1 Introduction

Graph burning is a discrete-time process that can be used to model the spread of social contagion in social networks. It was introduced by Bonato et al. [2, 3, 8]. This process is defined on the vertex set of a simple finite graph. Throughout the process, each vertex is either burned or unburned. Initially, at time step \(t=0\), all vertices are unburned. At the beginning of every time step \(t\ge 1\), an unburned vertex is chosen to burn (if such a vertex is available). After that, if a vertex is burned in time step \(t-1\), then in time step t, each of its unburned neighbours becomes burned. A burned vertex will remain burned throughout the process. The process ends when all vertices are burned, in which case we say the graph is burned.

Suppose a graph G is burned in m time steps in a burning process. For \(1 \le i \le m\), we denote the vertex we choose to burn at the beginning of time step i by \(x_i\). The sequence (\(x_1, x_2, \ldots , x_m\)) is called a burning sequence for G. Each \(x_i\) is called a burning source of G. The burning number of a graph G, denoted by b(G), is the length of a shortest burning sequence for G. It is straightforward to see that \(b(K_n)=2\). For paths and cycles, Bonato et al. [3] determined their burning numbers exactly.

Theorem 1.1

[3, Theorem 9 and Corollary 10] Let \(P_n\) be a path with n vertices and \(C_n\) be a cycle with n vertices. Then,

$$\begin{aligned} b(P_n)= \left\lceil n^{1/2} \right\rceil =b(C_n). \end{aligned}$$

For general graphs, they showed that the burning number of any graph G can be bounded by its radius r and diameter d, giving \(\left\lceil (d+1)^{1/2} \right\rceil \le b(G) \le r+1\). In the same paper, they also gave an upper bound on the burning number of any connected graph G of order n, showing that \(b(n) \le 2 \sqrt{n} -1\). This upper bound was later improved to roughly \(\frac{\sqrt{6}}{2} \sqrt{n}\) by Land and Lu [5]. It was conjectured in [3] that \(b(G) \le \lceil \sqrt{n} \rceil \) for any connected graph G of order n. Very recently, Bonato and Lidbetter [4] verified this conjecture for spider graphs, which are trees with exactly one vertex of degree at least 3.

Determining b(G) for general graphs is a non-trivial problem. It is known that computing the burning number of a graph is NP-complete [1]. The burning number of the hypercube \(Q_n\) is asymptotically \(\frac{n}{2}\) [7], but the exact value of \(b(Q_n)\) is still unknown. Several other results on burning number of graphs have also been studied recently. For example, Mitsche, Pralat and Roshanbin investigated the burning number of graph products in [7] and they also focused on the probabilistic aspects of the burning number in [6].

In this paper, we are interested in the burning number of the generalized Petersen graphs. Let \(n\ge 3\) and k be integers such that \(1 \le k \le n-1\). The generalized Petersen graph P(nk) is defined to be the graph on 2n vertices with vertex set

$$\begin{aligned} V(P(n,k)) = \left\{ u_i, v_i{:}~i=0,1,2,\ldots ,n-1\right\} \end{aligned}$$

and edge set

$$\begin{aligned} E(P(n,k)) =\lbrace u_iu_{i+1}, u_iv_i, v_iv_{i+k}{:}~i=0,1,2,\ldots , n-1\rbrace , \end{aligned}$$

where subscripts are taken modulo n. Let \(D_1=\lbrace u_i: i=0, 1, 2, \ldots , n-1 \rbrace \) and \(D_2=\lbrace v_i: i=0, 1, 2, \ldots , n-1 \rbrace \). The subgraph induced by \(D_1\) is called the outer rim, while the subgraph induced by \(D_2\) is called the inner rim. A spoke of P(nk) is an edge of the form \(u_iv_i\) for some \(0 \le i \le n-1\).

The following are the main results of this paper.

Theorem 1.2

Let k be a fixed positive integer. Then,

$$\begin{aligned} \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor } \right\rceil \le b(P(n,k))\le \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor } \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor +2. \end{aligned}$$

In particular,

$$\begin{aligned} \lim _{n\rightarrow \infty } \frac{b(P(n,k))}{\sqrt{\frac{n}{k}}}=1. \end{aligned}$$

Theorem 1.3

For \(n \ge 3\),

$$\begin{aligned} \left\lceil \sqrt{n}\right\rceil \le b(P(n,1)) \le \left\lceil \sqrt{n}\right\rceil +1. \end{aligned}$$

Furthermore, the bounds are tight, and if n is a square, then \(b(P(n,1)) =\sqrt{n} +1\).

Theorem 1.4

For \(n \ge 3\),

$$\begin{aligned} \left\lceil \sqrt{\frac{n}{2}}\right\rceil +1 \le b(P(n,2)) \le \left\lceil \sqrt{ \frac{n}{2} } \right\rceil +2. \end{aligned}$$

Furthermore, the bounds are tight, and if \(\frac{n}{2}\) is a square, then \(b(P(n,2)) =\sqrt{\frac{n}{2}} +2\).

We use standard graph terminology throughout the paper. The distance between two vertices u and v in a graph G, denoted by \(\text {dist}_G (u, v)\), is the length of a shortest path from u to v in the graph G. By convention, \(\text {dist}_G (u, u)=0\). Furthermore, we shall write \(\text {dist} (u, v)\) for \(\text {dist}_G (u, v)\) if the graph in question is clear. Given a non-negative integer s, the s-th closed neighbourhood of a vertex u, denoted by \(N^{G}_{s} [u]\), is the set of vertices whose distance from u is at most s, i.e.

$$\begin{aligned} N^{G}_{s} [u]= \lbrace v \in V(G){:}~\text {dist}_{G} (u,v) \le s \rbrace . \end{aligned}$$

Again, if the graph in question is clear, we shall write \(N_{s} [u]\) for \(N^{G}_{s} [u]\).

Let (\(x_1,x_2,\ldots ,x_m\)) be a burning sequence of a graph G. As in [3, Section 2], for each pair i and j, with \(1\le i<j\le m\), we have \(\text {dist} (x_i, x_j) \ge j-i\) and

$$\begin{aligned} V(G)= N_{m-1}[x_1] \cup N_{m-2}[x_2] \cup \cdots \cup N_{0}[x_m]. \end{aligned}$$
(1)

The plan of the paper is as follows. In Sect. 2, we provide bounds for the burning number of P(nk) and show that b(P(nk)) is asymptotically \(\sqrt{\frac{n}{k}}\). In Sect. 3, we determine the exact values of b(P(nk)) for \(1 \le n \le 8\). Then, we prove Theorems 1.3 and 1.4 in Sect. 4.

2 General Case

Lemma 2.1

For \(n \ge 3\) and \( 1 \le k < n\),

$$\begin{aligned} b(P(n,k))\ge \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor } \right\rceil . \end{aligned}$$

Proof

Let C be a cycle with \(\left\lfloor \frac{n}{k} \right\rfloor \) vertices, \(V(C)=\{0,1,2, \ldots , \left\lfloor \frac{n}{k} \right\rfloor -1\}\) and \(E(C)=\{ i(i+1){:}~0,1,\ldots , \left\lfloor \frac{n}{k} \right\rfloor -1\}\), where the integers are taken modulo \(\left\lfloor \frac{n}{k} \right\rfloor \). Recall that the outer rim and inner rim of P(nk) are \(D_1=\{ u_0,u_1,\ldots , u_{n-1}\}\) and \(D_2=\{ v_0,v_1,\ldots ,v_{n-1}\}\), respectively.

For each \(m\in \{0,1,2,\ldots , n-1\}\), let

$$\begin{aligned} f(m) = \left\{ \begin{array}{llll} p,&{} \text{ if }\quad m=pk+q,&{} 0 \le p< \left\lfloor \frac{n}{k} \right\rfloor ,&{} 0 \le q \le k-1; \\ \left\lfloor \frac{n}{k} \right\rfloor -1, &{} \text{ if }\quad m=\left\lfloor \frac{n}{k} \right\rfloor k +q,&{} 0 \le q < k-1&{} . \end{array}\right. \end{aligned}$$
(2)

Let \( \varphi : V(P(n,k))\rightarrow V(C)\) be defined by

$$\begin{aligned} \varphi (u_i)=f(i)=\varphi (v_i),\quad \forall i\in \{0,1,2,\ldots , n-1\}. \end{aligned}$$
(3)

Clearly, \(\varphi \) is surjective.

Let \((x_1, x_2, \ldots , x_s)\) be a burning sequence of P(nk). We construct a burning sequence for C using the map \(\varphi \) as follows:

  1. (a)

    At the beginning of time step 1, burn \(y_1=\varphi (x_1)\);

  2. (b)

    At the beginning of time step t (\(2\le t\le s\)), if \(\varphi (x_t)\) is still unburned, then burn \(y_t=\varphi (x_t)\); otherwise, burn any unburned vertex \(y_t\in V(C)\).

Note that in (b) above, if at the beginning of time step t (\(2\le t\le s\)), no unburned vertex can be found, then \((y_1,y_2,\ldots , y_{t-1})\) is a burning sequence of C. So, we may assume that such an unburned vertex can be found at the beginning of every time step. We shall show that \((y_1,y_2,\ldots , y_{s})\) is a burning sequence of C. This follows from \(\varphi \) is surjective and the following claim.

Claim

If \(z\in V(P(n,k))\) is burned at time step \(t_0\), then its image \(\varphi (z)\) in C is burned at time step \(t_1\le t_0\).

Proof

If \(z=x_1\), then it is burned at time step 1. Its image \(\varphi (z)=y_1\) is also burned at time step 1. The claim is true. Assume that the claim is true for a \(t_0<s\).

Suppose z is burned at time step \(t_0+1\). If z is a burning source, then \(z=x_{t_0+1}\). By (b), \(\varphi (z)\) is burned at time step \(t_0+1\) provided that \(\varphi (x_{t_0+1})\) is unburned. If \(\varphi (x_{t_0+1})\) is burned, then it must be burned at an earlier time step. So, the claim holds.

We may assume that \(z \ne x_{t_0+1}\). Note that for any two distinct vertices \(w_1, w_2 \in V(P(n,k))\) such that \(\varphi (w_1), \varphi (w_2) \in V(C)\) and \(\vert \varphi (w_1) -\varphi (w_2) \vert \le 1\) or \(\vert \varphi (w_1) -\varphi (w_2) \vert = \lfloor \frac{n}{k} \rfloor -1\), then \(\varphi (w_1)=\varphi (w_2)\) or \(\varphi (w_1)\) and \(\varphi (w_2)\) are adjacent in C. We shall distinguish two cases.

Case 1 Let \(z=u_l\). Then, it is adjacent to \(v_l, u_{l+1}\) and \(u_{l-1}\) where the subscript are taken modulo n. Furthermore, either \(v_l, u_{l+1}\) or \(u_{l-1}\) is burned at time step \(t_0\). So, by induction, \(\varphi (v_l), \varphi (u_{l+1})\) or \(\varphi (u_{l-1})\) is burned at time step \(t_1\le t_0\) respectively. By Eqs. (2) and (3), \(\vert \varphi (u_l) -\varphi (v_l) \vert =0\), \(\vert \varphi (u_l) -\varphi (u_{l-1}) \vert \le 1\) and \(\vert \varphi (u_l) -\varphi (u_{l+1}) \vert \le 1\) where \(l=1,2, \ldots , n-2\) and \(\vert \varphi (u_0) -\varphi (u_{n-1}) \vert = \lfloor \frac{n}{k} \rfloor -1\). This means that \(\varphi (z) =\varphi (u_l)\) is burned at time step \(t_1+1 \le t_0 +1\).

Case 2 Let \(z=v_l\). It is adjacent to \(u_l, v_{l+k}\) and \(u_{l-k}\) where the subscript are taken modulo n. Either \(u_l, v_{l-k}\) or \(v_{l+k}\) is burned at time step \(t_0\). Here, we denote \(v_{-i}=v_{n-i}\) for a non-negative i. So, by induction, \(\varphi (u_l), \varphi (v_{l+k})\) or \(\varphi (v_{l-k})\) is burned at time step \(t_1\le t_0\) respectively. By Eqs. (2) and (3), we have \(\vert \varphi (v_l) -\varphi (u_l) \vert =0\),

$$\begin{aligned} \vert \varphi (v_l) -\varphi (v_{l-k}) \vert = \left\{ \begin{array}{ll} \lfloor \frac{n}{k} \rfloor -1, &{} \text{ if }\quad l=0,1,2, \ldots , k-1; \\ 1,&{} \text{ if }\quad l=k, k+1, \ldots , \lfloor \frac{n}{k} \rfloor k -1; \\ 0,&{} \text{ if }\quad l= \lfloor \frac{n}{k} \rfloor k, \lfloor \frac{n}{k} \rfloor k+1, \ldots , n-1. \end{array}\right. \end{aligned}$$

and

$$\begin{aligned}&\vert \varphi (v_l) -\varphi (v_{l+k}) \vert \nonumber \\&\quad = \left\{ \begin{array}{ll} 1,&{} \text{ if }\quad l=0,1,2, \ldots , \left( \lfloor \frac{n}{k} \rfloor -1 \right) k -1 ; \\ 0,&{} \text{ if }\quad l=\left( \lfloor \frac{n}{k} \rfloor -1 \right) k,\left( \lfloor \frac{n}{k} \rfloor -1 \right) k +1, \ldots , n-1-k; \\ \lfloor \frac{n}{k} \rfloor -1,&{}\text{ if }\quad l=n-k, n-k+1, \ldots , n-1. \end{array}\right. \end{aligned}$$

This means that \(\varphi (z) =\varphi (v_l)\) is burned at time step \(t_1+1 \le t_0 +1\).

This completes the proof of the claim. \(\square \)

Therefore, given any burning sequence of P(nk), we can construct a burning sequence for C with shorter or the same length. Hence, \(b(P(n,k))\ge b(C)= \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor } \right\rceil \), where the last equality follows from Theorem 1.1. \(\square \)

Lemma 2.2

For \(n \ge 3\) and \( 1 \le k < n\),

$$\begin{aligned} b(P(n,k)) \le \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor } \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor +2. \end{aligned}$$

Proof

Recall that the outer rim and inner rim of P(nk) are \(D_1=\{ u_0,u_1,\ldots , u_{n-1}\}\) and \(D_2=\{ v_0,v_1,\ldots ,v_{n-1}\}\), respectively. Let \(r=\left\lfloor \frac{n}{k} \right\rfloor \). We shall construct a burning sequence for P(nk) of length at most \(\left\lceil \sqrt{r} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor +2\). Note that a subgraph G induced by the vertices \(v_0, v_{k}, v_{2k}, \ldots , v_{(r-1)k}\) in P(nk) is a path or cycle of order r. By Theorem 1.1, \(b(G)=\left\lceil \sqrt{r} \right\rceil \). So, there is a burning sequence \((x_1, x_2, \ldots , x_{\lceil \sqrt{r} \rceil })\) of G. We shall take \(x_1, x_2, \ldots , x_{\lceil \sqrt{r} \rceil }\) as the first part of our burning sequence for P(nk).

Note that at time step \(\lceil \sqrt{r} \rceil \), all \(v_0, v_{k}, v_{2k}, \ldots , v_{(r-1)k}\) are burned. If at time step \(\lceil \sqrt{r} \rceil \), \(u_{rk}\) is unburned, then we set \(x_{\lceil \sqrt{r} \rceil +1}=u_{rk}\). Otherwise, we set \(x_{\lceil \sqrt{r} \rceil +1}\) to be any unburned vertex. Since \(u_{ik}\) is adjacent to \(v_{ik}\) for \(0\le i\le (r-1)\), at time step \(\lceil \sqrt{r} \rceil +1\), all \(u_0, u_{k}, u_{2k}, \ldots , u_{(r-1)k}, u_{rk}\) are burned. Furthermore, at most \(k-1\) vertices are unburned in the path \(u_{ik}u_{ik+1}u_{ik+2}\ldots u_{(i+1)k}\) in the outer rim (see Fig. 1).

Now, for \(j\ge \lceil \sqrt{r} \rceil +2\), we can choose \(x_j\) to be any unburned vertex. Note that at time step \(\lceil \sqrt{r} \rceil +1+\left\lfloor \frac{k}{2} \right\rfloor \), all the vertices in the outer rim are burned. Since \(u_i\) and \(v_i\) are adjacent, at time step \(\lceil \sqrt{r} \rceil +2+\left\lfloor \frac{k}{2} \right\rfloor \), all vertices in the inner rim are also burned. Hence, the lemma follows. \(\square \)

Fig. 1
figure 1

Filled vertices are burned, whereas empty vertices are unburned

Proof of Theorem 1.2

By Lemmas 2.1 and 2.2, we have

$$\begin{aligned} \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor } \right\rceil \le b(P(n,k))\le \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor } \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor +2. \end{aligned}$$

By noting that \(\lim _{n\rightarrow \infty } \frac{\left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor } \right\rceil }{\sqrt{\frac{n}{k}}}=1\) and \(\lim _{n\rightarrow \infty } \frac{\left\lfloor \frac{k}{2} \right\rfloor +2}{\sqrt{\frac{n}{k}}}=0\), we conclude

$$\begin{aligned} \lim _{n\rightarrow \infty } \frac{b(P(n,k))}{\sqrt{\frac{n}{k}}}=1. \end{aligned}$$

\(\square \)

3 Case \(1\le N\le 8\)

We shall give the exact burning numbers for the case \(1 \le n \le 8\) in this section. Note that P(nk) is isomorphic to \(P(n,n-k)\). So, we may assume that \(1\le k\le \left\lfloor \frac{n}{2} \right\rfloor \). Recall that the sth closed neighbourhood of a vertex \(x\in V(P(n,k))\) is

$$\begin{aligned} N_{s} [x]= \lbrace y \in V(P(n,k)): \ \text {dist} (y,x) \le s \rbrace , \end{aligned}$$

and the outer rim and inner rim of P(nk) are \(D_1=\{u_0,u_1,\ldots , u_{n-1}\}\) and \(D_2=\{v_0,v_1,\ldots ,v_{n-1}\}\), respectively.

Proposition 3.1

Let \( 3 \le n \le 8\) and \(1 \le k \le \left\lfloor \frac{n}{2} \right\rfloor \). Then,

$$\begin{aligned} b(P(n,k)) = \left\{ \begin{array}{ll} 3,&{} \mathrm{if}\quad 3 \le n \le 6~\mathrm{or}~n=7, k \ne 1, \\ 4,&{} \mathrm{if}\quad n=8~\mathrm{or}~n=7, k=1. \end{array}\right. \end{aligned}$$

Proof

Since each vertex \(x\in V(P(n,k))\) is of degree 3, \(\vert N_0 [x]\vert =1\), \(\vert N_1 [x]\vert \le 4\) and \(\vert N_2 [x]\vert \le 10\).

Let \(3\le n\le 7\). If \((x _1, x_2)\) is a burning sequence of P(nk), then by Eq. (1),

$$\begin{aligned} 2n\le \vert N_{1}[x_1]\vert +\vert N_{0}[x_2]\vert \le 4+1=5, \end{aligned}$$

implying that \(n<3\), which is a contradiction. Hence, \(b(P(n,k)) \ge 3\). Similarly, if \((x_1, x_2, x_3)\) is a burning sequence of P(8, k), then

$$\begin{aligned} 16\le \vert N_{2}[x_1]\vert +\vert N_{1}[x_2]\vert +\vert N_{0}[x_3]\vert \le 10+4+1=15, \end{aligned}$$

again is a contradiction. Hence, \(b(P(8,k)) \ge 4\).

Note that for each \(x\in V(P(7,1))\), \(\vert N_2 [x]\vert =8\). So, if \((x _1, x_2, x_3)\) is a burning sequence of P(7, 1), then

$$\begin{aligned} 14\le \vert N_{2}[x_1]\vert +\vert N_{1}[x_2]\vert +\vert N_{0}[x_3]\vert \le 8+4+1=13, \end{aligned}$$

which is a contradiction. Hence, \(b(P(7,1)) \ge 4\).

Now, the proposition can be verified easily from the burning sequences in the following table (see also Fig. 2).

Burning sequence

Graph

\((u_0,v_1,v_2)\)

P(3, 1), P(4, 1), P(4, 2)

\((u_0,v_3,u_3)\)

P(5, 1), P(6, 1), P(6, 2)

\((u_0,u_2,v_4)\)

P(5, 2), P(6, 3)

\((u_0,u_2,u_4,v_4)\)

P(7, 1)

\((u_0,u_3,v_4)\)

P(7, 2)

\((v_0,v_2,u_5)\)

P(7, 3)

\((u_0,u_2,v_4,u_4)\)

P(8, 1), P(8, 2), P(8, 3), P(8, 4)

Fig. 2
figure 2

Burning sequences

\(\square \)

4 Case \(1\le K\le 2\)

4.1 Proof of Theorem 1.3

Note that for each \(x\in V(P(n,1))\), \(\vert N_m [x]\vert \le 4m\) for \(m\ge 1\) and \(\vert N_0 [x]\vert =1\). So, if \((x _1, x_2,\ldots , x_l)\) is a burning sequence of P(n, 1), then by Eq. (1),

$$\begin{aligned} 2n\le \vert N_0 [x_l]\vert +\sum _{i=1}^{l-1} \vert N_{l-i}[x_i]\vert \le 1+\sum _{i=1}^{l-1} 4(l-i)=2l^2-2l+1. \end{aligned}$$

Since \(l\ge 1\), by completing the square, we conclude that \(l\ge \frac{2+\sqrt{4-8(1-2n)}}{4}=\frac{1}{2}+\sqrt{n-\frac{1}{4}}>\sqrt{n}\). Hence, \(b(P(n,1))\ge \left\lceil \sqrt{n} \ \right\rceil \), and if n is a square, then \(b(P(n,1))\ge \left\lceil \sqrt{n} \ \right\rceil +1\).

The subgraph C induced by the vertices in the outer rim \(D_1=\{ u_0,u_1,\ldots , u_{n-1}\}\) is a cycle of length n. By Theorem 1.1, \(b(C)=\left\lceil \sqrt{n} \ \right\rceil \). So, C has a burning sequence \((y_1,y_2,\ldots , y_{\left\lceil \sqrt{n} \ \right\rceil })\). We shall take \(y_1, y_2, \ldots , y_{\lceil \sqrt{n} \rceil }\) as the first part of our burning sequence for P(n, 1). Note that at time step \(\lceil \sqrt{n} \rceil \), all the vertices in the outer rim are burned. Choose any unburned vertex z in the inner rim. Let \(y_{\lceil \sqrt{n} \rceil +1}=z\). Since \(u_iv_i\) are adjacent for \(1\le i\le n-1\), at time step \(\lceil \sqrt{n} \rceil +1\) all vertices in the inner rim are also burned. Hence, \(b(P(n,1))\le \left\lceil \sqrt{n} \ \right\rceil +1\), and if n is a square, then \(b(P(n,1))= \sqrt{n} +1\).

Finally, by Proposition 3.1, \(b(P(5,1))=3=\left\lceil \sqrt{5} \ \right\rceil \). So the bounds are tight. This completes the proof of Theorem 1.3. \(\square \)

4.2 Proof of Theorem 1.4

We shall first define an isomorphic graph of P(n, 2), say H(n). Let

$$\begin{aligned} W_1&=\left\{ s_i, s'_i, t_i, t'_i: i=1, 2, \ldots , \left\lfloor \frac{n}{2} \right\rfloor \right\} ;\\ W_2&=\left\{ t_it_{i+1}, t'_it'_{i+1}, s_is'_{i+1}, s_jt_j, s'_jt'_j, s_js'_j : 1 \le i \le \left\lfloor \frac{n}{2}\right\rfloor -1, 1 \le j \le \left\lfloor \frac{n}{2}\right\rfloor \right\} . \end{aligned}$$

If n is even, then let

$$\begin{aligned} V(H(n))&= W_1;\nonumber \\ E(H(n))&= W_2 \cup \left\{ t_1t_{\frac{n}{2}}, t'_1t'_{\frac{n}{2}}, s_{\frac{n}{2}} s'_1 \right\} . \end{aligned}$$
(4)

If n is odd, then let

$$\begin{aligned} V(H(n))&= W_1\cup \left\{ s_0, t_0 \right\} ;\nonumber \\ E(H(n))&= W_2 \cup \left\{ s_0s_{\frac{n-1}{2}}, s_0s'_1, s_0t_0, t_0t_1, t_0t'_{\frac{n-1}{2}}, t_{\frac{n-1}{2} } t'_1 \right\} . \end{aligned}$$
(5)

We now show that P(n, 2) is isomorphic to H(n) (see Figs. 3 and 4). Define \(\phi : V(P(n,2)) \rightarrow V(H(n))\) as follows: Let \(\phi (u_i)=s'_{\frac{i}{2}+1}\) if i is even and \(i\ne n-1\); \(\phi (u_i)=s_{\frac{i-1}{2}+1}\) if i is odd; \(\phi (u_{n-1})=s_{0}\) if \(n-1\) is even. Let \(\phi (v_i)=t'_{\frac{i}{2}+1}\) if i is even and \(i\ne n-1\); \(\phi (v_i)=t_{\frac{i-1}{2}+1}\) if i is odd; \(\phi (v_{n-1})=t_{0}\) if \(n-1\) is even. Note that the subgraph induced by all the vertices \(s_i, s'_i\) in H(n) is isomorphic to the outer rim in P(n, 2), and the subgraph induced by all the vertices \(t_i, t'_i\) in H(n) is isomorphic to the inner rim in P(n, 2). Furthermore, \(s_it_i, s'_it'_i\) are the spokes in P(n, 2). So P(n, 2) is isomorphic to H(n).

Let \(T_1=\lbrace t_i: 1 \le i \le \lfloor \frac{n}{2}\rfloor \rbrace \), \(T_2=\lbrace t'_i: 1 \le i \le \lfloor \frac{n}{2}\rfloor \rbrace \), and level \(L_i=\lbrace s_i, s'_i, t_i, t'_i\rbrace \) for \(i=1, 2, \ldots , \lfloor \frac{n}{2} \rfloor \).

Fig. 3
figure 3

H(n) is isomorphic to P(n, 2) where n is even

Fig. 4
figure 4

H(n) is isomorphic to P(n, 2) where n is odd

Lemma 4.1

For \(n \ge 3\),

$$\begin{aligned} b(P(n,2))\ge \left\lceil \sqrt{\frac{n}{2}} \ \right\rceil +1. \end{aligned}$$

Furthermore, if \(\frac{n}{2}\) is a square, then \(b(P(n,2))\ge \sqrt{\frac{n}{2}} +2\).

Proof

Note that if \(x \notin T_1 \cup T_2\), then \(\vert N_0 [x]\vert =1\), \(\vert N_1 [x]\vert \le 4\), \(\vert N_2 [x]\vert \le 10\), \(\vert N_3 [x]\vert \le 16\), \(\vert N_4 [x]\vert \le 22\), \(\vert N_5 [x]\vert \le 30\) and \(\vert N_r [x]\vert \le 30+8(r-5)\) for \(r\ge 6\) (see Fig. 5). After 5 steps, a maximum of 8 vertices are newly burned in each following step.

Fig. 5
figure 5

Spreading of fire from \(x\notin T_1 \cup T_2 \). Filled vertices are burned, whereas empty vertices are unburned

If \( x \in T_1 \cup T_2\), then \(\vert N_0 [x]\vert =1\), \(\vert N_1 [x]\vert \le 4\), \(\vert N_2 [x]\vert \le 10\), \(\vert N_3 [x]\vert \le 18\) and \(\vert N_r [x]\vert \le 18 + 8(r-3)\) for \(r\ge 4\) (see Fig. 6). After 4 steps, a maximum of 8 vertices are newly burned in each following step.

Fig. 6
figure 6

Spreading of fire from \(x \in T_1 \cup T_2\). Filled vertices are burned, whereas empty vertices are unburned

In either case, we have \(\vert N_0 [x]\vert =1\), \(\vert N_1 [x]\vert \le 4\), \(\vert N_2 [x]\vert \le 10\), \(\vert N_3 [x]\vert \le 18\) and \(\vert N_r [x]\vert \le 18 + 8(r-3)=8r-6\) for \(r\ge 4\).

By Proposition 3.1, \(b(P(n,2))=3=\left\lceil \sqrt{\frac{n}{2}} \ \right\rceil +1\) for \(3\le n\le 7\) and

$$\begin{aligned} b(P(8,2))=4=\sqrt{\frac{n}{2}}+2. \end{aligned}$$

Hence, the lemma holds for \(3\le n\le 8\). So, we may assume \(n\ge 9\). Suppose \(9 \le n \le 16\), then \(\left\lceil \sqrt{\frac{n}{2}}\right\rceil \le 3\). If P(n, 2) has a burning sequence of length 3, say \((x_1,x_2,x_3)\), then by Eq. (1), \(18\le 2n\le \sum _{i=1}^{3} \vert N_{3-i}[x_i] \vert \le 1+4+10=15\), a contradiction. Suppose \(17 \le n \le 32\), then \(\left\lceil \sqrt{\frac{n}{2}} \ \right\rceil \le 4\). If P(n, 2) has a burning sequence of length 4, say \((x_1,x_2,x_3,x_4)\), then \(34\le 2n\le \sum _{i=1}^{4} \vert N_{4-i}[x_i] \vert \le 1+4+10+18=33\), a contradiction. So, \(b(P(n,2))\ge \left\lceil \sqrt{\frac{n}{2}} \ \right\rceil +1\) for \(3\le n\le 32\).

Note that for \(9\le n\le 32\), \(\frac{n}{2}\) is a square if and only if \(n=18, 32\). When \(n=18\), \(\sqrt{\frac{n}{2}} +2=5\). If P(18, 2) has a burning sequence of length 4, then \( \sum _{i=1}^{4} \vert N_{4-i}[x_i] \vert \le 33\), but \(\vert V(P(18,2))\vert =36\). When \(n=32\), \(\sqrt{\frac{n}{2}} +2=6\). If P(32, 2) has a burning sequence of length 5, then \( \sum _{i=1}^{5} \vert N_{5-i}[x_i] \vert \le 1+4+10+18+26=59\), but \(\vert V(P(32,2))\vert =64\). Thus, if \(\frac{n}{2}\) is a square and \(9\le n\le 32\), then \(b(P(n,2))\ge \sqrt{\frac{n}{2}} +2\).

Suppose \(n \ge 33\). If P(n, 2) has a burning sequence of length l, say \((x_1,x_2,\ldots ,x_l)\), then by Eq. (1),

$$\begin{aligned} 2n&\le \sum _{i=1}^{l} \vert N_{l-i}[x_i]\vert \le \vert N_0 [x_l] \vert + \vert N_1 [x_{l-1}] \vert + \vert N_2 [x_{l-2}] \vert +\sum _{i=1}^{l-3}\vert N_{l-i}[x_i]\vert \\&\le 1+4+ 10+ \sum _{r=3}^{l-1} (8r-6) \\&= 4l^2 -10l+9. \end{aligned}$$

Since \(l\ge 1\), by completing the square, we conclude that

$$\begin{aligned} l\ge \frac{10+\sqrt{100-16(9-2n)}}{8}=\frac{5}{4}+\sqrt{\frac{n}{2}-\frac{11}{16}}>\sqrt{\frac{n}{2}}+1. \end{aligned}$$

Hence, \(b(P(n,2))\ge \left\lceil \sqrt{\frac{n}{2}} \ \right\rceil +1\), and if \(\frac{n}{2}\) is a square, then \(b(P(n,2))\ge \sqrt{\frac{n}{2}}+2\). This completes the proof of the lemma. \(\square \)

Lemma 4.2

For \(n \ge 3\),

$$\begin{aligned} b(P(n,2)) \le \left\lceil \sqrt{ \frac{n}{2} } \right\rceil +2. \end{aligned}$$

Proof

Let \(l =\left\lceil \sqrt{ \frac{n}{2} } \right\rceil \). It is sufficient to show that there is a burning sequence \((x_1,x_2, \ldots , x_l, x_{l+1}, x_{l+2})\) in H(n).

Note that for \(2\le j\le l\), the term \((2j-1)l-(j-1)^2\) is increasing. Let \(m_0\) be the largest positive integer such that \((2m_0-1)l-(m_0-1)^2 \le \left\lfloor \frac{n}{2} \right\rfloor \). Since

$$\begin{aligned} (2l-1)l-(l-1)^2 =l^2+l-1\ge \left( \sqrt{ \frac{n}{2} } \right) ^2+\left( \sqrt{ \frac{n}{2} }-1\right) >\frac{n}{2}, \end{aligned}$$

we must have \(m_0\le l-1\).

Now, we construct the first part of a burning sequence for H(n), say \(x_1,x_2,\ldots ,x_l\), as follows:

  1. (a)

    Let \(x_1=t_l\);

  2. (b)

    For each \(2\le j\le m_0\), set \(x_j=t_{(2j-1)l-(j-1)^2}\) if j is odd, or \(x_{j}=t'_{(2j-1)l-(j-1)^2}\) if j is even;

  3. (c)

    For \(j\ge m_0+1\):

    1. (i)

      Suppose \(m_0 \le l-2\). If \(x_{m_0}=t_{(2m_0-1)l-(m_0-1)^2}\), then set \(x_{m_0+1}=t'_{\left\lfloor \frac{n}{2} \right\rfloor }\), whereas if \(x_{m_0}=t'_{(2m_0-1)l-(m_0-1)^2}\), then set \(x_{m_0+1}=t_{\left\lfloor \frac{n}{2} \right\rfloor }\). For \(m_0+2\le w \le l\), choose \(x_w\) to be any unburned vertex (if possible).

    2. (ii)

      Suppose \(m_0=l-1\). If \(x_{l-1}=t_{(2l-3)l-(l-2)^2}\), then set \(x_l=t'_{\left\lfloor \frac{n}{2} \right\rfloor }\), whereas if \(x_{l-1}=t'_{(2l-3)l-(l-2)^2}\), then set \(x_l=t_{\left\lfloor \frac{n}{2} \right\rfloor }\).

In Fig. 7, the filled vertices are \(N_{l-i} [x_i]\) and the shaded vertices are \(N_{l+2-i} [x_i] \backslash N_{l-i} [x_i]\). In particular, \(L_4\cup L_5\cup \cdots \cup L_l\subseteq N_{l-1}[x_1]\). So \(\left( L_1\cup L_2\cup \cdots \cup L_l\right) \setminus \{t_1'\}\subseteq N_{l+1}[x_1]\) (see Fig. 7a).

Fig. 7
figure 7

Construction

Suppose \(2\le j\le m_0\). Note that \(x_j\) is contained in level \(L_{(2j-1)l-(j-1)^2}\) and \(x_{j-1}\) is contained in level \(L_{(2j-3)l-(j-2)^2}\). There are exactly \(2l-2j+4=((2j-1)l-(j-1)^2)-((2j-3)l-(j-2)^2)+1\) levels between \(L_{(2j-1)l-(j-1)^2}\) and \(L_{(2j-3)l-(j-2)^2}\) (inclusive). All these levels are contained in \(N_{l-j+3}[x_{j-1}]\cup N_{l-j+2}[x_j]\) (see Fig. 7b).

Suppose \(m_0\le l-2\). By the choice of \(m_0\), \((2m_0+1)l-m_0^2>\left\lfloor \frac{n}{2} \right\rfloor \). So, the number of levels between \(L_{\left\lfloor \frac{n}{2} \right\rfloor }\) and \(L_{(2m_0-1)l-(m_0-1)^2 }\) (inclusive) is at most

$$\begin{aligned} \left\lfloor \frac{n}{2} \right\rfloor -((2m_0-1)l-(m_0-1)^2)+1&<(2m_0+1)l-m_0^2\\&\quad -\,((2m_0-1)l-(m_0-1)^2)+1\\&= 2l-2m_0+2. \end{aligned}$$

All these levels are contained in \(N_{l-m_0+2}[x_{m_0}]\cup N_{l-m_0+1}[x_{m_0+1}]\) (see Fig. 7b).

Suppose \(m_0=l-1\). Then, \(x_{l-1}\) is in level \(L_{(2l-3)l-(l-2)^2}\) and \(x_{l}\) is in level \(L_{\left\lfloor \frac{n}{2} \right\rfloor }\). Note that

$$\begin{aligned} (2l-3)l-(l-2)^2+2=l^2+l-2>\frac{n}{2}-1\ge \left\lfloor \frac{n}{2} \right\rfloor -1. \end{aligned}$$

Hence, we have

$$\begin{aligned} (2l-3)l-(l-2)^2+2 \ge \left\lfloor \frac{n}{2} \right\rfloor . \end{aligned}$$

Therefore,

$$\begin{aligned} L_{(2l-3)l-(l-2)^2}\cup L_{(2l-3)l-(l-2)^2+1}\cup \cdots \cup L_{\left\lfloor \frac{n}{2} \right\rfloor }\subseteq N_{3}[x_{l-1}]\cup N_{2}[x_{l}], \end{aligned}$$

(see Fig. 7c).

If we set \(x_{l+1}=t_1'\) and \(x_{l+2}\) to be any unburned vertex at time step \(l+1\) (if possible), then \((x_1,x_2, \ldots , x_l, x_{l+1}, x_{l+2})\) is a burning sequence of H(n) when n is even. If n is odd, it is also a burning sequence by noticing that \(\lbrace s_0, t_0 \rbrace \in N_{l+1} [x_1]\) (see Figs. 4 and 7a). This completes the proof of the lemma. \(\square \)

The first part of Theorem 1.4 follows from Lemmas 4.1 and 4.2. Furthermore, if \(\frac{n}{2}\) is a square, then \(b(P(n,2)) =\sqrt{\frac{n}{2}} +2\). Finally, by Proposition 3.1, \(b(P(3,2))=3=\left\lceil \sqrt{\frac{3}{2}} \ \right\rceil +1\). So the bounds are tight. This completes the proof of Theorem 1.4. \(\square \)