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Abstract
In this paper, we study the existence of multiple solutions for the following biharmonic
problem

�2u = f (x, u) + g(x, u) in �,

u = �u = 0 on ∂�,

where� ⊂ R
N , (N > 4) is a smooth bounded domain and f (x, ξ) is odd in ξ, g(x, ξ)

is a perturbation term. By using the variant of Rabinowitz’s perturbationmethod, under
some growth conditions on f and g, we show that there are infinitely many weak
solutions to the problem.

Keywords Biharmonic · Boundary value problems · Critical points · Perturbation
methods · Multiple solutions

Mathematics Subject Classification Primary 35J60; Secondary 35B33 · 35J25

1 Introduction

In the last decades, the biharmonic elliptic equation

�2u = f (x, u) in �,

u = �u = 0 on ∂�,
(1.1)
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has been studied by many authors see [4,6–8,16–18] and the references therein.
In this paper, we study the existence of multiple weak solutions to the following

problem

�2u = f (x, u) + g(x, u) in �,

u = �u = 0 on ∂�,
(1.2)

where � ⊂ R
N , (N > 4) is a smooth bounded domain. To study the problem (1.2),

we make the following assumptions:
We assume that f : � × R → R is a function such that

(A1) f (x, ξ) = f1(x, ξ)+ f2(x, ξ), f1, f2 ∈ C(�×R, R) and there exist constants
C1 > 0 and 1 < p < 2 such that

| f1(x, ξ)| ≤ C1 |ξ |p−1 , (x, ξ) ∈ � × R; (1.3)

(A2) there exist constants C2 > 0 and 1 < μ < 2 such that

f1(x, ξ)ξ − μF1(x, ξ) ≤ 0, (x, ξ) ∈ � × R,

where F1(x, ξ) :=
ξ∫

0
f1(x, τ )dτ ;

(A3) there exist constants C2 > 0, 1 < p1 < 2 and 2 < p2 < 2∗ such that

F1(x, ξ) ≥ C2(|ξ |p1 − |ξ |p2), (x, ξ) ∈ �0 × R,

where 2∗ := 2N
N−4 ,�0 is a nonempty open and �0 ⊂ �;

(A4) there exist constants C3 > 0 and 2 < p3 < 2∗ such that

| f2(x, ξ)| ≤ C3 |ξ |p3−1 , (x, ξ) ∈ � × R;

(A5) fi (x, ξ) = − fi (x,−ξ), i = 1, 2, (x, ξ) ∈ � × R.

Let g : � × R → R is a function such that

(B) g ∈ C(� × R, R) and there exist constants C4 > 0 and 2 < θ < 2∗ such that

|g(x, ξ)| ≤ C4 |ξ |θ−1 , (x, ξ) ∈ � × R.

Now, we formulate the main result of this paper.

Theorem 1.1 Assume that (A1)–(A5), (B) are satisfied and

2p

2 − p
>

N

θ − 2
. (1.4)

Then the problem (1.2) has a sequence of small negative energy solutions converging
to zero.
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Example 1.2 Let � be a bounded domain with smooth boundary in R
5 and

f (x, ξ) = a(x) |ξ |− 1
2 ξ cos |ξ | 32 , g(x, ξ) = ξθ−1,

where a(x) ∈ C(�, R) changes sign in �, θ ∈ ( 76 , 10). Set

f1(x, ξ) = a(x) |ξ |− 1
2 ξ, f2(x, ξ) = a(x) |ξ |− 1

2 ξ
(
cos |ξ | 32 − 1

)
.

Thus, all conditions of Theorem 1.1 are satisfied with

2∗ = 10; p = μ = p1 = 3

2
; p2 = p3 = 3.

By Theorem 1.1, the problem (1.2) has a sequence of small negative energy solutions
converging to zero.

2 Proof of Theorem 1.1

Define the Euler–Lagrange functional associated with the problem (1.2) (see, e.g.,
[13,14]) as follows

I (u) = 1

2

∫

�

|�u|2 dx −
∫

�

F (x, u) dx −
∫

�

G (x, u) dx,

where F(x, u) := ∫ u
0 f (x, ξ)dξ and G(x, u) := ∫ u

0 g(x, ξ)dξ.

From (A1), (A4) and (B), we have I is well defined on H2
0 (�) and I ∈

C1(H2
0 (�), R) with

〈I ′(u), v〉 =
∫

�

�u�vdx −
∫

�

f (x, u) vdx −
∫

�

g (x, u) vdx (2.1)

for all v ∈ H2
0 (�). One can also check that the critical points of I are weak solutions

of the problem (1.2).
Next, we introduce a cut-off function ζ ∈ C∞(R, R) satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ(ξ) = 1, ξ ∈ (−∞, 1],
0 ≤ ζ(ξ) ≤ 1, ξ ∈ (1, 2),

ζ(ξ) = 0, ξ ∈ [2,+∞),
∣
∣ζ ′(ξ)

∣
∣ ≤ 2 ξ ∈ R.

(2.2)
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1704 D. T. Luyen

With the help of this cut-off function ζ , define

π(u) := ζ

⎛

⎝
‖u‖2

H2
0 (�)

T0

⎞

⎠ , ∀u ∈ H2
0 (�), (2.3)

where T0 is a small positive constant independent of u given by (2.10) and (2.49).

Lemma 2.1 The functional π defined by (2.3) is of class C1(H2
0 (�), R) and

∣
∣〈π ′(u), u〉∣∣ ≤ 8, ∀u ∈ H2

0 (�).

Proof By direct computation, we get

〈π ′(u), v〉 = 2ζ ′
⎛

⎝
‖u‖2

H2
0 (�)

T0

⎞

⎠
(u, v)H2

0 (�)

T0
, ∀u, v ∈ H2

0 (�). (2.4)

Assume that un → u0 in H2
0 (�). By the definition of ζ and (2.4), for any v ∈ H2

0 (�),

we have that

∣
∣〈π ′(un) − π ′(u0), v〉∣∣

= 2

∣
∣
∣
∣
∣
∣
ζ ′

⎛

⎝
‖un‖2

H2
0 (�)

T0

⎞

⎠
(un, v)H2

0 (�)

T0
− ζ ′

⎛

⎝
‖u0‖2H2

0 (�)

T0

⎞

⎠
(u0, v)H2

0 (�)

T0

∣
∣
∣
∣
∣
∣

≤ 2T −1
0 ‖v‖H2

0 (�)

[
∣
∣
∣
∣
∣
∣
ζ ′

⎛

⎝
‖un‖2

H2
0 (�)

T0

⎞

⎠

∣
∣
∣
∣
∣
∣
‖un − u0‖H2

0 (�)

+
∣
∣
∣
∣
∣
∣
ζ ′

⎛

⎝
‖un‖2

H2
0 (�)

T0

⎞

⎠ − ζ ′
⎛

⎝
‖u0‖2H2

0 (�)

T0

⎞

⎠

∣
∣
∣
∣
∣
∣
‖u0‖H2

0 (�)

]

,

which implies that
∥
∥π ′(un) − π ′(u0)

∥
∥

(H2
0 (�))∗ → 0, n → ∞. Soπ ∈ C1(H2

0 (�), R).

By (2.2) and (2.4), we get

∣
∣〈π ′(u), u〉∣∣ ≤ 8, ∀u ∈ H2

0 (�).

��
With the help of this functional π , we define a new functional I on H2

0 (�) by

I (u) = 1

2

∫

�

|�u|2 dx −
∫

�

F1 (x, u) dx − π(u)
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×
⎛

⎝
∫

�

F2 (x, u) dx +
∫

�

G (x, u) dx

⎞

⎠ , (2.5)

where F2(x, u) = ∫ u
0 f2(x, τ )dτ . From Lemma 2.1, hence I ∈ C1(H2

0 (�), R) and
for any u, v ∈ H2

0 (�), we have

〈I
′
(u), v〉 =

∫

�

�u�vdx − π(u)

⎛

⎝
∫

�

f2 (x, u) vdx +
∫

�

g (x, u) vdx

⎞

⎠

−
∫

�

f1 (x, u) vdx − 〈π ′(u), v〉
⎛

⎝
∫

�

F2 (x, u) dx +
∫

�

G (x, u) dx

⎞

⎠ .

(2.6)

Lemma 2.2 Assume that (A1), (A2), (A4), (B) are satisfied and u is a critical point of
I . Then

I (u) ≤ μ − 2

4μ
‖u‖2

H2
0 (�)

. (2.7)

Proof Consider two cases.
Case 1. Let u is a critical point of I and ‖u‖2

H2
0 (�)

> 2T0, by the definition of ζ , we

have π(u) = 0 and π ′(u) = 0. From (A1) and (2.6), we get that

I (u) = I (u) − μ−1〈I
′
(u), u〉

= μ − 2

2μ
‖u‖2

H2
0 (�)

+ μ−1
∫

�

( f1(x, u)u − μF1(x, u)) dx

≤ μ − 2

4μ
‖u‖2

H2
0 (�)

, by 1 < μ < 2 and f1(x, u)u − μF1(x, u) ≤ 0.

(2.8)

Case 2. Let u is a critical point of I and ‖u‖2
H2
0 (�)

≤ 2T0. By applying embedding

inequalities, Lemma 2.1, (A2), (A4) and (B), we get that

I (u) = I (u) − μ−1〈I
′
(u), u〉

≤ μ − 2

2μ
‖u‖2

H2
0 (�)

+ μ + 9

μ
C3 ‖u‖p3

L p3 (�)
+ μ + 9

μ
C4 ‖u‖θ

Lθ (�)

≤ μ − 2

2μ
‖u‖2

H2
0 (�)

+ μ + 9

μ
C3C p3

p3 ‖u‖p3
H2
0 (�)

+ μ + 9

μ
C4Cθ

θ ‖u‖θ

H2
0 (�)

, (2.9)
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1706 D. T. Luyen

where C p3 , Cθ are constants such that

‖u‖L p3 (�) ≤ C p3 ‖u‖H2
0 (�) , ‖u‖Lθ (�) ≤ Cθ ‖u‖H2

0 (�) .

Since p3 > 2, p4 > 2, we can choose T0 small enough such that if ‖u‖2
H2
0 (�)

≤ 2T0

μ + 9

μ
C3C p3

p3 ‖u‖p3
H2
0 (�)

+ μ + 89

μ
C4Cθ

θ ‖u‖θ

H2
0 (�)

≤ 2 − μ

4μ
‖u‖2

H2
0 (�)

, (2.10)

By (2.8) and (2.10), we get the conclusion of the lemma. ��
Next, we introduce a cut-off function χ ∈ C∞(R, R) satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

χ(ξ) = 1, ξ ∈ (−∞, A
2 ],

0 ≤ χ(ξ) ≤ 1, ξ ∈ ( A
2 , A

4 ),

χ(ξ) = 0, ξ ∈ [ A
4 ,+∞),

∣
∣χ ′(ξ)

∣
∣ ≤ −8A−1, ξ ∈ R, A := μ−2

4μ .

We put

�(u) := χ

(

‖u‖−2
H2
0 (�)

I (u)

)

, ∀u ∈ H2
0 (�)\{0}, (2.11)

ψ(u) :=
{

π(u)�(u)
∫
�

G(x, u)dx, ∀u ∈ H2
0 (�)\{0},

0, u = 0,
(2.12)

and

J (u) = 1

2

∫

�

|�u|2 dx −
∫

�

F1 (x, u) dx − π(u)

∫

�

F2 (x, u) dx

− ψ(u),∀u ∈ H2
0 (�). (2.13)

From (A1), (A4) and (B), it is easy to verify that �(u) ∈ C1(H2
0 (�)\{0}, R). By direct

computation, for u ∈ H2
0 (�)\{0} and for any v ∈ H2

0 (�), we have

〈�′(u), v〉 = χ ′
(

‖u‖−2
H2
0 (�)

I (u)

)

‖u‖−4
H2
0 (�)

×
(
‖u‖2

H2
0 (�)

〈I
′
(u), v〉 − 2I (u)(u, v)H2

0 (�)

)
. (2.14)

Lemma 2.3 Assume that (A1), (A2), (A4), (B) are satisfied. Then the functional ψ

defined by (2.12) is of class C1(H2
0 (�), R) and

∣
∣〈ψ ′(u), u〉∣∣ ≤ 89C4Cθ

θ ‖u‖θ

H2
0 (�)

,∀u ∈ H2
0 (�). (2.15)

123



Infinitely Many Solutions for a Fourth-Order Semilinear… 1707

Proof For u = 0 for any v ∈ H2
0 (�), by (2.3), (2.12) and (B), we get

∣
∣〈ψ ′(0), v〉∣∣ = lim

t→0

∣
∣
∣
∣
ψ(tv) − ψ(0)

t

∣
∣
∣
∣ ≤ C4 lim

t→0
|t |θ−1

∫

�

|v(x)|θ dx = 0;

hence, ψ ′(0) = 0. From (2.4), (2.12), (2.14) and (B) for u ∈ H2
0 (�)\{0} and v ∈

H2
0 (�), we have that

〈ψ ′(u), v〉 = 〈π ′(u), v〉�(u)

∫

�

G(x, u)dx + π(u)〈�′(u), v〉
∫

�

G(x, u)dx

+ π(u)�(u)

∫

�

g(x, u)vdx . (2.16)

Next, we prove ψ ∈ C1(H2
0 (�), R). Suppose that un → u0 in H2

0 (�). We consider
two possible cases.
Case 1. u0 �= 0. By Lemma 2.1, (2.14) and (B), we have

ψ ′(un) → ψ ′(u0) as n → ∞.

Case 2. u0 = 0. Without loss of generality, we can assume ‖un‖2
H2
0 (�)

< T0. Hence,

by (2.2), (2.3) we get π(un) = 1 and π ′(un) = 0; hence,

〈ψ ′(un), v〉 = 〈�′(un), v〉
∫

�

G(x, un)dx + �(un)

∫

�

g(x, un)vdx . (2.17)

On the other hand, by (2.14), we obtain

〈�′(un), v〉
∫

�

G(x, un)dx = χ ′
(

‖u‖−2
H2
0 (�)

I (un)

)

‖un‖−2
H2
0 (�)

〈I
′
(un), v〉

∫

�

G(x, un)dx

− 2χ ′
(

‖u‖−2
H2
0 (�)

I (un)

)

‖un‖−4
H2
0 (�)

I (un)(un, v)H2
0 (�)

∫

�

G(x, un)dx .

From the definition of χ and (B), applying embedding inequalities, we get that

∣
∣
∣
∣
∣
∣
χ ′

(

‖u‖−2
H2
0 (�)

I (un)

)

‖un‖−2
H2
0 (�)

〈I
′
(un), v〉

∫

�

G(x, un)dx

∣
∣
∣
∣
∣
∣

≤ C5

∥
∥
∥I

′
(un)

∥
∥
∥

(H2
0 (�))∗

‖v‖H2
0 (�) ‖un‖θ−2

H2
0 (�)

, (2.18)
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∣
∣
∣
∣
∣
∣
2χ ′

(

‖u‖−2
H2
0 (�)

I (un)

)

‖un‖−4
H2
0 (�)

I (un)(un, v)H2
0 (�)

∫

�

G(x, un)dx

∣
∣
∣
∣
∣
∣

≤ C6 ‖un‖θ−1
H2
0 (�)

‖v‖H2
0 (�) , (2.19)

∣
∣
∣
∣
∣
∣
�(un)

∫

�

g(x, un)vdx

∣
∣
∣
∣
∣
∣
≤ C7 ‖un‖θ−1

H2
0 (�)

‖v‖H2
0 (�) , (2.20)

where C j > 0, j = 5, 6, 7, and (H2
0 (�))∗ denotes the dual space of H2

0 (�).
Since π(un) = 1, π ′(un) = 0 and un → 0, n → ∞, we have that

∥
∥
∥I

′
(un)

∥
∥
∥

(H2
0 (�))∗

→ 0, as n → ∞. (2.21)

From (2.17)–(2.21), we see that

∥
∥ψ ′(un) − ψ ′(0)

∥
∥

(H2
0 (�))∗

= sup
‖v‖

H2
0 (�)

≤1

∣
∣
∣
∣
∣
∣
〈�′(un), v〉

∫

�

G(x, un)dx + �(un)

∫

�

g(x, un)vdx

∣
∣
∣
∣
∣
∣
→ 0, as n → ∞;

hence, the continuity of ψ ′ follows. So we have ψ ∈ C1(H2
0 (�), R).

Next, we prove (2.15).
If ‖u‖2

H2
0 (�)

> 2T0 or u = 0 then by (2.2), Lemma 2.1 and (2.16), we have

〈ψ ′(u), u〉 = 0. Otherwise, ‖u‖2
H2
0 (�)

≤ 2T0 and u �= 0. Arguing similarly as in (2.9),

we obtain
∣
∣
∣I (u) − μ−1〈I

′
(u), u〉

∣
∣
∣

≤ 2 |A| ‖u‖2
H2
0 (�)

+ μ + 9

μ
C3C p3

p3 ‖u‖p3
H2
0 (�)

+ μ + 9

μ
C4Cθ

θ ‖u‖θ

H2
0 (�)

. (2.22)

From (2.10) and (2.22), we have that
∣
∣
∣〈I

′
(u), u〉

∣
∣
∣ ≤ μ

(
3 |A| ‖u‖2

H2
0 (�)

+ ∣
∣I (u)

∣
∣
)

. (2.23)

By the definition of χ , we have that if ‖u‖−2
H2
0 (�)

I (u) /∈ [ A
2 , A

4 ] then �′(u) = 0.

Otherwise, if

A

2
≤ ‖u‖−2

H2
0 (�)

I (u) ≤ A

4

then

∣
∣I (u)

∣
∣ ≤ |A| ‖u‖2

H2
0 (�)

. (2.24)
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In combination with (2.14), (2.23) and (2.24), we get

∣
∣
∣
∣
∣
∣
π(u)〈�′(u), u〉

∫

�

G(x, un)dx

∣
∣
∣
∣
∣
∣
≤ 80C4Cθ

θ ‖u‖θ

H2
0 (�)

. (2.25)

By Lemma 2.1 and (2.2), (2.11), we conclude that

∣
∣
∣
∣
∣
∣
〈π ′(u), u〉�(u)

∫

�

G(x, u)dx

+π(u)�(u)

∫

�

g(x, u)udx

∣
∣
∣
∣
∣
∣
≤ 9C4Cθ

θ ‖u‖θ

H2
0 (�)

. (2.26)

Combining with (2.16), (2.25) and (2.26), we get (2.15). The proof of Lemma 2.3 is
complete. ��
Lemma 2.4 Assume that (A1), (A2), (A4), (A5), (B) are satisfied. Then

(K1) The functional J defined by (2.13) is of class C1(H2
0 (�), R) and there exists a

constants C8 independent of u such that

|J (u) − J (−u)| ≤ C8 |J (u)| θ
2 , ∀u ∈ H2

0 (�). (2.27)

(K2) J has no critical point with critical value on H2
0 (�) and K0 = {0}, where

K0 := {u ∈ H2
0 (�) : J (u) = 0, J ′(u) = 0}.

Proof By Lemmas 2.1, 2.3, (A1) and (A4), we have J ∈ C1(H2
0 (�), R) and

〈J ′(u), v〉 =
∫

�

�u�vdx −
∫

�

f1 (x, u) vdx − π(u)

∫

�

f2 (x, u) vdx

− 〈π ′(u), v〉
∫

�

F2 (x, u) dx − 〈ψ ′(u), v〉, ∀u, v ∈ H2
0 (�). (2.28)

Next, we prove (2.27). We consider two possible cases.
Case 1. If ‖u‖2

H2
0 (�)

> 2T0 or ‖u‖−2
H2
0 (�)

I (u) > A
4 , by the definition of ζ and χ we

have ψ(u) = 0. Then (2.27) holds by (A5) and (2.13).

Case 2. If ‖u‖2
H2
0 (�)

≤ 2T0 and ‖u‖−2
H2
0 (�)

I (u) ≤ A
4 ,

∣
∣I (u)

∣
∣ ≥ |A|

4
‖u‖2

H2
0 (�)

. (2.29)
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From (B), (2.3), (2.10), (2.11) and (2.29), we get that

|J (u)| ≥ ∣
∣I (u)

∣
∣ − 2

∣
∣
∣
∣
∣
∣

∫

�

G(x, u)dx

∣
∣
∣
∣
∣
∣
≥ |A|

4
‖u‖2

H2
0 (�)

− 2C4Cθ
θ ‖u‖θ

H2
0 (�)

≥ C9 ‖u‖2
H2
0 (�)

;

hence,

|J (u)| θ
2 ≥ C10 ‖u‖θ

H2
0 (�)

. (2.30)

In view of (A5), (B), (2.3) and (2.11), we obtain

|J (u) − J (−u)| ≤ 2

∣
∣
∣
∣
∣
∣

∫

�

G(x, u)dx

∣
∣
∣
∣
∣
∣
≤ 2C4Cθ

θ ‖u‖θ

H2
0 (�)

. (2.31)

It follows from (2.30) and (2.31) that (2.27) holds.
Next, we prove (K2) by contradiction. If u0 is a critical point of J with J (u0) > 0,

by (A1), (A4) and (B) we get u0 �= 0. We consider two possible cases.
Case 1. If ‖u0‖2H2

0 (�)
> 2T0 then

π(u0) = π ′(u0) = ψ ′(u0) = 0.

By (A2), (2.13) and (2.28), we have that

0 ≤ J (u0) = J (u0) − 1

μ
〈J ′(u0), u0〉

= μ − 2

2μ

∫

�

|�u0|2 dx + 1

μ

∫

�

( f1(x, u0)u0 − μF1(x, u0)) dx < 0,

which yields a contradiction.
Case 2. If ‖u0‖2H2

0 (�)
≤ 2T0 then by Lemmas 2.1, 2.3, (2.10), (2.13) and (2.28), we

obtain

0 ≤ J (u0) = J (u0) − 1

μ
〈J ′(u0), u0〉 ≤ μ − 2

4μ
‖u0‖2H2

0 (�)
< 0,

which yields a contradiction. Moreover, by a similar proof and direct computation we
obtain K0 = {0}. ��
Lemma 2.5 Assume that (A1), (A4), (B) are satisfied. Then the functional J satisfies
the Palais–Smale condition.
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Proof Without loss of generality, assume ‖u‖2
H2
0 (�)

> 2T0. Then, by the definition of

π and (A1) we obtain

J (u) ≥ 1

2
‖u‖2

H2
0 (�)

− C11 ‖u‖p
H2
0 (�)

. (2.32)

Since 1 < p < 2, (2.31) implies that

J (u) → +∞ as ‖u‖H2
0 (�) → +∞. (2.33)

Next, we show that J (u) satisfies the Palais–Smale condition. Assume that {un}∞n=1
⊂ H2

0 (�) is a Palais–Smale sequence, i.e., {J (un)}n∈N is bounded and

J ′(un) → 0 as n → +∞.

Since (2.33), {un}∞n=1 is bounded in H2
0 (�). Therefore, we can (by passing to a sub-

sequence, we can always suppose un �= 0 for all n, otherwise, the thesis is obvious)
suppose that

un ⇀ u0 weakly in H2
0 (�) as n → ∞

un → u0 a.e., in � as n → ∞
un → u0 strongly in Lq(�), 1 ≤ q < 2∗ as n → ∞. (2.34)

Since (2.34), by (A1), (A4), (B) and standard arguments we get

∫

�

fi (x, un)(un − u0)dx → 0 as n → ∞, i = 1, 2, (2.35)

∫

�

g(x, un)(un − u0)dx → 0 as n → ∞. (2.36)

From (2.34), we have

lim
n→∞

∣
∣〈J ′(un), un − u0〉

∣
∣ = 0. (2.37)

Next, we distinguish two cases.
Case 1. If ‖un‖2

H2
0 (�)

> 2T0, from (2.2), (2.3), (2.10), (2.12), we get that

π(un) = 0, π ′(un) = 0, ψ ′(un) = 0.
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1712 D. T. Luyen

By (2.28), we obtain

〈J ′(un) − J ′(u0), un − u0〉 = ‖un − u0‖2H2
0 (�)

−
∫

�

( f1 (x, un)

− f1 (x, u0))(un − u0)dx . (2.38)

Case 2. If ‖un‖2
H2
0 (�)

≤ 2T0, from (2.28), we have

〈J ′(un), un − u0〉 = ‖un − u0‖2H2
0 (�)

+
∫

�

�u0�(un − u0)dx

−
∫

�

f1 (x, un) (un − u0)dx

− π(un)

∫

�

f2 (x, un) (un − u0)dx − 〈π ′(un), un − u0〉
∫

�

F2 (x, un) dx

− 〈ψ ′(un), un − u0〉. (2.39)

By (A4), (2.2) and (2.4), we get that

∣
∣
∣
∣
∣
∣
〈π ′(un), un − u0〉

∫

�

F2 (x, un) dx

∣
∣
∣
∣
∣
∣

≤ C3C p3
p3 ‖un‖p3

H2
0 (�)

∣
∣
∣
∣
∣
∣
2ζ ′

⎛

⎝
‖un‖2

H2
0 (�)

T0

⎞

⎠
(un, un − u0)H2

0 (�)

T0

∣
∣
∣
∣
∣
∣

≤ 2
p3+4
2 C3C p3

p3 T
p3−2
2

0

(
‖un − u0‖2H2

0 (�)
+ (u0, un − u0)H2

0 (�)

)
. (2.40)

On the other hand, from (2.16), we obtain

〈ψ ′(un), un − u0〉 = 〈π ′(un), un − u0〉�(un)

∫

�

G(x, un)dx

+ π(un)〈�′(un), un − u0〉
∫

�

G(x, un)dx

+ π(un)�(un)

∫

�

g(x, un)(un − u0)dx . (2.41)
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Moreover, by (B), (2.4) and (2.11), we obtain

∣
∣
∣
∣
∣
∣
〈π ′(un), un − u0〉�(un)

∫

�

G(x, un)dx

∣
∣
∣
∣
∣
∣

≤ 2
θ+4
2 C4Cθ

θ T
θ−2
2

0

(
‖un − u0‖2H2

0 (�)
+ (u0, un − u0)H2

0 (�)

)
. (2.42)

From the defined of χ , (B), (2.4) and (2.14), we have that

π(un)〈�′(un), un − u0〉
∫

�

G(x, un)dx = π(un)χ ′
(

‖un‖−2
H2
0 (�)

I (un)

)

‖un‖−4
H2
0 (�)

(
‖un‖2

H2
0 (�)

〈I
′
(un), un − u0〉 − 2I (un)(un, un − u0)H2

0 (�)

)

×
∫

�

G(x, un)dx . (2.43)

From (2.6), we have

〈I
′
(un), un − u0〉 =

∫

�

�un�(un − u0)dx −
∫

�

f1 (x, un) (un − u0)dx

− π(un)

⎛

⎝
∫

�

f2 (x, un) (un − u0)dx +
∫

�

g (x, un) (un − u0)dx

⎞

⎠

− 〈π ′(un), un − u0〉
⎛

⎝
∫

�

F2 (x, un) dx +
∫

�

G (x, un) dx

⎞

⎠ . (2.44)

By (A4), (B), (2.40), (2.42) and (2.44), we have

∣
∣
∣〈I

′
(un), un − u0〉

∣
∣
∣ ≤ ‖un − u0‖2H2

0 (�)
+

∣
∣
∣
∣
∣
∣
〈π ′(un), un − u0〉

∫

�

F2 (x, un) dx

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣
〈π ′(un), un − u0〉

∫

�

G (x, un) dx

∣
∣
∣
∣
∣
∣
+ on(1)

≤ (1 + C12) ‖un − u0‖2H2
0 (�)

+ on(1), (2.45)

where on(1) → 0 as n → ∞ and

C12 = 2
p3+4
2 C3C p3

p3 T
p3−2
2

0 + 2
θ+4
2 C4Cθ

θ T
θ−2
2

0 .
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1714 D. T. Luyen

Hence,

∣
∣
∣
∣
∣
∣
π(un)χ ′

(

‖un‖−2
H2
0 (�)

I (un)

)

‖un‖−2
H2
0 (�)

〈I
′
T0(un), un − u0〉

∫

�

G (x, un) dx

∣
∣
∣
∣
∣
∣

≤ 2
θ+4
2 |A|−1 C4Cθ

θ T
θ−2
2

0 (1 + C12) ‖un − u0‖2H2
0 (�)

+ on(1). (2.46)
∣
∣
∣
∣
∣
∣
π(un)χ ′

(

‖un‖−2
H2
0 (�)

I (un)

)

‖un‖−4
H2
0 (�)

2I (un)(un, un − u0)H2
0 (�)

∫

�

G (x, un) dx

∣
∣
∣
∣
∣
∣

≤ 2
θ+4
2 C4Cθ

θ T
θ−2
2

0 ‖un − u0‖2H2
0 (�)

+ on(1). (2.47)

By (2.41), (2.42), (2.46) and (2.47), we have

∣
∣〈ψ ′(un), un − u0〉

∣
∣ ≤ C13 ‖un − u0‖2H2

0 (�)
+ on(1), (2.48)

where

C13 = 2
θ+4
2 C4Cθ

θ T
θ−2
2

0 + 2
θ+4
2 |A|−1 C4Cθ

θ T
θ−2
2

0 (1 + C12) .

Since p3 > 2 and θ > 2, we can choose T0 small enough such that

2
p3+4
2 C3C p3

p3 T
p3−2
2

0 + C13 ≤ 1

2
. (2.49)

By (2.39), (2.40), (2.48) and (2.49), we obtain

∣
∣〈J ′(un), un − u0〉

∣
∣ ≥

(

1 − 2
p3+4
2 C3C p3

p3 T
p3−2
2

0 − C13

)

‖un − u0‖2H2
0 (�)

+ on(1)

≥ 1

2
‖un − u0‖2H2

0 (�)
+ on(1). (2.50)

It follows from (2.37) and (2.50) that un → u0 as n → ∞. The proof of Lemma 2.5
is complete. ��
Now, we can show that J has a sequence of critical values. For the problem

{
�2u = λu in �,

u = �u = 0 on ∂�,
(2.51)

we can show that theDirichlet eigenvalue the problem (2.51) has a sequence of discrete
eigenvalues {λk}∞k=1 which satisfy

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · → ∞ as k → ∞,
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and e1, e2, . . . denote the corresponding eigenfunctions normalized such that∥
∥e j

∥
∥

H2
0 (�)

= 1, for all j = 1, 2, . . .. For any k > 0, we put Vk = span{e j ; j ≤ k} in
H2
0 (�), V⊥

k be the orthogonal complement of Vk in H2
0 (�).

Lemma 2.6 There exists a normalized orthogonal sequence {ϕk}∞k=1 ⊂ C∞
0 (�) such

that supp ϕk ⊂ �0, k ∈ N, where �0 is the nonempty open set given in (A3).

Proof By (A3), there exist x0 ∈ �0 and δ0 > 0 such that B(x0, δ0) := {x ∈ R
N :

|x − x0| < δ0} ⊂ �0. Choose a strictly increasing sequence {ρk}∞k=1 such that

0 < ρ1 < ρ2 < · · · < ρk < · · · → δ0

4
.

Define
Ok := B(x0, ρk+1)\B(x0, ρk), k ∈ N.

Let xk ∈ Ok and choose rk > 0 such that

B(x0, rk) ⊂ Ok, k ∈ N. (2.52)

Set

ϕ0(x) :=
{

e
1

|x |2−1 if |x | < 1,

0 if |x | ≥ 1.
(2.53)

By (2.53), define ϕk as follows

ϕk(x) := ϕ0 ((x − xk)/rk) , k ∈ N. (2.54)

By (2.53) and (2.54), we get

ϕk ∈ C∞
0 (�), k ∈ N.

Moreover, from (2.52)-(2.54), we have

suppϕk ⊂ Ok ⊂ �0, k ∈ N.

Then the supports of ϕk are disjoint to each other, which implies that {ϕk}∞k=1 form a
linearly independent sequence in H2

0 (�). By Gram–Schmidt orthogonalization pro-
cess, there exists a normalized orthogonal sequence also denoted by {ϕk}∞k=1 in H2

0 (�)

and
suppϕk ⊂ �0, k ∈ N.

��
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1716 D. T. Luyen

With the help of the normalized orthogonal sequence {ϕk}∞k=1, define some subspaces
as follows:

Wk := span{ϕ j ; j ≤ k},
Bk := {u ∈ Wk : ‖u‖H2

0 (�) ≤ 1}, Sk :=
{

u ∈ Wk : ‖u‖H2
0 (�) = 1

}

and

Sk+1+ :=
{

u = w + sek+1 : ‖u‖H2
0 (�) = 1, w ∈ Bk, 0 ≤ s ≤ 1

}
.

By these subspaces, we can introduce some continuous maps and minimax sequences
of J as follows

�k :=
{
ϕ ∈ C(Sk, H2

0 (�)) : ϕ is odd
}

,

�k :=
{
ϕ ∈ C(Sk+1+ , H2

0 (�)) : ϕ

∣
∣
∣
Sk

∈ �k

}
, (2.55)

and

bk := inf
ϕ∈�k

max
u∈Sk

J (ϕ(u)), ck := inf
h∈�k

max
u∈Sk+1+

J (ϕ(u)), k ∈ N. (2.56)

For any δ > 0, put

�k(δ) :=
{
ϕ ∈ �k : J (ϕ(u)) ≤ bk + δ, u ∈ Sk

}
, (2.57)

ck(δ) := inf
h∈�k (δ)

max
u∈Sk+1+

J (ϕ(u)). (2.58)

By (2.55)–(2.58), it is obvious that bk ≤ ck ≤ ck(δ), k ∈ N. Next, we give some
useful estimates for minimax values bk and ck(δ).

Lemma 2.7 Assume that (A1), (A3), (A4), (B) are satisfied. Then for any k ∈ N, bk <

0.

Proof Since Wk is a finite-dimensional space, by (A3), (A4), (B), for any u ∈ Wk

we get that

J (u) ≤ 1

2
‖u‖2

H2
0 (�)

+ C14 ‖u‖p2
H2
0 (�)

+ C15 ‖u‖p3
H2
0 (�)

+ C16 ‖u‖θ

H2
0 (�)

− C17 ‖u‖p1
H2
0 (�)

.

Hence, there exist ε(k) > 0 and κ(k) > 0 such that J (κu) < −ε, u ∈ Sk . Then we
set ϕ(u) = κu, u ∈ Sk . By (2.56), we obtain bk < 0. ��
Lemma 2.8 Assume that (A1), (A3), (A4), (B) are satisfied. Then for any k ∈ N and
any δ > 0, we have ck(δ) < 0.

123



Infinitely Many Solutions for a Fourth-Order Semilinear… 1717

Proof By (2.57) and (2.58), for fixed k ∈ N, 0 < δ < δ′, we have �k(δ) ⊂ �k(δ
′) and

ck(δ) > ck(δ
′). Then we only need to prove ck(δ) < 0 for any δ ∈ (0, |bk |). For any

δ ∈ (0, |bk |), from (2.56), there exists ϕ0 ∈ �k such that max
u∈Sk

J (ϕ0(u)) ≤ bn + δ
2 .

Since ϕ0(Sk) is a compact set in H2
0 (�), there exists a positive integer m0 such that

max
u∈Sk

J ((Pm0 ◦ ϕ0)(u)) ≤ bk + δ, (2.59)

where Pm0 denotes the orthogonal projective operator from H2
0 (�) to Vm0 .

For any c ∈ R, let J c := {u ∈ H2
0 (�) : J (u) ≤ c}. Choose ε = − bk+δ

2 > 0. By
(A1), (A4), (B) and (2.13), there exists a positive constant ρ0 such that if u ∈ B(0, ρ0),
J (u) ≤ ε, where B(x0, ρ) denotes the open ball of radius ρ centered at u0 in H2

0 (�)

and B denotes the closure in H2
0 (�). From (2.13) and J (0) = 0, hence dist(0, J−ε) >

0. Setting

ρ′
0 := min{ρ0, dist(0, J−ε)},

then ρ′
0 > 0. By deformation theorem in [2] (or see deformation theorem in [9]), we

have there exist ε ∈ (0, ε) and a continuous map η ∈ C([0, 1]× H2
0 (�), H2

0 (�)) such
that

η(1, u) = u, if J (u) /∈ [−ε, ε], (2.60)

and

η(1, J ε\B(0, ρ′
0)) ⊂ J−ε, (2.61)

where B(0, ρ′
0) is a neighborhood of K0.

From (2.55), we obtain Pm0 ◦ ϕ0 ∈ C(Sk, Vm0). Since Vk+1 is a metric space with
the norm ‖·‖H2

0 (�) and Sk is a closed subset in Vk+1, by Dugundji extension theorem
(see Theorem 4.1 in [5]), we have there exists an extension

˜Pm0 ◦ ϕ0 : Wk+1 → Vm0;

furthermore,

(
( ˜Pm0 ◦ ϕ0)Wk+1

)
⊂ co

(
(Pm0 ◦ ϕ0)Sk

)
, (2.62)

where the symbol co denotes the convex hull. Since (Pm0 ◦ ϕ0)Sk is a compact set
in Vm0 , by the definition of convex hull, co

(
(Pm0 ◦ ϕ0)Sk

)
is a bounded set in Vm0 .

Then there exists a constant ν such that

J (u) ≤ ν, u ∈ co
(
(Pm0 ◦ ϕ0)Sk

)
.
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1718 D. T. Luyen

By (2.62), we have

J
(
( ˜Pm0 ◦ ϕ0)u

)
≤ ν, ∀u ∈ Wk+1. (2.63)

Next, we distinguish two cases.

Case 1. ν ≤ ε. Since ˜Pm0 ◦ ϕ0 ∈ C(Wk+1, Vm0), by (2.63), we get that

( ˜Pm0 ◦ ϕ0)u ∈ J ε
m0

, u ∈ Wk+1, (2.64)

where J ε
m0

:= {u ∈ Vm0 : J (u) ≤ ε}. Define a map � as follows:

�(u) =
⎧
⎨

⎩

u, u /∈ B(0, ρ′
0) ∩ Vm0

u +
(
ρ′2

0 − ‖u‖2
H2
0 (�)

) 1
2

em0+1, u ∈ B(0, ρ′
0) ∩ Vm0 .

(2.65)

It is clear that � ∈ C(Vm0 , Vm0+1).

On the other hand, if u ∈ Wk+1 and
∥
∥
∥
(

˜Pm0 ◦ ϕ0

)
u
∥
∥
∥

H2
0 (�)

> ρ′
0 then by (2.64) and

(2.65), we have

(
� ◦

(
˜Pm0 ◦ ϕ0

))
u =

(
˜Pm0 ◦ ϕ0

)
u ∈ J ε

m0
,

∥
∥
∥
(
� ◦

(
˜Pm0 ◦ ϕ0

))
u
∥
∥
∥

H2
0 (�)

> ρ′
0. (2.66)

Otherwise, u ∈ Wk+1 and
∥
∥
∥
(

˜Pm0 ◦ ϕ0

)
u
∥
∥
∥

H2
0 (�)

≤ ρ′
0 from (2.65) we have

∥
∥
∥
(
� ◦

(
˜Pm0 ◦ ϕ0

))
u
∥
∥
∥

H2
0 (�)

= ρ′
0. (2.67)

Combining the definition of ρ′
0, (2.66) and (2.67), we obtain

(
� ◦

(
˜Pm0 ◦ ϕ0

))
u /∈ B(0, ρ′

0), u ∈ Wk+1, (2.68)

and

(
� ◦

(
˜Pm0 ◦ ϕ0

))
u ∈ J ε, ∀u ∈ Wk+1. (2.69)

Define a map

�m0 : Wk+1 −→ H2
0 (�)

u �−→ �m0(u) = η
(
1,

(
� ◦

(
˜Pm0 ◦ ϕ0

))
u
)

. (2.70)
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We need to prove �m0 ∈ �k(δ) and max
u∈Sk+1+

J (�m0(u)) < 0. First, it is obvious that

�m0 ∈ C(Sk+1+ , H2
0 (�)). Next, we prove �m0

∣
∣
∣
Sk

∈ �k . By Dugundji extension

theorem, we get

(
˜Pm0 ◦ ϕ0

)
u = (

Pm0 ◦ ϕ0
)

u, ∀u ∈ Sk . (2.71)

From (2.59), hence
(
Pm0 ◦ ϕ0

)
u ∈ J−2ε, u ∈ Sk . By the definition of ρ′

0 and J−2ε ⊂
J−ε implies that

∥
∥(

Pm0 ◦ ϕ0
)

u
∥
∥

H2
0 (�)

≥ ρ′
0, ∀u ∈ Sk . (2.72)

From (2.65), (2.71) and (2.72), we have that

(
� ◦

(
˜Pm0 ◦ ϕ0

))
u = �

((
Pm0 ◦ ϕ0

)
u
) = (

Pm0 ◦ ϕ0
)

u, ∀u ∈ Sk . (2.73)

Since
(
Pm0 ◦ ϕ0

)
u ∈ J−2ε,∀u ∈ Sk , by (2.59), (2.60), (2.70) and (2.73), we have

�m0(u) = η
(
1,

(
� ◦

(
˜Pm0 ◦ ϕ0

))
u
)

= (
Pm0 ◦ ϕ0

)
u, ∀u ∈ Sk, (2.74)

which implies that �m0

∣
∣
∣
Sk

∈ �k . Moreover, from (2.57), (2.59) and (2.74), we have

�m0 ∈ �k(δ). Since Sk+1 ⊂ Wk+1, by (2.68) and (2.69), we obtain

(
� ◦

(
˜Pm0 ◦ ϕ0

))
u /∈ B(0, ρ′

0) and
(
� ◦

(
˜Pm0 ◦ ϕ0

))
u ∈ J ε, ∀u ∈ Sk+1.

From (2.61) and (2.70), we get max
u∈Sk+1+

J
(
�m0(u)

) ≤ −ε < 0 which implies that

ck(δ) < 0.
Case 2. ν > ε. By a similar proof as in Lemmas 2.3 and 2.5, we can prove that

J
∣
∣
∣
Vm0

∈ C1(Vm0 , R) and satisfies Palais–Smale condition. Moreover, J
∣
∣
∣
Vm0

has no

critical points with positive critical values on Vm0 . By noncritical interval theorem
(see Theorem 5.1.6 in [3]), we see that J ε

m0
is a strong deformation retract of J ν

m0
. So

there exists a map ψ such that ψ ∈ C(J ν
m0

, J ε
m0

) and ψ(u) = u, if u ∈ J ε
m0

. Define a
map � as follows:

� : Wk+1 −→ H2
0 (�)

u �−→ �(u) := ψ
(
1,

(
� ◦

(
˜Pm0 ◦ ϕ0

))
(u)

)
.

By a similar proof as in Case 1, we get � ∈ �k(δ) and max
u∈Sk+1+

J (�(u)) ≤ −ε < 0

which implies that ck(δ) < 0. The proof of Lemma 2.8 is complete. ��
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Lemma 2.9 Suppose that f satisfies (A1), (A3), (A4) and g satisfies (B). Then there
exists a positive constant C18 independent of k such that for all k large enough

bk ≥ −C18k
−4p

N (2−p) . (2.75)

Proof For any ϕ ∈ �k(k ≥ 2) when 0 /∈ ϕ(Sk), then the genus γ (ϕ(Sk)) is well
defined and γ (ϕ(Sk)) ≥ ϕ(Sk) = k.ByProposition 7.8 in [12], henceϕ(Sk)∩V

⊥
k−1 �=

∅. Otherwise, if 0 ∈ ϕ(Sk) then 0 ∈ ϕ(Sk) ∩ V
⊥
k−1. So for any ϕ ∈ �k(k ≥ 2) we

have ϕ(Sk) ∩ V
⊥
k−1 �= ∅. Therefore, for any ϕ ∈ �k(k ≥ 2), we obtain

max
u∈Sk

J (ϕ(u)) ≥ inf
u∈V⊥

k−1

J (u). (2.76)

From (A1), (A4), (B), (2.10) and (2.13), we get that

J (u) ≥ 1

2
‖u‖2

H2
0 (�)

− C19 ‖u‖p
L p(�) − π(u)

∫

�

F2(x, u)dx − ψ(u)

≥ 1

4
‖u‖2

H2
0 (�)

− C19 ‖u‖p
L2(�)

,∀u ∈ H2
0 (�). (2.77)

Moreover, by u ∈ V
⊥
k−1, hence

‖u‖L2(�) ≤ λ
−1
2

k ‖u‖H2
0 (�)) . (2.78)

Combining (2.56), (2.76), (2.77) and (2.78), for any k ≥ 2, we have

bk ≥ inf
t≥0

(
1

4
t2 − C19λ

−p
2

k t p
)

= −C20λ

−p
2−p
k , (2.79)

where C20 is a positive constant independent of k and λk . On the other hand, it follows
from Agmon’s generalization [1] of Weyl’s formula [15], which in fact is an extension
of earlier work of Pleijel [10] for N = 2, we have

λk ≥ C21k
4
N . (2.80)

Combining (2.79) and (2.80), we arrive at the conclusion of the lemma. ��
Lemma 2.10 Suppose that ck = bk for k ≥ k0, where k0 ∈ N. Then there exists a
positive integer k1 such that

|bk | ≥ C22k
2

2−θ , k ≥ k1, (2.81)

where C22 is a positive constant independent of k.

123



Infinitely Many Solutions for a Fourth-Order Semilinear… 1721

Proof For any k ≥ k0 and any ε ∈ (0, |bk |), by (2.56) there exists a map ϕ0 ∈ �k such
that

max
u∈Sk+1+

J (ϕ0(u)) < ck + ε = bk + ε. (2.82)

From Sk+1 = Sk+1+ ∪ (−Sk+1+ ), ϕ0 can be continuously extended to Sk+1 as an odd
function, also denoted by ϕ0, then ϕ0 ∈ �k+1. From (2.56), we have

bk+1 ≤ max
u∈Sk+1

J (ϕ0(u)) = J (ϕ0(u0)) (2.83)

for some u0 ∈ Sk+1. If u0 ∈ Sk+1+ , in combination with (2.27), (2.82) and (2.83), we
have

bk+1 < bk + ε + C8 |bk+1| θ
2 . (2.84)

Otherwise, u0 ∈ −Sk+1+ , from (2.27) and (2.82), we get that

J (ϕ0(u0)) ≤ J (ϕ0(−u0)) + C8 |J (ϕ0(u0))| θ
2

≤ bk + ε + C8 |J (ϕ0(u0))| θ
2 . (2.85)

Next, we consider two possible cases.
Case 1. J (ϕ0(u0)) ≤ |bk+1|, from (2.83) and (2.84), we obtain

bk+1 < bk + ε + C8 |bk+1| θ
2 . (2.86)

Case 2. J (ϕ0(u0)) > |bk+1|. By (2.82), there exists u1 ∈ Sk+1+ such that

J (ϕ0(u1)) < bk + ε < 0. (2.87)

Since J ◦ϕ0 ∈ C(Sk+1, R) and Sk+1 is a connected space with the norm ‖·‖H2
0 (�)) , by

the intermediate value theorem, there exists u2 ∈ Sk+1 such that J (ϕ0(u2)) = |bk+1|
2 .

By (2.82), hence u2 ∈ −Sk+1. From (2.27) and (2.82), we get

J (ϕ0(u2)) ≤ J (ϕ0(−u2)) + C8 |J (ϕ0(u2))| θ
2

≤ bk + C8 |J (ϕ0(u2))| θ
2 ,

which implies that

bk+1 ≤ bk + ε + C8 |bk+1| θ
2 . (2.88)
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By Lemma 2.7, (2.84), (2.86) and (2.88), it is easy to see that

|bk | ≤ |bk+1| + C8 |bk+1| θ
2 , k ≥ k0. (2.89)

Next, we show that (2.89) implies (2.81). The proof will be done by induction. First,
we introduce a useful inequality as follows:

(1 + t)α ≥ 1 + αt

2
, t ∈ [0, β], (2.90)

where α, β are positive constants and β depends on α. Set α = 2(θ − 2)−1. In view
of (2.90), there exists k̃0 ∈ N such that

(

1 + 1

k

) 2
θ−2 ≥ 1 + 1

(θ − 2)k
, k ≥ k̃0. (2.91)

Define

C22 := min

{

k
2

θ−2
1

∣
∣bk1

∣
∣ ,

(
1

C8(θ − 2)

) 2
θ−2

}

, (2.92)

where k1 = max{k0, k̃0}. Then we claim (2.81) holds. By (2.92), we have

∣
∣bk1

∣
∣ ≥ C22k

2
2−θ

1 . (2.93)

Suppose that (2.81) holds for k ≥ k1. Then we only need to prove (2.81) also holds
for k + 1. If not, we get that

|bk+1| ≤ C22(k + 1)
2

2−θ . (2.94)

Since (2.81) holds for k, by (2.27), (2.89) and (2.94), we obtain

C22k
2

2−θ

1 ≤ |bk | ≤ |bk+1| + C8 |bk+1| θ
2 ≤ C22(k + 1)

2
2−θ

+ C8C
θ
2
22(k + 1)

θ
2−θ . (2.95)

When we divide (2.95) by C22(k + 1)
2

2−θ on both sides, in view of (2.92), we get that

(

1 + 1

k

) 2
θ−2

< 1 + C8C
θ−2
2

22
1

k + 1
< 1 + C8C

θ−2
2

22
1

k
≤ 1 + 1

(θ − 2)k
,

which contradicts (2.91). So (2.81) holds. The proof of Lemma 2.10 is complete. ��
Lemma 2.11 Suppose that ck > bk. Then for any δ ∈ (0, ck − bk), ck(δ) given by
(2.57) is a critical value of J .
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Proof By using deformation theorem in [2], the proof of this lemma is similar to the
one of Lemma 1.57 in [11]. We omit the details. ��

Proof of Theorem 1.1 From (1.4), Lemmas 2.7, 2.9 and 2.10, it is impossible that
ck = bk for all large k, we can choose subsequence {k j }∞j=1 ⊂ N such that ck j > bk j .
By Lemmas 2.8, 2.9 and 2.11, there exists a sequence of critical points {uk j }∞j=1 of J
such that

− C18k
−2p

N (2−p)

j ≤ bk j < ck j ≤ ck j (δ j ) = J (uk j ) < 0, (2.96)

where δ j ∈ (0, ck j − bk j ). It is obvious that uk j �= 0, j ∈ N. Next, we consider the
following two possible cases.
Case 1.

∥
∥uk j

∥
∥2

H2
0 (�))

> 2T0. From (2.2), (2.3) and (2.16), hence

π(uk j ) = 1 and ψ ′(uk j ) = 0.

By (A2), (2.5) and (2.28), we get that

I (uk j ) = I (uk j ) − μ−1〈 Ĩ ′(uk j ), uk j 〉
= 2A

∥
∥uk j

∥
∥2

H2
0 (�))

+
∫

�

(
μ−1 f1(x, un j )un j − F1(x, un j )

)
dx

≤ A
∥
∥uk j

∥
∥2

H2
0 (�))

. (2.97)

Case 2.
∥
∥uk j

∥
∥2

H2
0 (�))

≤ 2T0. By Lemmas 2.1, 2.3, (A2), (A4), (B) (2.5) and (2.28), we

get that

I (uk j ) ≤ 1

2

∥
∥uk j

∥
∥2

H2
0 (�))

−
∫

�

F1(x, uk j )dx + C3C p3
p3

∥
∥uk j

∥
∥p3

H2
0 (�))

+ C4Cθ
θ

∥
∥uk j

∥
∥θ

H2
0 (�))

,

and

〈 Ĩ ′(uk j ), uk j 〉 ≥ ∥
∥uk j

∥
∥2

H2
0 (�))

−
∫

�

f1(x, uk j )uk j dx − 9C3C p3
p3

∥
∥uk j

∥
∥p3

H2
0 (�))

− 89C4Cθ
θ

∥
∥uk j

∥
∥θ

H2
0 (�))

.
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Hence,

I (uk j ) = I (uk j ) − μ−1〈 Ĩ ′(uk j ), uk j 〉
≤ 2A

∥
∥uk j

∥
∥2

H2
0 (�))

+ μ + 9

μ
C3C p3

p3

∥
∥uk j

∥
∥p3

H2
0 (�))

+ μ + 89

μ
C4Cθ

θ

∥
∥uk j

∥
∥θ

H2
0 (�))

≤ A
∥
∥uk j

∥
∥2

H2
0 (�))

. (2.98)

In both cases, by (2.11), (2.97) or (2.98), we get �(uk j ) = 0 and �′(uk j ) = 0. Hence,

J (uk j ) = I (uk j ) ≤ A
∥
∥uk j

∥
∥2

H2
0 (�))

< 0.

By (2.96), it is easy to see that

∥
∥uk j

∥
∥2

H2
0 (�))

→ 0 as j → ∞.

So there exists j0 ∈ N such that
∥
∥uk j

∥
∥2

H2
0 (�))

< T0 for all j ≥ j0. By (2.3) and (2.16),

hence

π(uk j ) = 1, π ′(uk j ) = 0 for all j ≥ j0.

In combination with (2.52), (2.16) and (2.28), when j is large enough, we conclude
that uk j are weak solutions of the problem (1.2). ��
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