\infty \subset \mathbb N\) such that \(c_{k_j} > b_{k_j}\). By Lemmas 2.82.9 and 2.11, there exists a sequence of critical points \(\{u_{k_j}\}_{j=1}^\infty \) of J such that

$$\begin{aligned} -C_{18}k_j^{\frac{-2p}{N (2-p)}} \le b_{k_j}< c_{k_j} \le c_{k_j}(\delta _j) =J(u_{k_j})< 0, \end{aligned}$$
(2.96)

where \(\delta _j \in (0, c_{k_j}-b_{k_j})\). It is obvious that \(u_{k_j} \ne 0, j \in \mathbb {N}\). Next, we consider the following two possible cases.

Case 1. \(\left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))} >2T_0\). From (2.2), (2.3) and (2.16), hence

$$\begin{aligned} \pi (u_{k_j}) =1\quad \hbox {and}\quad \psi '(u_{k_j}) =0. \end{aligned}$$

By (A2), (2.5) and (2.28), we get that

$$\begin{aligned} \overline{I}(u_{k_j})&= \overline{I}(u_{k_j}) -\mu ^{-1} \langle \widetilde{I}'(u_{k_j}), u_{k_j}\rangle \nonumber \\&= 2 A \left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))} +\int \limits _{\Omega } \left( \mu ^{-1}f_1(x,u_{n_j})u_{n_j}-F_1(x,u_{n_j}) \right) \mathrm {d}x \nonumber \\&\le A \left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))}. \end{aligned}$$
(2.97)

Case 2. \(\left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))} \le 2T_0\). By Lemmas 2.12.3, (A2), (A4), (B) (2.5) and (2.28), we get that

$$\begin{aligned}&\overline{I}(u_{k_j}) \le \frac{1}{2} \left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))} -\int \limits _{\Omega }F_1(x,u_{k_j})\mathrm {d}x + C_3 C_{p_3}^{p_3} \left\| u_{k_j}\right\| ^{p_3}_{H_{0}^{2}( \Omega ))}\\&+ C_4 C_{\theta }^{\theta }\left\| u_{k_j}\right\| ^{\theta }_{H_{0}^{2}( \Omega ))}, \end{aligned}$$

and

$$\begin{aligned} \langle \widetilde{I}'(u_{k_j}), u_{k_j}\rangle&\ge \left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))} -\int \limits _{\Omega }f_1(x,u_{k_j})u_{k_j}\mathrm {d}x - 9 C_3 C_{p_3}^{p_3} \left\| u_{k_j}\right\| ^{p_3}_{H_{0}^{2}( \Omega ))} \\&\quad -89C_4 C_{\theta }^{\theta }\left\| u_{k_j}\right\| ^{\theta }_{H_{0}^{2}( \Omega ))}. \end{aligned}$$

Hence,

$$\begin{aligned} \overline{I}(u_{k_j})&= \overline{I}(u_{k_j}) -\mu ^{-1} \langle \widetilde{I}'(u_{k_j}), u_{k_j}\rangle \nonumber \\&\le 2 A \left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))} + \frac{\mu +9}{\mu } C_3 C_{p_3}^{p_3} \left\| u_{k_j}\right\| ^{p_3}_{H_{0}^{2}( \Omega ))} +\frac{\mu +89}{\mu }C_4 C_{\theta }^{\theta } \left\| u_{k_j}\right\| ^{\theta }_{H_{0}^{2}( \Omega ))}\nonumber \\&\le A \left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))}. \end{aligned}$$
(2.98)

In both cases, by (2.11), (2.97) or (2.98), we get \(\ell (u_{k_j}) =0\) and \(\ell '(u_{k_j}) =0.\) Hence,

$$\begin{aligned} J(u_{k_j}) =\overline{I}(u_{k_j}) \le A \left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))} < 0. \end{aligned}$$

By (2.96), it is easy to see that

$$\begin{aligned} \left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))} \rightarrow 0 \hbox { as } j \rightarrow \infty . \end{aligned}$$

So there exists \(j_0 \in \mathbb {N}\) such that \(\left\| u_{k_j}\right\| ^2_{H_{0}^{2}( \Omega ))} < T_0\) for all \(j \ge j_0\). By (2.3) and (2.16), hence

$$\begin{aligned} \pi (u_{k_j}) =1,\quad \pi '(u_{k_j}) =0\quad \hbox {for all}~j \ge j_0. \end{aligned}$$

In combination with (2.52), (2.16) and (2.28), when j is large enough, we conclude that \(u_{k_j}\) are weak solutions of the problem (1.2). \(\square \)